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Abstract

We study a version of the well-known Hospitals/Residents problem in
which participants’ preferences may involve ties or other forms of indiffer-
ence. In this context, we investigate the concept of strong stability, arguing
that this may be the most appropriate and desirable form of stability in many
practical situations. When the indifference is in the form of ties, we describe
an O(a2) algorithm to find a strongly stable matching, if one exists, where a

is the number of mutually acceptable (resident,hospital) pairs. We also give
a lower bound in this case in terms of the complexity of determining whether
a bipartite graph contains a perfect matching. By way of contrast, we prove
that it becomes NP-complete to determine whether a strongly stable matching
exists if the preferences are allowed to be arbitrary partial orders.

Keywords: stable matching problem; strong stability; hospitals/residents
problem; polynomial-time algorithm; lower bound; NP-completeness.

1 Introduction

The Hospitals/Residents problem [6] is a many-to-one extension of the classical
Stable Marriage problem (sm), so-called because of its widespread application to
matching schemes that assign graduating medical students (residents) to hospital
posts. In particular the National Resident Matching Program (NRMP) in the USA
[19], the Canadian Resident Matching Service [1], and the Scottish PRHO Alloca-
tions (SPA) matching scheme [9] all make use of algorithms that solve variants of
this problem.

An instance of the classical Hospitals/Residents problem (hr) involves two sets,
namely a set R of residents and a set H of hospitals. Each hospital h ∈ H has a
specified number ph of posts, referred to as its quota. Each resident r ∈ R ranks a
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subset of H in strict order of preference, and each hospital h ∈ H ranks, again in
strict order, those residents who have ranked h. These are the preference lists for
the instance. Note that preference lists are consistent in the sense that a resident
r appears on a hospital h’s list if and only if h appears on r’s list. Consistency
of preference lists will be assumed throughout. A (resident,hospital) pair (r, h) is
acceptable if each of r and h are on the other’s preference list, and we denote by A

(a subset of R × H) the set of acceptable pairs, with |A| = a.
An assignment M is a subset of A. If (r, h) ∈ M then we say that r is assigned

to h, and h is assigned r. We denote by M(r) the hospital to which r is assigned
in M (this is null if r is unassigned), and by M(h) the set of residents assigned to
h in M (the set of assignees of h in M). A hospital h ∈ H is under-subscribed,
fully-subscribed (or simply full) or over-subscribed according as |M(h)| is less than,
equal to, or greater than ph respectively. Hospital h is empty in M if M(h) = ∅.

A matching M is an assignment such that |{h ∈ H : (r, h) ∈ M}| ≤ 1 for all
r ∈ R, and |{r ∈ R : (r, h) ∈ M}| ≤ ph for all h ∈ H. Given a pair (r, h) ∈ A, we
define h ≺r M(r) to mean that either r is unassigned in M , or r prefers h to M(r).
Likewise, we define r ≺h M(h) to mean that either h is under-subscribed in M , or
h prefers r to at least one member of M(h).

A matching M in an instance of hr is stable if there is no pair (r, h) ∈ A \ M ,
such that h ≺r M(r) and r ≺h M(h). If such a pair (r, h) exists it is said to be a
blocking pair for the matching M , or to block M . The existence of a blocking pair
potentially undermines the matching, since both members of the pair could improve
their situation by becoming assigned to each other.

A special case of hr arises when ph = 1 for all h ∈ H – this is the Stable
Marriage problem with Incomplete lists (smi). A further special case arises when,
additionally, |R| = |H| and A = R×H – this is sm. In both smi and sm, the residents
and hospitals are referred to as men and women respectively. Every instance of sm

admits at least one stable matching, and such a matching may be found in linear
time using the Gale/Shapley (GS) algorithm [4]. An extended version of the GS
algorithm finds a stable matching for a given hr instance in O(a) time [4, 6], so that
in particular, every instance of hr admits at least one stable matching.

Although an instance of hr may admit more than one stable matching, it is
known that every stable matching has the same size, matches the same set of resi-
dents and fills the same number of posts at each hospital. Further, any hospital that
is under-subscribed in some stable matching is assigned the same set of residents in
every stable matching. Collectively these results are known as the Rural Hospitals
Theorem [19, 5, 20].

Recent pressure from student bodies associated with the NRMP has ensured that
the extended version of the GS algorithm that is employed by the scheme is now
resident-oriented, meaning that it produces the resident-optimal stable matching for
a given instance of hr [18]. This is the unique stable matching M0 in which every
resident assigned in M0 is assigned to the best hospital that he/she could obtain in
any stable matching, and any resident unassigned in M0 is unassigned in any stable
matching.

In this paper we consider generalisations of hr in which preferences involve some
form of indifference. This is highly relevant for practical matching schemes — for
example, a popular hospital may be unable or unwilling to produce a strict ranking
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over all of its many applicants.
The most natural form of indifference involves ties. A set R′ of k residents forms

a tie of length k in the preference list of hospital h if h does not prefer ri to rj for
any ri, rj ∈ R′ (i.e. h is indifferent between ri and rj), and for any other resident r

who is acceptable to h, either h prefers r to each resident in R′, or h prefers each
resident in R′ to r. A tie in a resident’s list is defined similarly. For convenience in
what follows, we consider an untied entry in a preference list as a tie of length 1.
We denote by hrt the variant of hr in which preference lists can include arbitrary
ties.

In certain practical applications, a variety of external factors could contribute
to a given preference structure, yielding a more complex form of indifference that
cannot in general be represented using only ties, but may be represented by an
arbitrary partial order [2]. We denote by hrp the variant of hr in which each
preference ‘list’ is a partial order.

Given an instance I of hrt or hrp, a derived instance of hr is any instance of hr

obtained from I by resolving the indifference (breaking all of the ties or extending
each partial order to a total order).

These extensions of the original problem force a re-evaluation of the concept of
a blocking pair. We could view a pair (r, h) to be a blocking pair if, by coming
together (a) both parties would be better off, or (b) neither party would be worse
off, or (c) one party would be better off and the other no worse off. These three
possibilities give rise to the notions of weak stability, super-stability, and strong
stability, respectively, first considered by Irving [8] in the context of smt (the variant
of sm in which preference lists may include ties). We now formally define these three
forms of stability.

A matching M in an instance of hrt or hrp is weakly stable if there is no pair
(r, h) ∈ A \ M , such that h ≺r M(r) and r ≺h M(h). A weakly stable matching
exists for every instance of hrp, and can be found by forming a derived instance of
hr, and applying the extended GS algorithm [10]. It turns out that, in contrast to
hr, weakly stable matchings for an instance of hrt may have different sizes, and
it is notable that the problem of finding the largest weakly stable matching, and
various other problems involving weak stability, are NP-hard [12, 17].

To define super-stability and strong stability we need to extend our notation.
For a given matching M and pair (r, h) ∈ A\M , we define h �r M(r) to mean that
r is unassigned in M , or that r prefers h to M(r), or is indifferent between them.
Likewise, r �h M(h) means that |M(h)| < ph, or h prefers r to at least one member
of M(h), or is indifferent between r and at least one member of M(h).

A matching M is super-stable if there is no pair (r, h) ∈ A \ M , such that
h �r M(r) and r �h M(h). By contrast with weak stability, it is straightforward to
show that there are instances of hrt and hrp for which no super-stable matching
exists [8]. However, there is an O(a) algorithm to determine whether an instance
of hrt admits a super-stable matching, and to find one if it does [10]. With some
straightforward modifications, this algorithm is also applicable in the more general
context of hrp. Further, the analogue of the Rural Hospitals Theorem also holds
for hrp under super-stability [10].

A matching M is strongly stable if there is no pair (r, h) ∈ A \ M , such that
either (i) h ≺r M(r) and r�h M(h); or (ii) h�r M(r) and r ≺h M(h). If (r, h) ∈ M
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for some strongly stable matching M , we say that (r, h) is a strongly stable pair, and
that r is a strongly stable partner of h and vice versa. Again, it is easy to construct
an instance of hrt that does not admit a strongly stable matching [8]. Clearly,
as is implied by the terminology, a super-stable matching is strongly stable, and a
strongly stable matching is weakly stable.

There is a sense in which strong stability can be viewed as the most appropriate
criterion for a practical matching scheme when there is indifference in the prefer-
ence lists, and that in cases where a strongly stable matching exists, it should be
chosen instead of a matching that is merely weakly stable. Consider a weakly stable
matching M for an instance of hrt or hrp, and suppose that h ≺r M(r), while h is
indifferent between r and its worst assignee r′, and |M(h)| = ph. Such a pair (r, h)
would not constitute a blocking pair for weak stability. However, r might have such
an overriding preference for h over M(r) that he is prepared to engage in persua-
sion, even bribery, in the hope that h will reject r′ and accept r instead. Hospital
h, being indifferent between r and r′ may yield to such persuasion, and, of course, a
similar situation could arise with the roles reversed. However, the matching cannot
be potentially undermined in this way if it is strongly stable. On the other hand,
insisting on super-stability seems unnecessarily restrictive, for if (r, h) is a blocking
pair for super-stability but not for strong stability, then neither r nor h has any real
incentive to seek a change. Furthermore, the super-stability property is less likely
to be attainable in practice.

As strong stability is sufficient to avoid the possibility of a matching being un-
dermined by persuasion or bribery, it is therefore a desirable property in cases where
it can be achieved.

In this paper we present an O(a2) algorithm for finding a strongly stable match-
ing, if one exists, given an instance of hrt, thus solving an open problem described
in [10]. Our algorithm is resident-oriented in that it finds a strongly stable matching
with similar optimality properties to those of the resident-optimal stable matching
in hr, as mentioned above. This algorithm is a non-trivial extension of the strong
stability algorithms for smt and smti (the variant of smi in which preference lists
may include ties) due to Irving [8] and Manlove [15]. We also show that the analogue
of the Rural Hospitals Theorem for hr holds for hrt under strong stability. These
results are presented in Section 2; in Section 3 we establish the complexity of the
algorithm to be O(a2). Further, in Section 4 we prove that the complexity of any
algorithm for hrt under strong stability has the same lower bound as applies to the
problem of determining if a bipartite graph has a perfect matching. By contrast,
we show in Section 5 that the problem of deciding whether a given instance of hrp

admits a strongly stable matching is NP-complete. Finally, Section 6 presents some
concluding remarks and a discussion of related work in the literature that appeared
subsequently to the original publication of the results presented here [11].

2 An algorithm for strong stability in hrt

In this section we describe our algorithm, called Algorithm hrt-strong, for finding
a strongly stable matching, if one exists, given an instance of hrt, and prove its
correctness. Before doing so, we present some definitions relating to the algorithm.
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During the execution of the algorithm, residents become provisionally assigned
to hospitals, and it is possible for a hospital to be provisionally assigned a number
of residents that exceeds its quota. We describe a hospital as replete if at any time
during the execution of the algorithm it has been over-subscribed or fully-subscribed.

The algorithm proceeds by deleting from the preference lists certain pairs that
cannot be strongly stable. By the deletion of a pair (r, h), we mean the removal of
r and h from each other’s lists, and, if r is provisionally assigned to h, the breaking
of this provisional assignment. By the head and tail of a preference list at a given
point we mean the first and last ties respectively on that list (recalling that a tie
can be of length 1). We say that a resident r is dominated in a hospital h’s list if h

prefers to r at least ph residents who are provisionally assigned to it.
A resident r who is provisionally assigned to a hospital h is said to be bound

to h if h is not over-subscribed or r is not in h’s tail (or both). The provisional
assignment graph is a bipartite graph G containing a vertex for each resident and
each hospital, with (r, h) forming an edge if resident r is provisionally assigned to
hospital h. A feasible matching in G is a matching M such that, if r is bound to
one or more hospitals, then r is assigned to one of these hospitals in M , and subject
to this restriction, M has maximum possible cardinality.

A reduced assignment graph GR is formed from a provisional assignment graph
as follows. For each resident r, and for each hospital h such that r is bound to
h, we delete the edge (r, h) from the graph, and we reduce the quota of h by one;
furthermore, we remove all other edges incident to r. Each isolated resident vertex
is then removed from the graph. Finally, if the quota of any hospital h is reduced
to 0, or h becomes an isolated vertex, then h is removed from the graph. For each
surviving h we denote by p′

h the revised quota of h.
Given a set Z of residents in GR, define N (Z), the neighbourhood of Z, to be

the set of hospital vertices adjacent in GR to a resident vertex in Z. The deficiency
of Z is defined by δ(Z) = |Z| − ∑

h∈N (Z) p
′
h. It is not hard to show that, if Z1 and

Z2 are maximally deficient, then so also is Z1 ∩Z2, so there is a unique minimal set
with maximum deficiency. This is the critical set.

Algorithm hrt-strong, displayed in Figure 2, begins by assigning each resident
to be free (i.e., not assigned to any hospital). The iterative stage of the algorithm
involves each free resident in turn being provisionally assigned to the hospital(s) at
the head of his list. If, by gaining a new provisional assignee, a hospital h becomes
fully- or over-subscribed then each pair (r, h), such that r is dominated on h’s list, is
deleted. This continues until every resident is provisionally assigned to one or more
hospitals or has an empty list. We then find the reduced assignment graph GR (note
that GR is formed afresh from the current provisional assignment graph in each loop
iteration) and the critical set Z of residents. As we will see later, no hospital in
N (Z) can be assigned a resident from among those in its tail in any strongly stable
matching, so all such pairs are deleted. The iterative step is then reactivated, and
this entire process continues until Z is empty, which must happen eventually, since
if Z is found to be non-empty, then at least one pair is subsequently deleted from
the preference lists.

Let M be any feasible matching in the final provisional assignment graph G. As
we will show, if M itself is not strongly stable then no strongly stable matching
exists, otherwise the algorithm outputs M .
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assign each resident to be free;
assign each hospital to be empty;
repeat {

while (some resident r is free and r has a non-empty list)
for (each hospital h at the head of r’s list) {

provisionally assign r to h;
if (h is fully-subscribed or h is over-subscribed)

for (each resident r′ dominated on h’s list)
delete the pair (r′, h); }

form the reduced assignment graph;
find the critical set Z of residents;
for (each hospital h ∈ N (Z))

for (each resident r in the tail of h’s list)
delete the pair (r, h);

} until Z == ∅;
let G be the final provisional assignment graph;
let M be a feasible matching in G;
if (M is not strongly stable)

no strongly stable matching exists;
else

output the strongly stable matching specified by M ;

Figure 1: Algorithm hrt-strong.

The correctness of Algorithm hrt-strong, and an optimality property of any
strongly stable matching that it finds, are established below. The first lemma shows
that the algorithm never deletes a strongly stable pair.

Lemma 2.1. No strongly stable pair is ever deleted during an execution of Algorithm
hrt-strong.

Proof. Suppose that the pair (r, h) is the first strongly stable pair deleted during
some execution of the algorithm, and let M ′ be a strongly stable matching in which
r is assigned to h. There are two cases to consider.

Case 1: Suppose (r, h) is deleted as a result of some other resident, r′ say,
becoming provisionally assigned to h, so that r is dominated on h’s list. Call the set
of residents provisionally assigned to h at this point R′. None of the residents in R′

can be assigned to a hospital they prefer to h in any strongly stable matching, for
otherwise some strongly stable pair must have been deleted before (r, h), as h must
be in the head of each of the lists of the residents in R′. In M ′, at least one of the
residents in R′, r′′ say, cannot be assigned to h, so r′′ is either unassigned in M ′, or
prefers h to pM ′(r′′), or is indifferent between h and pM ′(r′′). It follows that (r′′, h)
blocks M ′, a contradiction.

Case 2: Suppose that (r, h) is deleted because h is provisionally assigned a
resident in the critical set Z at some point, and at that point r is in h’s tail. We
refer to the set of lists at that point as the current lists. Let Z ′ be the set of residents
in Z who are assigned in M ′ to a hospital from the head of their current list, and
let H ′ be the set of hospitals in N (Z) who are assigned in M ′ at least one resident
from the tail of their current list. Then h ∈ H ′, so H ′ 6= ∅. Consider r∗ ∈ Z. Now
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r∗ cannot be assigned in M ′ to a hospital that he prefers to any member of the head
of his current list, for otherwise some strongly stable pair must have been deleted
before (r, h). Hence, any resident r∗ in Z who is provisionally assigned to h must
be in Z ′, otherwise (r∗, h) would block M ′. Thus Z ′ 6= ∅.

We now claim that N (Z \ Z ′) is not contained in N (Z) \ H ′. For, suppose that
the containment does hold. Then

|Z \ Z ′| − ∑
h∈N (Z\Z′) ph ≥ |Z \ Z ′| − ∑

h∈N (Z)\H′ ph

= |Z| − ∑
h∈N (Z) ph − (|Z ′| − ∑

h∈H′ ph).

But |Z ′|−∑
h∈H′ ph ≤ 0, because every resident in Z ′ is assigned in M ′ to a hospital

in H ′. Hence Z \Z ′ has deficiency greater than or equal to that of Z, contradicting
the fact that Z is the critical set. Thus the claim is established.

Hence there must be a resident r1 ∈ Z \ Z ′ and a hospital h1 ∈ H ′ such that
r1 is provisionally assigned to h1. Since r1 is either unassigned in M ′ or prefers h1

to pM ′(r1) and h1 is indifferent between r1 and at least one member of pM ′(h1), the
pair (r1, h1) blocks M ′, a contradiction.

We continue with three auxiliary lemmas.

Lemma 2.2. Every resident who is assigned to a hospital in the final provisional
assignment graph G must be assigned in any feasible matching M .

Proof. The result is true by definition for any bound resident. Consider the other
residents assigned in G. Any x of them must be collectively adjacent in GR to
hospitals with at least x posts, otherwise one of them is in the critical set Z, and
hence Z 6= ∅. But, by a simple extension of Philip Hall’s Theorem, this means that
they are all assigned in any maximum cardinality matching in GR, and hence they
must be assigned in any feasible matching M .

Lemma 2.3. Let M be a feasible matching in the final provisional assignment graph
G. If (a) some non-replete hospital h has fewer assignees in M than provisional
assignees in G, or (b) some replete hospital h is not full in M , then no strongly
stable matching exists.

Proof. Suppose that M ′ is a strongly stable matching for the instance. Every res-
ident provisionally assigned to a hospital in the final assignment graph G must be
assigned to a hospital in M (by Lemma 2.2), and any resident not provisionally
assigned in G must have an empty list and hence no strongly stable partners (by
Lemma 2.1). It follows that |M ′| ≤ |M |.

Suppose that condition (a) is satisfied. Then some non-replete hospital h′ satisfies
|pM(h′)| < dG(h′), where dG(h′) is the degree of vertex h′ in G, i.e., the number of
residents provisionally assigned to h′. As h′ is non-replete, it follows that dG(h′) <

ph′. Now |pM(h)| ≤ min(dG(h), ph) for all h ∈ H. Hence

|M | =
∑

h∈H

|pM(h)| <
∑

h∈H

min(dG(h), ph). (1)

Now suppose that |pM ′(h)| ≥ min(dG(h), ph) for all h ∈ H. Then |M ′| > |M | by
1, a contradiction. Hence |pM(h′′)| < min(dG(h′′), p′′h) for some h′′ ∈ H. Hence h′′
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is under-subscribed in M ′, and some resident r′ is provisionally assigned to h′′ in G

but not assigned to h′′ in M ′. By Lemma 2.1, r′ is not assigned to a hospital in M ′

that he prefers to h′′. Hence (r′, h′′) blocks M ′, a contradiction.
Now suppose that condition (b) is satisfied. Let H1 and H2 be the set of replete

and non-replete hospitals respectively. Then some h′ ∈ H1 satisfies |pM(h′)| < ph′.
Condition (a) cannot be satisfied, for otherwise the first part of the proof shows that
M ′ does not exist. Hence |pM(h)| = dG(h) < ph for all h ∈ H2. Now pM(h) ≤ ph for
all h ∈ H1. Hence

|M | =
∑

h∈H1

|pM(h)| +
∑

h∈H2

|pM(h)| <
∑

h∈H1

ph +
∑

h∈H2

dG(h). (2)

Now suppose that |pM ′(h) ≥ ph for all h ∈ H1 and |pM ′(h) ≥ dG(h) for all h ∈ H2.
Then |M ′| > |M | by 2, a contradiction. Hence either (i) |pM ′(h′′) < p′′h for some
h′′ ∈ H1 or (ii) |pM ′(h′′)| < dG(h′′) for some h′′ ∈ H2. In Case (ii) we reach a similar
contradiction to that arrived at for condition (a). In Case (i), h′′ is under-subscribed
in M ′. As h′′ is replete, there exists some resident r′ who was provisionally assigned
to h′′ during the execution of the algorithm, but is not assigned to h′′ in M ′. By
Lemma 2.1, r′ is not assigned to a hospital in M ′ that he prefers to h′′. Hence (r′, h′′)
blocks M ′, a contradiction.

Lemma 2.4. Suppose that, in the final assignment graph G, a resident is bound to
two different hospitals. Then no strongly stable matching exists.

Proof. Suppose that a strongly stable matching exists for the instance. Let M be
a feasible matching in the final provisional assignment graph G. Denote by H1 the
set of over-subscribed hospitals in G, let H2 = H \ H1 and let dG(h) denote the
degree of the vertex h in G - i.e., the number of residents provisionally assigned to
h. Denote by R1 the set of residents bound to one or more hospitals in G, and by
R2 the other residents assigned to one or more hospitals in G. Note that for each
h ∈ H2, any resident assigned to h in G is bound to h, and hence is in R1.

By Lemma 2.2, we have

|M | = |R1| + |R2|. (3)

Also, by Lemma 2.3, we have

|M | =
∑

h∈H1

ph +
∑

h∈H2

dG(h). (4)

If some resident is bound to more than one hospital then, by considering how quotas
are reduced when the residents of R1 are removed in deriving GR from G, it follows
that

∑

h∈H1

(ph − p′h) +
∑

h∈H2

dG(h) > |R1|. (5)

Combining 3, 4 and 5 gives

∑

h∈H1

p′h < |R2|.
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Since no member of H2 belongs to GR, the residents in R2 are collectively adjacent
only to hospitals in H1, and so the preceding inequality suffices to establish that the
critical set is non-empty, a contradiction.

The next lemma shows that a feasible matching M may be used to determine
the existence or otherwise of a strongly stable matching for the given instance.

Lemma 2.5. Let M be a feasible matching in the final provisional assignment graph.
If M is not strongly stable then there is no strongly stable matching for the instance.

Proof. Suppose M is not strongly stable, and let (r, h) be a blocking pair for M .
Suppose r prefers h to pM(r), or r is unassigned in M . Then (r, h) has been deleted,
which can only happen if h is replete. To see this, suppose that h is not replete, but
(r, h) was deleted because h was a neighbour of some resident r′ ∈ Z at a point when
r was in h’s tail. Suppose that the residents in Z ′ ⊆ Z are provisionally assigned to
h′ in GR. Then 0 < |Z ′| ≤ p′h′. Let Z∗ = Z \ Z ′. Then N (Z∗) ⊆ N (Z) \ {h′} so
that ∑

h∈N (Z∗)

p′h ≤
∑

h∈N (Z)

(p′h − p′h′).

Hence

δ(Z∗) = |Z∗| − ∑
h∈N (Z∗) p′h

= |Z| − |Z ′| − ∑
h∈N (Z∗) p′h

≥ |Z| − |Z ′| − (
∑

h∈N (Z)(p
′
h − p′h′))

= |Z| + p′h′ − |Z ′| − ∑
h∈N (Z) p′h

≥ |Z| − ∑
h∈N (Z) p′h

= δ(Z).

If δ(Z∗) > δ(Z) then Z∗ contradicts the fact that Z is maximally deficient. Hence
δ(Z∗) = δ(Z). But Z∗ ⊂ Z, contradicting the minimality of Z. Thus h is replete.
If h is full in M then h prefers all its assignees to r, since r is a strict successor of
any undeleted entries in h’s list, contradicting the fact that (r, h) is a blocking pair
for M . If h is not full in M then h is a replete hospital which is not full in M , so by
Lemma 2.3, no strongly stable matching exists for the instance, and we are done.
We now consider the case where r is indifferent between h and pM(r).

Suppose h is not full in M . If h is replete then, by Lemma 2.3, no strongly stable
matching exists for the instance and we are done. If h is not replete then r must
be bound to h, and since r is not assigned to h in M , by the definition of a feasible
matching r must be bound to pM(r). But then r is bound to two hospitals, so by
Lemma 2.4 no strongly stable matching exists for the instance.

Now suppose h is full in M . For (r, h) to block M , h must prefer r to at least
one of its assignees in M . But then r is bound to h, and since r is not assigned to
h in M , r must be bound to pM(r). But then again r is bound to two hospitals, so
by Lemma 2.4 no strongly stable matching exists for the instance.

Lemma 2.5 proves the correctness of Algorithm hrt-strong. Further, Lemma 2.1
shows that there is an optimality property for each assigned resident in any strongly
stable matching output by the algorithm. To be precise, we have proved:
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Theorem 2.6. For a given instance of hrt, Algorithm hrt-strong determines
whether or not a strongly stable matching exists. If such a matching does exist,
all possible executions of the algorithm find one in which every assigned resident
is assigned as favourable a hospital as in any strongly stable matching, and any
unassigned resident is unassigned in every strongly stable matching.

For obvious reasons, we call any matching found by the above algorithm resident-
optimal.

Now we show that the Rural Hospitals Theorem holds for hrt under strong
stability. For the following lemma and theorem we assume that we have an hrt

instance that admits a strongly stable matching.

Lemma 2.7. For a given hrt instance, let M be the matching obtained by Algorithm
hrt-strong and let M ′ be any strongly stable matching. If a hospital h is not full in
M ′ then every resident assigned to h in M is also assigned to h in M ′.

Proof. Suppose r is assigned to h in M , but not in M ′. Then (r, h) blocks M ′ since
h is under-subscribed in M ′ and r cannot prefer any of his strongly stable partners
to h.

Theorem 2.8. For a given hrt instance I,

1. each hospital is assigned the same number of residents in every strongly stable
matching;

2. the same residents are assigned in every strongly stable matching;

3. any hospital that is under-subscribed in some strongly stable matching is as-
signed the same set of residents in every strongly stable matching.

Proof. Let M be the strongly stable matching obtained by Algorithm hrt-strong,
and let M ′ be any strongly stable matching such that M ′ 6= M .

1. We first observe that any resident r who is unassigned in M cannot be assigned
in M ′, since r must have an empty list (hence (r, h) has been deleted for every
hospital h that r finds acceptable, and by Lemma 2.1 no strongly stable pair
is deleted during the execution of Algorithm hrt-strong). It follows that
|M ′| ≤ |M |. By Lemma 2.7, any hospital that is full in M is also full in M ′,
while any hospital that is not full in M fills at least as many posts in M ′ as
in M . It follows that |M ′| ≥ |M |, and so, combining this with the earlier
inequality, |M | = |M ′|. This equality and the conclusions drawn earlier from
Lemma 2.7 imply that every hospital is assigned the same number of residents
in M and M ′.

2. As has already been observed, |M | = |M ′|, and no resident who is unassigned
in M can be assigned in M ′, so the same set of residents are assigned in M

and M ′.

3. As has already been observed, |M ′| ≤ |M |, and the result follows for M ′ by
Lemma 2.7 and the first part of the proof.

10



Since M ′ is an arbitrary strongly stable matching, these results follow for every
strongly stable matching.

Example 2.9. An example instance is displayed in Figure 2.9. The residents are labeled

ri (1 ≤ i ≤ 6) and the hospitals are labeled hi (1 ≤ i ≤ 3). The entry for hospital hi

takes the form hi : (phi
) Phi

, where Phi
is hi’s preference list. The entry for a resident

is similar, but without the quota element. Ties in the preference lists are represented

by parentheses. We assume that the residents become assigned to the hospitals at the

r1 : (h2 h3) h1 h4 r1 : h1 h4

r2 : h2 h1 r2 : h2 h1

r3 : h3 h2 h1 r3 : h2 h1

r4 : h2 (h1 h3) r4 : (h1 h3)
r5 : h2 (h1 h3) r5 : (h1 h3)
r6 : h3 r6 :

h1 : (2) r2 (r1 r3) (r4 r5) h1 : (2) r2 (r1 r3) (r4 r5)
h2 : (2) r3 r2 (r1 r4 r5) h2 : (2) r3 r2

h3 : (1) (r4 r5) (r1 r3) r6 h3 : (1) (r4 r5)
h4 : (1) r1 h4 : (1) r1

Initial preference lists Lists after first loop iteration

Figure 2: The preference lists for an example hrt instance.

head of their lists in subscript order. The while loop of Algorithm hrt-strong terminates

with every resident except r6 provisionally assigned to every hospital in the first tie on

their preference list. Resident r6 has an empty list, because (r6, h3) was deleted as a

result of r1 becoming provisionally assigned to h3, causing r6 to be dominated on the

list of h3. Only one edge is removed from the provisional assignment graph to form the

reduced assignment graph, as only resident r2 is bound to a hospital, namely h2. The

isolated vertices are then removed from the graph, leaving residents r1, r3, r4 and r5, and

hospitals h2 and h3. It can then be shown that every resident in the reduced assignment

graph is in the critical set, and the neighbourhood of the critical set is {h2, h3}. The

lists after the relevant deletions have been made are displayed in Figure 2.9. By following

the same process, it can be shown that a second iteration of the main loop of Algorithm

hrt-strong terminates with an empty critical set, and there are two feasible matchings,

(r1, h1), (r2, h2), (r3, h2), (r4, h3), (r5, h1) and (r1, h1), (r2, h2), (r3, h2), (r4, h1), (r5, h3), one

of which is output by the algorithm, and both are strongly stable.

3 Implementation and analysis of Algorithm

hrt-strong

For the implementation and analysis of Algorithm hrt-strong, we require to describe
the efficient construction of maximum cardinality matchings and critical sets in a
context somewhat more general than that of simple bipartite graphs.

Consider a capacitated bipartite graph G = (V, E), with bipartition V = R∪H,
in which each vertex h ∈ H has a positive integer capacity ch. In this context, a

11



matching is a subset M of E such that |{h : {r, h} ∈ M}| ≤ 1 for all r ∈ R, and
|{r : {r, h} ∈ M}| ≤ ch for all h ∈ H. For any vertex x, a vertex joined to x by
an edge of M is called a mate of x. A vertex r ∈ R with no mate, or a vertex
h ∈ H with fewer than ch mates, is said to be exposed. An alternating path in G

relative to M is any simple path in which edges are alternately in, and not in, M .
An augmenting path is an alternating path of odd length both of whose endpoints
are exposed. It is immediate that an augmenting path has one endpoint in R and
the other in H.

The following lemmas may be established by straightforward extension of the
corresponding results for one-to-one bipartite matching.

Lemma 3.1. Let P be the set of edges on an augmenting path relative to a matching
M in a capacitated bipartite graph G. Then M ′ = M⊕P is a matching of cardinality
|M | + 1 in G.

Lemma 3.2. A matching M in a capacitated bipartite graph has maximum cardi-
nality if and only if there is no augmenting path relative to M in G.

The process of replacing M by M ′ = M ⊕ P is called augmenting M along the
path P .

With these lemmas, we can extend to the context of capacitated bipartite graphs
the classical augmenting path algorithm for a maximum cardinality matching. The
algorithm starts with an arbitrary matching – say the empty matching – and re-
peatedly augments the matching until there is no augmenting path. The search for
an augmenting path relative to M is organised as a restricted breadth-first search
in which only edges of M are followed from vertices in H and only edges not in M

are followed from vertices in R, to ensure alternation. The number of iterations is
O(min(|R|, ∑ ch)), and each search can be completed in O(|E|) time, since there
are no isolated vertices. During the breadth-first search, we record the parent in
the BFS spanning tree of each vertex. This enables us to accomplish the augmen-
tation in O(|E|) time, observing that, for each vertex h ∈ H, the set of mates can
be updated in constant time by representing the set as, say, a doubly linked list,
and storing a pointer into this list from any child node in the BFS spanning tree.
Hence, overall, the augmenting path algorithm in a capacitated bipartite graph can
be implemented to run in O((min(|R|, ∑ ch))|E|) time.

Now that we have ascertained that we can efficiently find a maximum cardinality
matching in the reduced assignment graph, the following lemma points the way to
finding the critical set.

Lemma 3.3. Given a maximum cardinality matching M in the capacitated bipartite
graph GR, the critical set Z consists of the set U of unassigned residents together
with the set U ′ of residents reachable from a vertex in U via an alternating path.

Proof. Let C = U ∪ U ′. It is immediate that δ(C) = δ(G)(= |U |), for if N (C) were
such that ∑

h∈N (C)

p′h > |U ′|

then there would be an augmenting path relative to M , contradicting the maximality
of M .

12



Further, the critical set Z must contain every resident who is unassigned in some
maximum cardinality matching in G. For if M ′ is an arbitrary such matching (of
size |R| − δ(G)), and if r ∈ R \ Z is not assigned in M ′, then Z must contain at
least |Z|− δ(G)+1 assigned residents. To see this consider that there must be δ(G)
unassigned residents, with at most δ(G)−1 of these residents contained in Z. Hence
Z contains at most |Z| − δ(G) + 1 residents. It follows that

∑

h∈N (Z)

p′h ≥ |Z| − δ(G) + 1

or
|Z| −

∑

h∈N (Z)

p′h ≤ δ(G) − 1

contradicting the required deficiency of Z.
But, for every r ∈ U ′, there is a maximum cardinality matching in which r is

unassigned, obtainable from M via an alternating path from a resident in U to r.
Hence, C ⊆ Z, and since δ(C) = δ(Z), the proof is complete.

During each iteration of the repeat-until loop of Algorithm hrt-strong we need
to form the reduced assignment graph, which takes O(a) time, then search for a
maximum cardinality matching in the bipartite graph GR. This allows us to use
Lemma 3.3 to find the critical set. The key to the analysis of Algorithm hrt-strong,
as with Algorithm STRONG in [8], is bounding the total amount of work done in
finding the maximum cardinality matchings.

It is clear that work done other than in finding the maximum cardinality match-
ings and critical sets is bounded by a constant times the number of deleted pairs,
and so is O(a).

Suppose that Algorithm hrt-strong finds a maximum cardinality matching Mi

in the reduced assignment graph GR at the ith iteration. Suppose also that, during
the ith iteration, xi pairs are deleted because they involve residents in the critical
set Z, or residents tied with them in the list of a hospital in N (Z). Suppose further
that in the (i + 1)th iteration, yi pairs are deleted before the reduced assignment
graph is formed. Note that any edge in GR at the ith iteration which is not one of
these xi + yi deleted pairs must be in GR at the (i + 1)th iteration, since a resident
can only become bound to a hospital when he becomes provisionally assigned to
it. In particular at least |Mi| − xi − yi pairs of Mi remain in GR at the (i + 1)th
iteration. Hence, in that iteration, we can start from these pairs and find a maximum
cardinality matching in O(min(na, (xi + yi + zi)a)) time, where n is the number of
residents and zi is the number of edges in GR at the (i + 1)th iteration which were
not in GR at the ith iteration.

Let s denote the number of iterations carried out, let S = {1, 2, . . . , s}, and
let S ′ = S\{s}. Let T ⊆ S ′ denote those indices i such that min(na, (xi + yi +
zi)a) = na, and let t = |T |. Then the algorithm has time complexity O(min(n, p)a+
tna + a

∑
i∈S′\T (xi + yi + zi)), where p is the total number of posts, and the first

term is for the first iteration. But
∑

i∈S′(xi + yi) ≤ a and
∑

i∈S′ zi ≤ a (since
these summations are bounded by the total number of deletions and provisional
assignments, respectively), and since xi + yi + zi ≥ n for each i ∈ T , it follows that

tn +
∑

i∈S′\T

(xi + yi + zi) ≤
∑

i∈S′

(xi + yi + zi) ≤ 2a.

13



Thus ∑

i∈S′\T

(xi + yi + zi) ≤ 2a − tn.

After the end of the final iteration a feasible matching is constructed by taking
the final maximum cardinality matching and combining it with the bound (resi-
dent,hospital) pairs. This operation is clearly bounded by the number of bound
pairs, hence is O(a). It follows that the overall complexity of Algorithm hrt-strong
is O(min(n, p)a + tna + a(2a − tn)) = O(a2).

Note that while there is at least one algorithm for finding maximum cardinality
matchings in the context of capacitated bipartite graphs with better time complexity
than the one we use here (see e.g. [3]), it is not clear how we can use this algorithm
to give an improvement in the running time of Algorithm hrt-strong.

4 A lower bound for finding a strongly stable

matching

To establish the lower bound of this section, we let strongly stable matching

in hrt be the problem of deciding whether a given instance of hrt admits a strongly
stable matching.

Let n denote the number of participants (i.e. residents and hospitals) in a given
instance of hrt. We show that, for any function f on n, where f(n) = Ω(n2), the
existence of an O(f(n)) algorithm for strongly stable matching in hrt would
imply the existence of an O(f(n)) algorithm for perfect matching in bipartite

graphs (the problem of deciding whether a given bipartite graph admits a perfect
matching).

The result is established by the following simple reduction from perfect match-

ing in bipartite graphs to strongly stable matching in hrt.
Let G = (V, E) be a bipartite graph with bipartition V = R ∪ H. Let R =

{r1, . . . , rn} and H = {h1, . . . , hn}, and, without loss of generality, assume that G

contains no isolated vertices. Also, for each i (1 ≤ i ≤ n), let Pi denote the set of
vertices in H adjacent to ri.

We form an instance I of hrt as follows. Let pi = 1 for all i. Form a preference
list for each participant in I as follows:

ri : (Pi) (H\Pi) hi : (R) (1 ≤ i ≤ n).

In a given participant’s preference list (S) denotes all members of the set S listed
as a tie in the position where the symbol occurs.

It is straightfoward to verify that G admits a perfect matching if and only if I

admits a strongly stable matching. Clearly the reduction may be carried out in O(n2)
time. Hence, for any function f on n, where f(n) = Ω(n2), an O(f(n)) algorithm
for strongly stable matching in hrt would solve perfect matching in

bipartite graphs in O(f(n)) time. The current best algorithm for perfect

matching in bipartite graphs has complexity O(
√

nm) [7], where m is the
number of edges in G. Finally we note that, since each hospital in I has quota 1, the
lower bound established in this section also applies to strong stable matching

in smt (the restriction of strongly stable matching in hrt to smt).
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5 NP-completeness of strong stability in hrp

In this section we establish the NP-completeness of strongly stable matching

in smp, which is the problem of deciding whether a given instance of smp admits
a strongly stable matching. Here, smp denotes the variant of sm in which each
person’s preferences over the members of the opposite sex are represented as an
arbitrary partial order (henceforth this preference structure is referred to as a pref-
erence poset). Clearly smp is a special case of hrp in which |R| = |H|, A = R × H

and each hospital has quota 1. It therefore follows immediately that the problem of
deciding whether a given instance of hrp admits a strongly stable matching is also
NP-complete.

To prove our result we give a reduction from the following problem:

Name: restricted sat.
Instance: Boolean formula B in CNF, where each variable v occurs in exactly
two clauses of B as literal v, and in exactly two clauses of B as literal v.
Question: Is B satisfiable?

We firstly establish the NP-completeness of restricted sat.

Lemma 5.1. restricted sat is NP-complete.

Proof. Clearly restricted sat belongs to NP. To show NP-hardness, we give a
reduction from the more general version of restricted sat, in which each variable
v occurs in at most two clauses as literal v, and in at most two clauses as literal
v. This problem is NP-complete [6, p.210]. Let B be an instance of this problem,
and suppose that some variable v occurs in zero or one clauses of B as literal v

(the argument is similar for v). Construct a Boolean formula B ′ by introducing new
variables x,y,z, and by adding the following clauses to B:

(v ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ z).

Clearly B is satisfiable if and only if B ′ is satisfiable. In addition, each of the
new variables w introduced occurs in exactly two clauses of B ′ as literal w, and in
exactly two clauses of B ′ as literal w. Thus successive applications of this reduction
will yield an instance of restricted sat; clearly the overall transformation is
polynomial.

We now state and prove the main result of this section.

Theorem 5.2. strongly stable matching in smp is NP-complete.

Proof. Clearly strongly stable matching in smp is in NP. To show NP-hardness,
we give a polynomial reduction from restricted sat, which is NP-complete as
mentioned above. Let B be a Boolean formula in CNF, given as an instance of
this, in which X = {x1, x2, . . . , xn} is the set of variables and C = {c1, c2, . . . , cm}
is the set of clauses. For each i (1 ≤ i ≤ n) and for each r (1 ≤ r ≤ 2), let c(xr

i )
(respectively c(xr

i )) denote the clause corresponding to the rth occurrence of literal
xi (respectively xi).
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We now construct an instance I of smp, as follows. Let U = X1∪X2∪X
1∪X

2∪Z

be the set of men in I, and let W = Y 1 ∪ Y 2 ∪ Y
1 ∪ Y

2 ∪ C be the set of women in
I, where

Xr = {xr
i : 1 ≤ i ≤ n} (1 ≤ r ≤ 2), Y r = {yr

i : 1 ≤ i ≤ n} (1 ≤ r ≤ 2),

X
r

= {xr
i : 1 ≤ i ≤ n} (1 ≤ r ≤ 2), Y

r
= {yr

i : 1 ≤ i ≤ n} (1 ≤ r ≤ 2),
Z = {zi : 1 ≤ i ≤ m}, C = {ci : 1 ≤ i ≤ m}.

Clearly |U | = |W | = 4n + m. Now, for each person p in I, we formulate ≺∗
p, the

preference poset of p. In order to define ≺∗
p, we will construct a relation ≺p, where

q ≺p r implies that p prefers q to r. We then obtain the partial order ≺∗
p by taking

the transitive closure of ≺p. Note that p is indifferent between q and r if and only if
q, r are incomparable in ≺∗

p (i.e. neither q ≺∗
p r nor r ≺∗

p q holds). For each person q

we will also define a subset P (q) of members of the opposite sex; if r ∈ P (q) we say
that r is proper for q.

• Preference poset of xr
i (1 ≤ i ≤ n, 1 ≤ r ≤ 2): y1

i ≺xr

i
c(xr

i ), y2
i ≺xr

i
c(xr

i ),
yr

i ≺xr

i
p, for every p ∈ W\P (xr

i ), where P (xr
i ) = {c(xr

i ), y
r
i , y

1
i , y

2
i }.

• Preference poset of xr
i (1 ≤ i ≤ n, 1 ≤ r ≤ 2): y1

i ≺xr

i
c(xr

i ), y2
i ≺xr

i
c(xr

i ),
yr

i ≺xr

i
p, for every p ∈ W\P (xr

i ), where P (xr
i ) = {c(xr

i ), y
r
i , y

1
i , y

2
i }.

• Preference poset of zi (1 ≤ i ≤ m): y ≺zi
p, for every y ∈ P (zi) and for every

p ∈ W\P (zi), where P (zi) = Y 1 ∪ Y 2 ∪ Y
1 ∪ Y

2
.

• Preference poset of yr
i (1 ≤ i ≤ n, 1 ≤ r ≤ 2): xr

i ≺yr

i
x1

i , xr
i ≺yr

i
x2

i . Let
P (yr

i ) = {xr
i , x

1
i , x

2
i } ∪ Z.

• Preference poset of yr
i (1 ≤ i ≤ n, 1 ≤ r ≤ 2): xr

i ≺yr

i
x1

i , xr
i ≺yr

i
x2

i . Let
P (yr

i ) = {xr
i , x

1
i , x

2
i } ∪ Z.

• Preference poset of ci (1 ≤ i ≤ m): ≺ci
= ∅. Let P (ci) contain those members

of X1 ∪ X2 ∪ X
1 ∪ X

2
corresponding to the literal-occurrences in clause ci.

It is easy to verify that, for any two people q, r of the opposite sex, r is proper for
q if and only if q is proper for r.

Now suppose that B admits a satisfying truth assignment f . We form a matching
M in I as follows. For each clause ci in B (1 ≤ i ≤ m), pick any literal-occurrence

x ∈ X1 ∪ X2 ∪ X
1 ∪ X

2
corresponding to a true literal in ci, and add (x, ci) to M .

For any xr
i left unmatched (1 ≤ i ≤ n, 1 ≤ r ≤ 2), add (xr

i , y
r
i ) to M . Similarly,

for any xr
i left unmatched (1 ≤ i ≤ n, 1 ≤ r ≤ 2), add (xr

i , y
r
i ) to M . Finally, there

remain m members of Y 1 ∪ Y 2 ∪ Y
1 ∪ Y

2
that are as yet unmatched. Add to M a

perfect matching between these women and the men in Z. It is straightforward to
verify that M is strongly stable in I.

Conversely suppose that I admits a strongly stable matching M . Then it is not
difficult to see that (m, w) ∈ M implies that w is proper for m and vice versa. Also,

for each i (1 ≤ i ≤ n), ci is matched in M to some man x ∈ X1 ∪ X2 ∪ X
1 ∪ X

2

corresponding to an occurrence of a literal in clause ci of B. Suppose that x = xr
i
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for some i (1 ≤ i ≤ n) and r (1 ≤ r ≤ 2) (the argument is similar if x = xr
i ).

Then by the strong stability of M , (x1
i , y

1
i ) ∈ M and (x2

i , y
2
i ) ∈ M . Thus we may

form a truth assignment f for B as follows: if x = xr
i then set variable xi to have

value T , otherwise if x = xr
i then set variable xi to have value F . Any remaining

variable whose truth value has not yet been assigned can be set to T . Clearly f is
a satisfying truth assignment for B.

6 Concluding remarks and subsequent work

In this paper we have described a polynomial-time algorithm for the problem of
finding a strongly stable matching, if one exists, given an instance of hrt. By
constrast we have shown that the corresponding existence question becomes NP-
complete for hrp.

Algorithm hrt-strong as presented in Section 2 is resident-oriented in that, given
an hrt instance that admits a strongly stable matching, the algorithm constructs a
resident-optimal strongly stable matching (the optimality properties of this match-
ing are described by Theorem 2.6). A hospital-oriented counterpart to Algorithm
hrt-strong appears in [21]. Given an hrt instance that admits a strongly stable
matching, the algorithm outputs a hospital-optimal strongly stable matching, in
which each hospital has at least as favourable a set of assignees as it can have in
any strongly stable matching. This algorithm has O(a2) complexity, as is the case
for Algorithm hrt-strong.

Subsequent to this work, Kavitha et al. [13] presented an algorithm that finds
a strongly stable matching, or reports that none exists, in O(ka) time, given an
instance I of smti, where k is the total number of men and women in I. They
also extended this to a resident-oriented algorithm for hrt, with time complexity
O(a(|R| + ∑

h∈H ph)). Additionally Malhotra [14] gave an O(a2) algorithm, an ex-
tension of Algorithm hrt-strong, that finds a strongly stable matching, or reports
that none exists, given an instance I of the many-to-many Stable Marriage problem
with ties (a generalisation of hrt). Using the techniques of [13], it is likely that
this algorithm can be modified to run in O(a

∑
q∈Q pq) time, where Q is the set

of participants in I. Malhotra’s algorithm can also be used as a hospital-oriented
algorithm for hrt under strong stability.

Given an instance I of hrt that admits a strongly stable matching M , The-
orem 2.8 implies that all strongly stable matchings in I have size |M |. However
it is possible that I could admit weakly stable matchings of sizes smaller than
|M | and larger than |M |. To show this, consider the hrt instance given in Fig-
ure 6, in which each hospital has quota 1. This instance admits two strongly
stable matchings of size 5, namely {(r2, h1), (r3, h2), (r4, h4), (r5, h6), (r6, h5)} and
{(r2, h1), (r3, h2), (r4, h5), (r5, h4), (r6, h6)}, and also admits weakly stable matchings
of sizes 4 and 6, namely {(r2, h1), (r3, h2), (r4, h4), (r6, h6)} and {(r1, h1), (r2, h2),
(r3, h3), (r4, h4), (r5, h6), (r6, h5)} respectively. It is therefore of interest to consider
the question of the relative sizes of strongly stable matchings and weakly stable
matchings in a given instance of hrt. Scott [21] has shown that, given an hrt

instance I, where M is a strongly stable matching in I and M ′ is a maximum car-
dinality weakly stable matching in I, the inequality M ′ ≤ 3

2
|M | − 1

2
uM holds, where
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r1: h1 h1: r2 r1

r2: (h1 h2) h2: (r2 r3)
r3: h2 h3 h3: r3

r4: (h4 h5) h4: (r4 r5)
r5: (h4 h6) h5: (r4 r6)
r6: (h5 h6) h6: (r5 r6)

Resident’s preferences Hospital’s preferences

Figure 3: An hrt instance.

uM =
∑

h∈H∗ fh, also H∗ is the set of hospitals that are under-subscribed in M , and
fh is the number of posts that h ∈ H∗ fills in M .

Finally, we conclude with a remark regarding the structure of strongly stable
matchings, given an instance of hrt. For a given instance of smt, it is known that
the set of strongly stable matchings forms a distributive lattice, when the set is
partitioned by a suitable equivalence relation [16]. Malhotra [14] has extended this
result to the many-to-many Stable Marriage problem with ties, which includes hrt

as a special case.
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