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Abstract. We consider Pareto optimal matchings as a means of cop-
ing with instances of the Stable Roommates problem (SR) that do not
admit a stable matching. Given an instance I of SR, we show that the
problem of finding a maximum Pareto optimal matching is solvable in
O(

√

nα(m, n)m log3/2 n) time, where n is the number of agents and m
is the total length of the preference lists in I. By contrast we prove that
the problem of finding a minimum Pareto optimal matching is NP-hard,
though approximable within 2. We also show that the problem of find-
ing a Pareto optimal matching with the fewest number of blocking pairs
is NP-hard. However, for a fixed integer K, we give a polynomial-time
algorithm that constructs a Pareto optimal matching with at most K
blocking pairs, or reports that no such matching exists.

1 Introduction

The Stable Roommates problem (SR) is a classical combinatorial problem that has
been studied extensively in the literature [9, 13, 11, 20, 15, 14]. An instance I of SR
contains a graph G = (A, E) where A = {a1, . . . , an} and m = |E|. We assume that
G contains no isolated vertices. We interchangeably refer to the vertices of G as the
agents, and we refer to G as the underlying graph of I. The vertices adjacent to a
given agent ai ∈ A are the acceptable agents for ai, denoted by Ai. If aj ∈ Ai, we
say that ai finds aj acceptable. Moreover we assume that in I, ai has a linear order
over Ai, which we refer to as ai’s preference list. If aj precedes ak in ai’s preference
list, we say that ai prefers aj to ak.

Let M be a matching in G and let ai ∈ A. If {ai, aj} ∈ M for some aj ∈ A, we
say that ai is matched in M and M(ai) denotes aj, otherwise ai is unmatched in M .
A blocking pair with respect to a matching M is an edge {ai, aj} ∈ E\M such that
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(i) either ai is unmatched in M , or ai is matched in M and prefers aj to M(ai), and
(ii) either aj is unmatched in M , or aj is matched in M and prefers ai to M(aj). A
matching is stable if it admits no blocking pair.

Gale and Shapley [9] showed that an instance of SR need not admit a stable
matching. Irving [13] gave an O(m) algorithm that finds a stable matching or
reports that none exists, given an instance I of SR. The algorithm in [13] assumes
that in I, all preference lists are complete (i.e. Ai = A\{ai} for each ai ∈ A) and
n is even, though it is straightforward to generalize the algorithm to the problem
model defined here (i.e. the case of incomplete lists) [11]. Henceforth we denote by
SRC the special case of SR in which all preference lists are complete.

Empirical results [19] seem to suggest that, as n increases, the probability that
an SR instance with n agents admits a stable matching decreases fairly steeply. For
example, for various values of n, Thomson [22] generated xn random SRC instances,
each with n agents, and calculated pn, the proportion of instances that admitted a
stable matching. For n = 10, 100, 1000 and 10000, the values of pn were 90.1%,
65.3%, 37.7% and 18.7% respectively. In the first two cases xn = 10000, whilst in
the last two cases xn = 1000.

Given this observation, it is natural to consider an alternative, weaker optimality
property that could always be satisfied by some matching in an instance of SR. One
such property is Pareto optimality. Informally, a matching M is Pareto optimal if
there is no other matching M ′ such that some agent is better off in M ′ than in M ,
whilst no agent is worse off in M ′ than in M .

Formally, Pareto optimality may be defined as follows. Firstly we define the
preferences of an agent over matchings. Given two matchings M and M ′, we say
that an agent ai prefers M ′ to M if either (i) ai is matched in M ′ and unmatched
in M , or (ii) ai is matched in both M and M ′ and prefers M ′(ai) to M(ai). Given
this definition, we may define a relation ≺ on the set of all matchings as follows:
M ′ ≺ M if and only if no agent prefers M to M ′, and some agent prefers M ′ to
M . It is straightforward to show that ≺ forms a strict partial order over the set
of matchings in I. A matching is defined to be Pareto optimal if and only if it is
≺-minimal. Intuitively a matching is Pareto optimal if no agent ai can improve
without another agent aj becoming worse off.

Pareto optimality has received much attention, particularly from the Economics
community, and has recently been considered in the bipartite graph setting from
an algorithmic point of view [1]. As a further motivation for considering Pareto
optimality, we note that, in many applications a prime objective is to match as many
agents as possible. It is known that, given an instance I of SR, all stable matchings
in I (assuming at least one exists) are of the same size [11, Theorem 4.5.2]. However
in Section 2, we give an infinite family of SR instances for which Pareto optimal
matchings may have different sizes, and moreover the size of a stable matching
is half the size of a maximum cardinality Pareto optimal matching (henceforth a
maximum Pareto optimal matching).

Given that Pareto optimal matchings may be of different sizes in I, it is natural
to consider the algorithmic complexity of each of the problems of finding a max-
imum and minimum Pareto optimal matching. Moreover, if I does not admit a
stable matching, it is of interest to ask whether there is an efficient algorithm for
constructing a matching that contains the fewest number of blocking pairs, so as to
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1 : 4 3 2 1 : 6 2 . . .
2 : 3 4 1 2 : 3 1 . . .
3 : 1 2 4 3 : 2 4 . . .
4 : 2 1 3 4 : 5 3 . . .
Instance I1 5 : 4 6 . . .

6 : 1 5 . . .
Instance I2

Figure 1: Two instances of SRC.

obtain a matching that is “as stable as possible”. As we demonstrate in Section 4,
such a matching must be Pareto optimal.

The remainder of this paper is organised as follows. In Section 2 we give a
necessary and sufficient condition for an arbitrary matching to be Pareto optimal,
leading to an O(m) algorithm for checking the Pareto optimality of a matching.
We also give a straightforward O(m) greedy algorithm for finding a Pareto optimal
matching in an instance of SR. In Section 3 we show that the problem of find-
ing a maximum Pareto optimal matching is solvable in O(

√

nα(m, n)m log3/2 n)
time, where α is the inverse of Ackermann’s function. However in Section 4 we
show that, given an instance of SR, the problem of finding a (Pareto optimal)
matching with the fewest number of blocking pairs is NP-hard. On the other
hand, for a fixed integer K, we give a polynomial-time algorithm that constructs a
Pareto optimal matching with at most K blocking pairs, or else reports that no such
matching exists. Finally, in Section 5, we consider minimum Pareto optimal match-
ings. We show that, given an SR instance, the problem of finding such a matching
is NP-hard, though approximable within a factor of 2.

We conclude this section with two remarks regarding related work. Firstly, an
alternative method has been considered in the literature for coping with instances
of SR that do not admit a stable matching. Tan [21] presented an O(n2) algorithm
that finds, given an SR instance I, a largest matching M in I with the property that
the matched pairs in M are stable within themselves. However again we note that
such a matching may be half the size of a maximum Pareto optimal matching. For
example, we may choose any insoluble SRC instance I with 4 agents – there are 48
such instances [11, p.220]. In I, Tan’s algorithm is bound to construct a matching
of size 1, though the size of a maximum Pareto optimal matching is 2. Clearly this
instance may be replicated to produce an arbitrarily large SR instance for which the
size of a maximum Pareto optimal matching is twice the size of a matching output
by Tan’s algorithm.

Secondly, a related property to Pareto optimality that has been studied is so-
called exchange-stability. A matching M in an SRC instance is exchange-stable [2]
if there are no two agents ai, aj, each of whom prefers the other’s partner to his
own partner. Exchange-stability and Pareto optimality are distinct concepts: one
may construct instances and matchings to show that each property need not imply
the other. For example, consider the two SRC instances I1 and I2 as shown in
Figure 1 (in an agent’s preference list, the symbol . . . denotes all remaining agents
listed in arbitrary strict order). In I1, the matching M1 = {{1, 3}, {2, 4}} is Pareto
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optimal but not exchange-stable. In I2, the matching M2 = {{1, 2}, {3, 4}, {5, 6}}
is exchange-stable but not Pareto optimal. Moreover an SRC instance I need not
admit an exchange-stable matching [2], and the problem of deciding whether I does
admit such a matching is NP-complete [3, 4].

2 Preliminary definitions and results

We begin this section by defining a property of a matching M that forms a necessary
and sufficient condition for M to be Pareto optimal in an SR instance I. In what
follows, bpI(M) denotes the set of blocking pairs with respect to M in I (we omit
the subscript if the instance is clear from the context).

Definition 1 Let M be a matching in an instance of SR. An improving coalition
with respect to M is a sequence of distinct agents C = 〈a0, a1, . . . , a2r−1〉, for some
r ≥ 1, such that:

1. {a2i−1, a2i} ∈ M (1 ≤ i ≤ r − 1);

2. {a2i, a2i+1} ∈ bp(M) (0 ≤ i ≤ r − 1);

3. Either (a) a0, a2r−1 are unmatched in M , or (b) r ≥ 2 and {a0, a2r−1} ∈ M .

If C satisfies Condition 3(a), we also refer to C as an augmenting coalition, oth-
erwise we also refer to C as a cyclic coalition. Henceforth all subscripts are taken
module 2r in the context of improving coalitions. We define the size of C to be 2r.

If M admits no improving (resp. augmenting, cyclic) coalition, we say that M is
improving (resp. augmenting, cylic) coalition-free. The matching

M ′ = (M\{{a2i−1, a2i} : 1 ≤ i ≤ r}) ∪ {{a2i, a2i+1} : 0 ≤ i ≤ r − 1}

is defined to be the matching obtained from M by satisfying C. (We remark that if
C is an augmenting coalition then {a0, a2r−1} /∈ M .)

A matching M is maximal in G if M ∪ {e} is not a matching for any e ∈ E\M . By
Definition 1, M is maximal if and only if M admits no improving coalition of size
2. The following proposition indicates that Pareto optimality is equivalent to the
absence of an improving coalition.

Proposition 2 Let M be a matching in a given instance I of SR. Then M is Pareto
optimal if and only if M is improving coalition-free.

Proof: Let M be a Pareto optimal matching in I. If M admits an improving coalition
C, let M ′ be the matching obtained by satisfying C. Then M ′ ≺ M , a contradiction.

Conversely let M be a matching that is improving coalition-free, and suppose
for a contradiction that M is not Pareto optimal. Then there exists some matching
M ′ such that M ′ ≺ M . Let H = M ⊕ M ′ (i.e. H is the graph obtained by taking
the symmetric difference of M and M ′) and let C be a connected component of H.
Then C is a path or cycle whose edges alternate between M and M ′. We consider
two cases.
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set each agent to be unlabelled;
M := ∅;
for each agent ai

if ai is unlabelled
if ai finds some unlabelled agent acceptable

let aj be the most-preferred such agent;
label each of ai and aj ;
M := M ∪ {{ai, aj}};

Figure 2: Algorithm Greedy-POM.

• Case (i): C is an alternating path. As M ′ ≺ M , it follows that both end-edges
of C belong to M ′. Moreover as M ′ ≺ M , each agent a in C who is matched in
M is also matched in M ′, and a prefers M ′ to M . Hence C is an augmenting
coalition with respect to M , a contradiction.

• Case (ii): C is an alternating cycle. Each agent a in C is matched in both M
and M ′, and as in Case (ii), a prefers M ′ to M . Hence C is a cyclic coalition
with respect to M , a contradiction.

Hence M is Pareto optimal in I.

We now show that Proposition 2 leads to an O(m) algorithm for checking a matching
for Pareto optimality in an instance I of SR. Let M be a matching in I and let G be
the underlying graph of I. We form a subgraph GM of G by letting GM contain only
those edges that belong to M ∪ bp(M); any isolated vertices are removed from GM .
By Proposition 2, M is Pareto optimal in I if and only if M admits no augmenting
path or alternating cycle in GM . We may test for the existence of the former
structure in O(m) time [5, 7]. For the latter structure, we remove any unmatched
vertices from GM (and any edges incident to them) and apply the O(m) alternating
cycle detection algorithm of [6]. This discussion leads to the following conclusion.

Proposition 3 Let M be a matching in a given instance of SR. Then we may check
whether M is Pareto optimal in O(m) time.

We next note that every instance of SR admits at least one Pareto optimal matching,
and such a matching may be found in O(m) time using Algorithm Greedy-POM as
shown in Figure 2. The correctness and complexity of this algorithm is established
by the following proposition.

Proposition 4 Let I be an instance of SR. Then Algorithm Greedy-POM finds a
Pareto optimal matching in I in O(m) time.

Proof: Without loss of generality suppose that the greedy algorithm considered the
agents in order a1, a2, . . ., an and constructed the matching M . Now suppose that
M ′ ≺ M for some matching M ′. Let i be the smallest integer (1 ≤ i ≤ n) such that
ai prefers M ′ to M . Then ai is matched in M ′, to aj say. When ai was considered
by the algorithm, either (i) ai was already labelled, or (ii) aj was already labelled.
In Case (i), ai became matched in M to some ar when the algorithm considered ar,
where r < i. In Case (ii), aj became matched in M to some ak when the algorithm
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considered either aj or ak – let r = min{j, k}; then r < i. In both cases ar does
not have the same partner in M ′ as in M . But M ′ ≺ M , so ar prefers M ′(ar) to
M(ar), contradicting the choice of i. Clearly the running time is bounded by the
total length of the preference lists.

We now show that stability is a stronger condition than Pareto optimality.

Proposition 5 Let I be an instance of SR and let M be a matching in I. Then M
is stable implies that M is Pareto optimal.

Proof: By Definition 1, if there is an improving coalition with respect to M then
bp(M) 6= ∅. But M is stable, so that M is Pareto optimal by Proposition 2.

It is easy to construct an SR instance I that admits Pareto optimal matchings of
different sizes. Suppose there are four agents, a1, a2, a3, a4, where A1 = {a2, a4},
A2 = {a1}, A3 = {a4}, A4 = {a1, a3}, a1 prefers a4 to a2 and a4 prefers a1 to
a3. Then M1 = {{a1, a4}} is stable (and hence Pareto optimal by Proposition 5)
and M2 = {{a1, a2}, {a3, a4}} is Pareto optimal. Moreover Algorithm Greedy-POM
constructs M1 given the agent ordering 〈a1, a2, a3, a4〉, and constructs M2 given the
agent ordering 〈a2, a1, a3, a4〉. By creating r copies of I, we may construct an SR
instance Ir with 4r agents that admits a stable matching M r

1 of size r and a Pareto
optimal matching M r

2 of size 2r. By Propositions 5 and 2, each of M r
1 and M r

2

is a maximal matching in the graph Gr underlying Ir. But the sizes of maximal
matchings in Gr differ by at most a factor of 2 [16]. Hence we have an infinite family
of instances for which the size of a stable matching is the smallest possible compared
to the size of a maximum Pareto optimal matching.

3 Maximum Pareto optimal matchings

Given an SR instance I with underlying graph G = (A, E), a maximum Pareto
optimal matching in I may be constructed in polynomial time by imposing weights
on the edges of G as follows. For each edge {ai, aj} ∈ E, the weight of this edge
is ranki(j) + rankj(i) where ranki(j) denotes the rank of aj in ai’s preference list.
We may construct a minimum weight maximum cardinality matching M in G in
O(

√

nα(m, n)m log3/2 n) time [8]. The following result indicates that M is a maxi-
mum Pareto optimal matching.

Proposition 6 Let M be a minimum weight maximum cardinality matching in the
weighted graph G. Then M is a maximum Pareto optimal matching in I.

Proof: Suppose not. Then M ′ ≺ M for some matching M ′. Every agent matched
in M is also matched in M ′, so |M ′| ≥ |M |. But M is a maximum matching in G,
so |M ′| = |M |, and it follows that the same set of agents are matched in M and M ′

– we denote these agents by A′. Since M ′ ≺ M , for any agent ai ∈ A′ it follows
that ranki(M

′(i)) ≤ ranki(M(i)). Moreover, there exists some aj ∈ A′ such that
rankj(M

′(j)) < rankj(M(j)). Hence if wt(M) denotes the weight of matching M ,
we have

wt(M ′)=
∑

{ai,aj}∈M ′

(ranki(j) + rankj(i))=
∑

ai∈A′

ranki(M
′(i))<

∑

ai∈A′

ranki(M(i))=wt(M)
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which is a contradiction. Hence M is Pareto optimal.

Note that the above proposition also indicates that the size of a maximum Pareto
optimal matching in I is equal to the size of a maximum matching in G. We remark
that an arbitrary matching M in G may be transformed into a Pareto optimal match-
ing M ′ in I, where M ′ ≺ M and |M ′| ≥ |M |, by repeatedly finding and satisfying
improving coalitions. By the discussion preceding Proposition 3, we may find and
satisfy an improving coalition with respect to M in O(m) time if one exists. These
operations may be repeated until no improving coalition is found, which must occur
within m iterations, so the overall process takes O(m2) time. If M is a maximum
matching in G, then all improving coalitions are cyclic coalitions, so |M ′| = |M |
and M ′ is a maximum Pareto optimal matching. It remains to consider whether a
maximum Pareto optimal matching can be constructed in O(

√
nm) time. This is

the complexity of the fastest current algorithm for finding a maximum matching in
a general graph [18].

4 Matchings with fewest number of blocking pairs

We begin this section by presenting two useful results concerned with blocking pairs
relative to matchings.

Proposition 7 Let I be an instance of SR and let M, M ′ be two matchings in I.
Then if M ′ ≺ M , it follows that bp(M ′) ⊂ bp(M).

Proof: We firstly show that bp(M ′) ⊆ bp(M). Let {ai, aj} ∈ bp(M ′). Since neither
ai nor aj prefers M to M ′, it follows that {ai, aj} ∈ bp(M). We now show that there
exists some {ai, aj} ∈ bp(M)\bp(M ′). Let H = M ⊕ M ′ and let C be a connected
component of H. Then C is a path or cycle whose edges alternate between M and
M ′. We consider two cases.

• Case (i): C is an alternating path. As M ′ ≺ M , it follows that both end-
edges of C belong to M ′. If C is of length 1, the single edge of C belongs
to bp(M)\bp(M ′). Otherwise, let {ai, aj} be an end-edge of C. Then without
loss of generality aj is matched in M , to ak say. But then aj prefers ai to ak,
since M ′ ≺ M . Hence {ai, aj} ∈ bp(M)\bp(M ′).

• Case (ii): C is an alternating cycle. Pick any edge of C that belongs to M ′,
say {ai, aj}. Then neither ai nor aj has the same partner in M and M ′. But
M ′ ≺ M , so that {ai, aj} ∈ bp(M)\bp(M ′).

Corollary 8 Let I be an instance of SR and let M be a matching with the fewest
number of blocking pairs. Then M is Pareto optimal in I.

Proof: Suppose not. Then some matching M ′ satisfies M ′ ≺ M . By Proposition 7,
|bp(M ′)| < |bp(M)|, a contradiction. Hence M is Pareto optimal in I.
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4.1 NP-hardness proof

We now consider the problem of finding a matching with the fewest number of
blocking pairs (which is necessarily Pareto optimal by Corollary 8). Let Min-BP
denote the problem deciding, given an instance I of SR and an integer K, whether
I admits a matching M such that |bp(M)| ≤ K. Define also Min-MM (respectively
Exact-MM) to be the problem of deciding, given a graph G and integer K, whether
G admits a maximal matching of size at most (respectively exactly) K. Note that
Min-MM is NP-complete, even for cubic graphs [12]. It also follows that Exact-MM
is NP-complete for the same class of graphs, as we now demonstrate.

Lemma 9 Exact-MM is NP-complete, even for cubic graphs.

Proof: Clearly Exact-MM belongs to NP. To show NP-hardness, we reduce from
Min-MM, which is NP-complete even for cubic graphs [12]. Let G (a cubic graph)
and K (a positive integer) be an instance of the latter problem. Without loss of gen-
erality we may assume that K ≤ β(G), where β(G) denotes the size of a maximum
matching of G. Suppose that G admits a maximal matching M , where |M | = k ≤ K.
If k = K, we are done. Otherwise suppose that k < K. Let M ′ be a maximum
matching in G. Now let H = M ⊕ M ′. Each connected component of H is either a
path or cycle whose edges alternate between M and M ′. Since |M | = k < K ≤ |M ′|,
it follows that M admits at least K − k disjoint augmenting paths in H, which we
denote by P1, . . . , PK−k. Let P = P1 ∪ . . . ∪ PK−k and let M ′′ = M ⊕ P . Then
|M ′′| = K and the maximality of M implies that M ′′ is also a maximal matching.
The converse is clear.

We now prove that Min-BP is NP-complete, even when all preference lists are com-
plete, using a reduction from Exact-MM.

Theorem 10 Min-BP is NP-complete, even for complete preference lists.

Proof: Clearly Min-BP belongs to NP. To show NP-hardness, we reduce from Exact-
MM restricted to cubic graphs, which is NP-complete by Lemma 9. Let G = (V, E)
(a cubic graph) and K (a positive integer) be an instance of Exact-MM. Assume
that V = {v1, . . . , vn}. Create a new graph G′ = (W, E ′) such that W = {wi,r :
1 ≤ i ≤ n ∧ 1 ≤ r ≤ 3}, each vertex in W is of degree 1 in G′, and each edge
{vi, vj} ∈ E corresponds to a unique edge {wi,r, wj,s} ∈ E ′ (1 ≤ r, s ≤ 3); denote
this latter edge by c({vi, vj}). For each wi,r ∈ W , let e(wi,r) denote the unique wj,s

such that {wi,r, wj,s} ∈ E ′. For each i (1 ≤ i ≤ n), define Wi = {wi,1, wi,2, wi,3} and
Ei = {wj,3 : {vi, vj} ∈ E}.

Define also W ′ = {w′
i,r : wi,r ∈ W}, W ′′ = {w′′

i,r : wi,r ∈ W}, H = {hi : 1 ≤
i ≤ n − 2K}, H ′ = {h′

i : hi ∈ H} and H ′′ = {h′′
i : hi ∈ H}. We create an instance

I of SRC in which the agents are A = W ∪ W ′ ∪ W ′′ ∪ H ∪ H ′ ∪ H ′′, so that
|A| = 6(2n − K). The preference lists of the agents in I are given in Figure 4.1
(assume that 1 ≤ i ≤ n, 1 ≤ j ≤ n − 2K and 1 ≤ r ≤ 3). In a given agent a’s
preference list, [S] denotes all members of the set S listed in arbitrary strict order
at the position in which the symbol appears. Also . . . denotes all agents other than
a who have not been explicitly listed elsewhere on a’s list – such agents are listed
in arbitrary strict order at the position in which the symbol appears. We remark
that, in the case of wi,3’s list, it is possible that e(wi,3) /∈ Ei. For each wi,r ∈ W , any
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wi,1 : wi,2 wi,3 e(wi,1) w′
i,1 w′′

i,1 . . .
wi,2 : wi,3 wi,1 e(wi,2) w′

i,2 w′′
i,2 . . .

wi,3 : wi,1 wi,2 e(wi,3) [Ei\{e(wi,3)}] h1 h2 . . . hn−2K w′
i,3 w′′

i,3 . . .
w′

i,r : w′′
i,r wi,r . . .

w′′
i,r : wi,r w′

i,r . . .
hj : w1,3 w2,3 . . . wn,3 h′

j h′′
j . . .

h′
j : h′′

j hj . . .
h′′

j : hj h′
j . . .

Figure 3: Preference lists in the constructed SR instance I.

agent whom wi,r prefers to w′
i,r is defined to be a proper agent for wi,r. Similarly,

for each hj ∈ H, any agent whom hj prefers to h′
j is defined to be a proper agent

for hj.
We claim that G admits a maximal matching of size K if and only if I admits a

matching with at most n blocking pairs.

For, suppose that G admits a maximal matching M , where |M | = K. We form
a matching M ′ in I as follows. Suppose that {vi, vj} ∈ M . Let {wi,r, wj,s} =
c({vi, vj}), let {r′, r′′} = {1, 2, 3}\{r} and let {s′, s′′} = {1, 2, 3}\{s}. Without loss
of generality choose r′ and s′ such that wi,r and wj,s is the first choice of wi,r′ and
wj,s′ respectively. Add {wi,r, wj,s}, {wi,r′, wi,r′′} and {wj,s′, wj,s′′} to M ′. These three
assignments imply that {{wi,r, wi,r′}, {wj,s, wj,s′}} ⊆ bp(M ′).

There are n − 2K vertices in G that are unmatched in M . Let j1 < j2 <
. . . < jn−2K be an increasing sequence of integers such that vjr

is unmatched in M
(1 ≤ r ≤ n−2K). Add {wjr,1, wjr,2} and {wjr,3, hr} to M ′ (1 ≤ r ≤ n−2K). These
two assignments imply that {wjr,2, wjr,3} ∈ bp(M ′). Finally, for each wi,r ∈ W , add
{w′

i,r, w
′′
i,r} to M ′, and for each hj ∈ H, add {h′

j, h
′′
j} to M ′.

We claim that M ′ is a matching in I such that |bp(M ′)| = n. For, it is clear
that no member of W ′ ∪ W ′′ ∪ H ′ ∪ H ′′ can be involved in a blocking pair of M ′.
Neither can any hl ∈ H, since if {wj,3, hl} ∈ M ′ for some wj,3 ∈ W , and hl prefers
some wi,3 ∈ W to wj,3, then either wi,3 has a partner of rank ≤ 3 in M ′ (whom he
prefers to hl), or {wi,3, hk} ∈ M ′ for some hk ∈ H. But then i < j, so that k < l
by construction of M ′, so wi,3 prefers hk to hl. Finally suppose that {wi,3, hk} ∈ M ′

for some wi,3 ∈ W and hk ∈ H. Then vi is unmatched in M , and hence by the
maximality of M , each wj,r ∈ Ei ∪ {e(wi,3)} has a partner of rank ≤ 3 (whom he
prefers to wi,3) in M ′. Thus every blocking pair of M ′ comprises a pair of agents
belonging to some Wi (1 ≤ i ≤ n).

As previously mentioned, every edge of M gives rise to exactly two blocking
pairs of M ′, and furthermore, every vertex in G that is unmatched in M gives rise
to exactly one blocking pair of M ′. By the above paragraph these are all the blocking
pairs of M ′, and hence |bp(M ′)| = 2K + (n − 2K) = n.

Conversely suppose that M ′ is a matching in I such that |bp(M ′)| = k ≤ n.
We firstly show that k ≥ n. For, let i be given (1 ≤ i ≤ n). If {wi,1, wi,2} ∈ M ′

then {wi,2, wi,3} ∈ bp(M ′). If {wi,1, wi,3} ∈ M ′ then {wi,1, wi,2} ∈ bp(M ′). Finally if
wi,1 has a partner of rank ≥ 3 in M ′ then {wi,1, wi,3} ∈ bp(M ′). Hence for each i
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(1 ≤ i ≤ n) there exists a blocking pair of M ′ comprising a pair of agents belonging
to Wi, so that k ≥ n. Moreover, by the previous inequality, k = n and these are all
the blocking pairs of M ′.

We next claim that each wi,r ∈ W has a proper agent as his partner in M ′. For
if {wi,r, w

′
i,r} ∈ M ′ then {w′

i,r, w
′′
i,r} ∈ bp(M ′). If {wi,r, w

′′
i,r} ∈ M ′ then {wi,r, w

′
i,r} ∈

bp(M ′). Finally if wi,r has a partner worse than w′′
i,r in M ′ then {wi,r, w

′′
i,r} ∈ bp(M ′).

By a similar argument it follows that each hj ∈ H has a proper agent as his partner
in M ′.

Next we show that, for each i (1 ≤ i ≤ n), at most one member of Wi can have
a partner of rank ≥ 3 in M ′. For if two members of Wi have a partner of rank
≥ 3 in M ′ then all members of Wi do, and hence each of {wi,1, wi,2}, {wi,1, wi,3},
{wi,2, wi,3} belongs to bp(M ′), so that |bp(M ′)| ≥ n + 2, a contradiction. Hence the
set M = {{vi, vj} : {wi,r, wj,s} ∈ M ′} is a matching in G.

Now each hj ∈ H has a partner in M ′ whom he prefers to h′
j, so there exists

a sequence kr of integers such that {wkr,3, hr} ∈ M ′ (1 ≤ r ≤ n − 2K). By the
preceding argument, {wkr,1, wkr,2} ∈ M ′ (1 ≤ r ≤ n − 2K), so that |M | ≤ K. But
for each i (1 ≤ i ≤ n), some wi,r ∈ Wi has a partner of rank ≥ 3, and since wi,r has
a proper agent as his partner in M ′, it follows that |M | = K.

Finally we show that M is maximal in G. For suppose that two vertices vi, vj ∈ V
are unmatched in M , where {vi, vj} ∈ E. Then by construction of M , {wi,3, hk} ∈
M ′ and {wj,3, hl} ∈ M ′, for some hk, hl ∈ H. But then {wi,3, wj,3} ∈ bp(M ′), a
contradiction.

Note that, by Corollary 8, the above reduction also proves that, given an instance
of SRC, the problem of finding a Pareto optimal matching with the fewest number
of blocking pairs is NP-hard.

4.2 Polynomial-time algorithm for fixed K

We now consider the case where I is an SR instance with underlying graph G =
(A, E) and K ≥ 1 is a fixed constant. We give an O(mK+1) algorithm that finds
a matching M with at most K blocking pairs, or reports that no such matching
exists. We further show how to extend this algorithm if M is required to be Pareto
optimal and/or of maximum cardinality.

Our algorithm is based on generating subsets B of edges of G, where |B| ≤ K –
these edges will form the blocking pairs with respect to a matching to be constructed
in a subgraph of G. Given such a set B, we form a subgraph GB = (A, EB) of G
as follows. For each agent ai incident to an edge e = {ai, aj} ∈ B, if e is a blocking
pair of a matching M , it follows that {ai, aj} /∈ M and ai cannot be matched in M
to an agent whom he prefers to aj in I. Hence we delete {ai, aj} from EB, and also
we delete {ai, ak} from EB for any ak such that ai prefers ak to aj in I. If any such
edge {ai, ak} is not in B, then we require that {ai, ak} is not a blocking pair of a
constructed matching M . This can only be achieved if ak is matched in M to an
agent whom he prefers to ai in I. Hence we invoke truncateak

(ai), which represents
the operation of deleting {ak, al} from EB, for any al such that ak prefers ai to al

in I. Additionally we add ak to a set P to subsequently check that ak is matched.
Having completed the construction of GB, we denote by IB the SR instance with

underlying graph GB and preference lists obtained by restricting the preferences in

10



for each B ⊆ E such that |B| ≤ K
EB := E; // GB = (A,EB) is a subgraph of G
P := ∅;
for each agent ai incident to some {ai, aj} ∈ B

delete {ai, aj} from EB ;
for each agent ak such that ai prefers ak to aj in I

delete {ai, ak} from EB ;
if {ai, ak} /∈ B

truncateak
(ai);

P := P ∪ {ak};
if there is a stable matching M in IB

if every agent in P is matched in M
output M and halt;

report that no matching with ≤ K blocking pairs exists;

Figure 4: Algorithm K-BP

I to EB. Any matching M in GB satisfies B ⊆ bpI(M). To avoid any additional
blocking pairs in I, we seek a stable matching in IB in which all agents in P are
matched. We apply Irving’s algorithm for SR [11] to IB – suppose it finds a stable
matching M in IB. If all agents in P are matched, then it follows that bpI(M) = B,
and hence |bp(M)| ≤ K – thus we may output M and halt. If some agents in P
are unmatched in M then we need not consider any other stable matching in IB,
since Theorem 4.5.2 of [11] asserts that the same agents are matched in all stable
matchings in IB. Hence (and also in the case that no stable matching in IB is found),
we may consider the next subset B. If we complete the generation of all subsets B
without having output a matching M , we report that no matching with the desired
property exists. The algorithm is displayed as Algorithm K-BP in Figure 4.

We now establish the correctness and complexity of Algorithm K-BP.

Theorem 11 Given an SR instance I and a fixed constant K, Algorithm K-BP
finds a matching with at most K blocking pairs, or reports that no such matching
exists, in O(mK+1) time.

Proof: Suppose firstly that the algorithm outputs a matching M when the outermost
loop considered a set B. We show that M is a matching in I such that bpI(M) = B.
For, let {ai, aj} ∈ B. Then by construction of GB, {ai, aj} /∈ M . Moreover either ai

is unmatched in M , or ai is matched in M and prefers aj to M(ai) in I. Similarly
either aj is unmatched in M , or aj is matched in M and prefers ai to M(aj) in I.
Hence {ai, aj} ∈ bpI(M), so that B ⊆ bpI(M). We now show that bpI(M) ⊆ B.
For, suppose that {ak, al} ∈ (E\B) ∩ bpI(M). Then {ak, al} /∈ EB, as M is stable
in IB. Hence {ak, al} has been deleted by the algorithm. Thus without loss of
generality ak ∈ P , so that ak is matched in M and ak prefers M(ak) to al in I.
Hence {ak, al} /∈ bpI(M) after all, so that bpI(M) = B.

Now suppose that M is a matching in I such that bpI(M) = B, where |B| ≤ K.
By the above paragraph, if, before considering B, the outermost loop had already
output a matching M ′ when considering a subset B ′, then bpI(M

′) = B′, and
|B′| ≤ K. Otherwise, when the outermost loop considers the subset B, it must
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be the case that no edge of M is deleted when constructing GB. Hence M ⊆ EB.
Moreover M is stable in IB, for if not then e ∈ bpIB

(M) for some e ∈ EB, and hence
e ∈ bpI(M). Since B ∩ EB = ∅, it follows that e ∈ bpI(M)\B, a contradiction.
Finally every member of P is matched in M , for suppose ak ∈ P is unmatched in
M . As ak ∈ P , there is some agent ai such that ai prefers ak to aj in I, where
{ai, aj} ∈ B and {ai, ak} /∈ B. Hence {ai, ak} ∈ bpI(M)\B, a contradiction. Hence
by [11, Theorem 4.5.2], Irving’s algorithm finds a stable matching M ′ in IB (possibly
M ′ = M) such that all members of P are matched in M ′. Thus the algorithm outputs
M ′ in this case. By the above paragraph, bpI(M

′) = B.
Finally suppose that there is no matching M in I such that |bp(M)| ≤ K. By the

first paragraph, if the algorithm outputs a matching M ′ when the outermost loop
considered a subset B, then bpI(M

′) = B, a contradiction. Hence the algorithm
reports that no such matching M exists in this case.

Clearly the outermost loop iterates O(mK) times. Within a loop iteration, con-
struction of GB takes O(m) time, as does the invocation of Irving’s algorithm. All
other operations are O(m), and hence the time complexity of Algorithm K-BP fol-
lows.

Note that, if Algorithm K-BP outputs a matching M with at most K blocking pairs,
by the discussion at the end of Section 3, we may transform M into a Pareto optimal
matching M ′ such that M ′ ≺ M (and |M ′| ≥ |M |) in O(m2) time. By Proposition
7, |bp(M ′)| ≤ K. Also, it is straightforward to modify Algorithm K-BP so that it
outputs the largest stable matching taken over all subsets B – we may then find a
matching M such that (i) M is Pareto optimal, (ii) |bp(M)| ≤ K, and (iii) M is
of maximum cardinality with respect to (i) and (ii). This extension uses the fact
that all stable matchings in IB have the same size [11, Theorem 4.5.2], so that the
choice of stable matching constructed by the algorithm is not of significance as far
as Condition (iii) is concerned.

5 Minimum Pareto optimal matchings

In this section, we consider minimum Pareto optimal matchings. Let Min-POM
denote the problem deciding, given an instance I of SR and an integer K, whether
I admits a Pareto optimal matching of size at most K. Define also the problem
X3C as follows. An instance 〈X, C〉 of X3C comprises a set X = {x1, x2, . . . , xn}
of elements, where n = 3q for some integer q, and a collection C = {c1, c2, . . . , cm}
of subsets of X (clauses), where |ci| = 3 for each ci ∈ C. The problem is to decide
whether C contains an exact cover for X, i.e. whether there exist a set C ′ ⊆ C of
pairwise disjoint sets whose union is X. X3C is NP-complete [10, problem SP2].

We now prove that Min-POM is NP-complete via a reduction from X3C. The
following proof is adapted from a construction of McRae [17].

Theorem 12 Min-POM is NP-complete.

Proof: By Proposition 3, Min-POM belongs to NP . To show NP-hardness, we
reduce from X3C. Hence let 〈X, C〉 be an instance of X3C as defined above. Let
ir (1 ≤ r ≤ 3m) be a sequence of integers such that, for each j (1 ≤ j ≤ m),
cj = {xi3j−2

, xi3j−1
, xi3j

}. We construct an instance I of SR as follows. Let W =
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{w1, w2, . . . , w3q}, let Y = {y1, y2, . . . , y3m} and let Z = {z1, z2, . . . , zm}. The agents
in J are W ∪ X ∪ Y ∪ Z. Let F = {{wi, xi} : 1 ≤ i ≤ 3q}. Also, for each i
(1 ≤ i ≤ 3q), define Yi = {yj ∈ Y : cj ∈ C ∧xi ∈ cj}. We now create preference lists
for the agents in I as follows (assume that 1 ≤ i ≤ 3q, 1 ≤ j ≤ m and 0 ≤ k ≤ 2):

wi : xi

xi : [Yi] wi

y3j−k : xi3j−k
zj

zj : y3j−2 y3j−1 y3j

Let K = m + 2q. We claim that 〈X, C〉 has an exact cover if and only if I admits a
Pareto optimal matching of size at most K.

For, suppose that C ′ is an exact cover for X. Then |C ′| = q. We define a
matching M in I as follows. For each cj ∈ C ′, add {y3j−k, xi3j−k

} to M (0 ≤ k ≤ 2).
For each cj /∈ C ′, add {zj, y3j−1} to M . Then |M | = 3q + (m − q) = K. It is
straightforward to verify that M is maximal in I. Moreover M admits no improving
coalition. For, any augmenting path or alternating cycle relative to M must involve
an agent xi ∈ X. But {xi, yj} ∈ M for some yj ∈ Yi, and xi is the first choice of yj.
Hence M is Pareto optimal, as required.

Conversely suppose that I admits a Pareto optimal matching of size at most
K. Choose M to be such a matching that minimises |M ∩ F |. We claim that
M ∩ F = ∅. For, suppose {wi, xi} ∈ M ∩ F . Pick any yl ∈ Yi and suppose that
yl = y3j−k (1 ≤ j ≤ m, 0 ≤ k ≤ 2). We consider three cases:

• Case 1 : {zj, y3j−k} /∈ M . Let M ′ = (M\{{wi, xi}}) ∪ {{xi, y3j−k}}.
• Case 2 : {zj, y3j−k} ∈ M and y3j−r is unmatched in M for some r (0 ≤ r ≤ 3).

Let M ′ = (M\{{wi, xi}, {zj, y3j−k}}) ∪ {{xi, y3j−k}, {zj, y3j−r}}.
• Case 3 : {zj, y3j−k} ∈ M and y3j−r is matched in M for each r ∈ {0, 1, 2}\{k}.

Let M ′ = (M\{{wi, xi}, {zj, y3j−k}}) ∪ {{xi, y3j−k}}.
Then in each case, it may be verified that |M ′| ≤ |M | and the Pareto optimality of
M implies that M ′ is Pareto optimal. Moreover |M ′ ∩ F | < |M ∩ F |, contradicting
the choice of M . Hence the claim is established.

For each i (1 ≤ i ≤ 3q), {xi, yj} ∈ M for some yj ∈ Yi, for otherwise M is not
maximal. Let p denote the number of edges of M incident to vertices in Z. Then
|M | ≥ 3q + p. Hence p ≤ m − q. Define a vertex zj ∈ Z to be saturated by M if
{y3j−r, xi3j−r

} ∈ M for 0 ≤ r ≤ 2. Let t denote the number of vertices in Z that
are saturated by M . Then 3t ≤ 3q. Also it follows that p = m − t, for zj ∈ Z is
matched in M if and only if zj is not saturated by M , by maximality of M . Hence
t = q, so that C ′ = {cj ∈ C : zj is saturated by M} is an exact cover for X.

It is clear that the underlying graph corresponding to the SR instance as constructed
by the above reduction is bipartite. Furthermore, X3C remains NP-complete even
if each member of X occurs in either two or three clauses [10, problem SP2]. Hence
Min-POM remains NP-complete even for instances of the Stable Marriage problem
with incomplete preference lists in which each agent’s list is of length at most 4.

As observed at the end of Section 2, the size of a minimum Pareto optimal
matching is at least half the size of a maximum Pareto optimal matching. Hence
Algorithm Greedy-POM is a 2-approximation algorithm for the problem of finding
a minimum Pareto optimal matching.
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6 Concluding remarks

The results of this paper leave open some interesting questions. Firstly as mentioned
in Section 3, it remains to consider whether there is a faster algorithm for finding
a maximum Pareto optimal matching in an SR instance. Secondly, the results of
Section 4 leave open the question of the approximability of the problem of finding
a matching with the minimum number of blocking pairs. Finally, the case where
preference lists in SR may include ties merits further investigation.
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