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Abstract

An instance I of the Hospitals / Residents problem (HR) involves a set of residents
(graduating medical students) and a set of hospitals, where each hospital has a given
capacity. The residents have preferences for the hospitals, as do hospitals for residents.
A solution of I is a stable matching, which is an assignment of residents to hospitals
that respects the capacity conditions and preference lists in a precise way. In this
paper we present constraint encodings for HR that give rise to important structural
properties. We also present a computational study using both randomly-generated
and real-world instances. Our study suggests that Constraint Programming is indeed
an applicable technology for solving this problem, in terms of both theory and practice.

1 Introduction

Gale and Shapley described in their seminal paper [4] the classical Hospitals / Residents
problem (HR), referred to by the authors as the College Admissions problem. An instance
of HR involves a set of residents (i.e. graduating medical students) and a set of hospitals.
Each resident ranks in order of preference a subset of the hospitals. Each hospital has an
integral capacity, and ranks in order of preference those residents who ranked it. We seek
to match each resident to an acceptable hospital, in such a way that a hospital’s capacity
is never exceeded. Moreover the matching must be stable – a formal definition of stability
follows, but informally stability ensures that no resident and hospital, not already matched
together, would rather be assigned to one another than remain with their assignees. Such a
resident and hospital could form a private arrangement outside the matching, undermining
its integrity. Gale and Shapley [4] described a linear-time algorithm for finding a stable
matching, given an instance of HR.

Many centralised matching schemes that automate the process of assigning residents
to hospitals employ algorithms that solve HR and its variants [21]. For example, the
National Resident Matching Program (NRMP) in the US [19] is perhaps the largest such
scheme. The NRMP has been in operation since 1952 and handles the annual allocation of
some 31,000 residents to hospitals. Counterparts of the NRMP elsewhere are the Canadian
Resident Matching Service (CaRMS) [3] and the Scottish PRHO Allocation scheme (SPA)
[11]. Similar matching schemes are also used in educational and vocational contexts.

A special case of HR occurs when each hospital has capacity 1 – this is the Stable
Marriage problem with Incomplete lists (SMI). In this context, residents are referred to
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as men, whilst hospitals are referred to as women. A special case of SMI occurs when
the numbers of men and women are equal, and each man finds all women acceptable and
vice versa – this is the classical Stable Marriage problem (SM), also introduced by Gale
and Shapley [4]. A specialised linear-time algorithm for SM, known as the Gale / Shapley
(GS) algorithm [4], can be generalised to the SMI case [10, Section 1.4.2]. Using a process
known as “cloning hospitals” (described in more detail in Section 3), a given instance I
of HR may be transformed to an instance J of SMI, and the GS algorithm can be applied
to J in order to give a stable matching in I. However in general this method expands
the instance size, so that in practice specialised algorithms (such as those described in
[10, Section 1.6]; see also Figure 2) are used to solve HR directly and achieve a better
worst-case time complexity.

Over the last few decades, stable matching problems, and SM in particular, have
been the focus of much attention in the literature [4, 13, 10, 23]. Several encodings of
SM and its variants as a Constraint Satisfaction Problem (CSP) have been formulated
[1, 6, 14, 7, 8, 9, 17, 24, 25]. However, no encoding for HR has been considered before
now.

This paper is concerned with a Constraint Programming (CP) approach to solving
HR. We firstly present in Section 3 a cloned model for HR, indicating how existing for-
mulations of SMI as a CSP [6] can be used in order to model HR. We then present in
Section 4 a constraint-based model of HR that deals directly with an HR instance without
cloning, achieving improved time and space complexities. We show that the effect of Arc
Consistency (AC) propagation [2] applied to this model yields the same structure as the
action of established algorithms for HR [4, 10]. As a consequence, a stable matching for
the given HR instance can be obtained without search (in fact we can in general obtain two
complementary stable matchings following AC propagation, with optimality properties for
the residents and hospitals respectively). We also demonstrate how a failure-free enumer-
ation can be used to find all solutions for a given HR instance without search. These
results therefore extend analogous results presented in [6] for SMI. In Sections 5 and 6, we
present specialised binary and n-ary constraints for HR, comparing and constrasting the
time and space requirements for establishing AC with the models presented in Sections 3
and 4. Then, in Section 7, we describe the results of an empirical study which compares
the various models presented in this paper in practice, on both randomly-generated and
real-world data. Finally, Section 8 presents some concluding remarks, and discusses future
work.

The models in Sections 4-6 are non-trivial extensions of earlier constraint models pre-
sented for SMI [6, 17, 24, 25]. In the SMI case, clearly each woman can be assigned at
most one man, but to model an HR instance without cloning, the main challenges are to
maintain a representation of the set of assignees of a given hospital hj , and of the identity
of the worst resident assigned to hj .

The benefits of our approach are two-fold: firstly, the CSP models presented here for
HR indicate that AC propagation using a CP toolkit yields the same structure as given by
established linear-time algorithms for HR, from which all solutions for a given instance can
be generated in a failure-free manner without search. Secondly, and more importantly, our
models can be used as a basis on which additional constraints can be imposed, covering
variants of HR that arise naturally in practical applications, but which cannot be accom-
modated easily by existing algorithms. Examples of such variants include the Hospitals /
Residents problem with Ties (in which preference lists may include ties; see Section 8 for
more details), the Hospitals / Residents problem with Couples (in which couples submit
joint preference lists), and the generalisation of the Sex-Equal Stable Marriage problem
(in which one seeks a stable matching such that the sums of the ranks of the men’s and
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Residents’ preferences M0 Mz Hospitals’ preferences
r1 : h1 h3 – – h1 : (2) : r3 r7 r5 r2 r4 r6 r1

r2 : h1 h5 h4 h3 h1 h3 h2 : (3) : r5 r6 r3 r4

r3 : h1 h2 h5 h1 h1 h3 : (1) : r2 r5 r6 r1 r7

r4 : h1 h2 h4 h2 h2 h4 : (1) : r8 r2 r4 r7

r5 : h3 h1 h2 h3 h1 h5 : (1) : r3 r7 r6 r8 r2

r6 : h3 h2 h1 h5 h2 h2

r7 : h3 h4 h5 h1 h4 h5

r8 : h5 h4 h5 h4

Figure 1: An HR instance. The GS-list entries are underlined, and the middle two columns
indicate the residents’ assigned hospitals in M0 and Mz (r1 is unassigned in both).

women’s partners are as close as possible) to the HR case. All of these variants are known
to be NP-hard [16, 20, 12].

In the next section we present notation and terminology relating to HR, which will be
assumed in the remainder of this paper, and we also present some important structural
and algorithmic results.

2 Definitions and fundamental results

We now give a formal definition of HR. An instance I of HR comprises a set R =
{r1, . . . , rn} of residents and a set H = {h1, . . . , hm} of hospitals. Each resident ri ∈ R has
an acceptable set of hospitals Ai ⊆ H; moreover ri ranks Ai in strict order of preference.
For each hj ∈ H, denote by Bj ⊆ R those residents who find hj acceptable; hj ranks Bj

in strict order of preference. Finally, each hospital hj ∈ H has an associated capacity,
denoted by cj ∈ Z

+, indicating the number of posts that hj has. For each ri ∈ R, let lri
denote the length of ri’s preference list, and for each hj ∈ H, let lhj denote the length of

hj ’s preference list; we assume that cj ≤ lhj . Let L denote the total length of the residents’
preference lists in I. Given ri ∈ R and hj ∈ Ai, define rank(ri, hj) to be the position of hj

in ri’s preference list; rank(hj, ri) is defined similarly. An example HR instance is shown
in Figure 1 (the hospital capacities are indicated in brackets).

An assignment M is a subset of R × H such that (ri, hj) ∈ M implies that hj ∈ Ai

(i.e. ri finds hj acceptable). If (ri, hj) ∈ M , we say that ri is assigned to hj, and hj is
assigned ri. For any q ∈ R ∪ H, we denote by M(q) the set of assignees of q in M . If
ri ∈ R and M(ri) = ∅, we say that ri is unassigned, otherwise ri is assigned. Similarly,
any hospital hj ∈ H is under-subscribed, full or over-subscribed according as |M(hj)| is
less than, equal to, or greater than cj , respectively.

A matching M is an assignment such that |M(ri)| ≤ 1 for each ri ∈ R and |M(hj)| ≤ cj

for each hj ∈ H (i.e. each resident is assigned to at most one hospital, and no hospital is
over-subscribed). For convenience, given a resident ri ∈ R such that M(ri) 6= ∅, where
there is no ambiguity the notation M(ri) is also used to refer to the single member of
M(ri).

A blocking pair relative to a matching M is a (resident,hospital) pair (ri, hj) ∈ (R ×
H)\M such that (i) hj ∈ Ai, (ii) either ri is unassigned in M or prefers hj to M(ri),
and (iii) either hj is under-subscribed or prefers ri to at least one member of M(hj). A
matching is stable if it admits no blocking pair.

Gale and Shapley [4] described an algorithm for finding a stable matching in a given
HR instance I, which is known as the resident-oriented Gale/Shapley (RGS) algorithm
[10, Section 1.6.3]. This algorithm finds the resident-optimal stable matching M0 in I, in
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M = ∅;
while (some ri ∈ R is unassigned

and ri has a non-empty list)
hj = first hospital on ri’s list;
/* ri applies to hj */
M = M ∪ {(ri, hj)} ;
if (hj is over-subscribed)

rk = worst resident assigned to hj ;
M = M\{(rk, hj)} ;

if (hj is full)
rk = worst resident assigned to hj ;
for (each successor rz of rk on hj ’s list)

delete the pair (rz , hj);

M = ∅;
while (some hj ∈ H is under-subscribed

and some ri ∈ Bj is not assigned to hj)
ri = first such resident on hj ’s list;
/* hj offers a post to ri */
if (ri is assigned)

hk = M(ri);
M = M\{(ri, hk)};

M = M ∪ {(ri, hj)};
for (each successor hz of hj on ri’s list)

delete the pair (ri, hz);

Figure 2: RGS algorithm for HR; HGS algorithm for HR.

which each assigned resident is assigned to the best hospital that he could obtain in any
stable matching. On the other hand, the hospital-oriented (HGS) algorithm [10, Section
1.6.2] is a second algorithm for HR that finds the hospital-optimal stable matching Mz in
I, in which each hospital is assigned the best set of residents that it could obtain in any
stable matching. Figure 1 includes columns that give M0 and Mz for the example HR
instance shown. In general, the optimality property of each of M0 and Mz is achieved at
the expense of the hospitals and residents respectively (the “pessimality” of each of these
matchings for the relevant parties is discussed in Sections 1.6.2 and 1.6.5 of [10]). The
RGS and HGS algorithms for HR are shown in Figure 2 (the term “delete the pair (ri, hj)”
refers to the operations of deleting ri from hj ’s preference list and vice versa). Using a
suitable choice of data structures (extending those described in [10, Section 1.2.3]), both
the RGS and the HGS algorithms can be implemented to run in O(L) time and O(nm)
space.

The deletions made by each of the RGS and HGS algorithms have the effect of reducing
the original set of preference lists in I. The reduced lists returned by the RGS (respectively
HGS) algorithm are known as the RGS-lists (respectively HGS-lists). The intersection of
the RGS-lists and the HGS-lists yields the GS-lists. (E.g. the GS-lists for the HR instance
shown in Figure 1 are represented as underlined preference list entries.) The GS-lists in I
have several useful properties, which are summarised below (these properties follow as a
consequence of Lemmas 1.6.2 and 1.6.4, and Theorems 1.6.1 and 1.6.2 of [10]):

Theorem 1. For a given instance of HR,
(i) all stable matchings are contained in the GS-lists;
(ii) in M0, each resident with a non-empty GS-list is assigned to the first hospital on his
GS-list, whilst each resident with an empty GS-list is unassigned;
(iii) in Mz, each hospital hj is assigned the first mj members of its GS-list, where mj =
min{cj , g

h
j } and gh

j is the length of hj’s GS-list.

Given any q ∈ R ∪ H, we denote by GS(q) the set of hospitals or residents (as appro-
priate) that belong to q’s GS-list in I.

Additional important results, attributed to Gale and Sotomayor [5] and Roth [22],
concern residents who are unassigned, and hospitals that are under-subscribed, in stable
matchings in I. These results are collectively known as the Rural Hospitals Theorem [10,
Section 1.6.4], and may be stated as follows:

Theorem 2. For a given instance of HR,
(i) each hospital is assigned the same number of residents in all stable matchings;
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(ii) exactly the same residents are unassigned in all stable matchings;
(iii) any hospital that is under-subscribed in one stable matching is assigned precisely the
same set of residents in all stable matchings.

3 A cloned model

In this section we indicate how an instance of HR may be reduced to an instance of SMI
by “cloning” hospitals. This technique is described in [10, p.38]; see also [23, pp.131-132].
For completeness, we briefly restate the construction here. Let I be an instance of HR.
We form an instance J of SMI by replacing each hospital hj ∈ H by cj women in J ,
denoted by hk

j (1 ≤ k ≤ cj). The preference list of hk
j in J is identical to that of hj in I.

Each resident ri in I corresponds to a man ri in J , and each hospital hj in ri’s list in I
is replaced by h1

j h2
j . . . h

cj

j , in that order, in J . It may then be shown that the stable
matchings in I are in one-one correspondence with the stable matchings in J .

In order to obtain the GS-lists of I, we can model J using the “conflict matrices”
encoding of SMI as presented in [6]. In general AC may be established in O(edr) time,
where e is the number of constraints, d is the domain size, and r is the arity of each
constraint [2]. Due to the cloning technique, the number of women in J is

∑m
j=1 cj =

O(cm), where c = max{cj : hj ∈ H}. Given the construction of the encoding in J
[6], it follows that e = O(nmc), d = O(n + m) and r = 2, so that the time and space
complexities for finding the GS-lists in I using the cloned model are O((n + m)4c) and
O((nmc)2) respectively.

4 A direct CSP-based model

We now present a direct CSP encoding of an HR instance that avoids cloning. Let I be an
instance of HR. For ri ∈ R and hj ∈ H, we use the terminology ri applies (or is assigned)
to hj’s kth post (1 ≤ k ≤ cj) in the case that hj prefers exactly k − 1 members of M(hj)
to ri. Also given a matching M , we denote the resident who is assigned to hj ’s kth post
in M by Mk(hj) (1 ≤ k ≤ |M(hj)|).

We construct a CSP instance J with variables X = {x1, . . . , xn} and Y = {yj,k : 1 ≤
j ≤ m ∧ 0 ≤ k ≤ cj}, whose domains are initially defined as follows:

dom(xi) = {1, 2, . . . , lri } ∪ {m + 1} (1 ≤ i ≤ n)
dom(yj,0) = {0} (1 ≤ j ≤ m)
dom(yj,k) = {k, k + 1, . . . , lhj } ∪ {n + k} (1 ≤ j ≤ m ∧ 1 ≤ k ≤ cj).

For the xi variables (1 ≤ i ≤ n), the value m + 1 corresponds to the case that ri’s GS-list
is empty, whilst the remaining values correspond to the ranks of preference list entries
that belong to the GS-lists. A similar meaning applies to the yj,k variables (1 ≤ j ≤ m,
1 ≤ k ≤ cj), except that the value n+k corresponds to the case that hj ’s GS-list contains
fewer than k entries.

More specificially, if min(dom(xi)) ≥ p (1 ≤ p ≤ lri ), then during the RGS algorithm,
ri applies to his pth-choice hospital or worse, so that in M0, either ri is assigned to such a
hospital or is unassigned. Similarly if max(dom(xi)) ≤ p, then during the HGS algorithm,
ri was offered a post by his pth-choice hospital or better, so that ri is assigned to such a
hospital in Mz.

From the hospitals’ point of view, if min(dom(yj,k)) ≥ q (1 ≤ q ≤ lhj ), then during the

HGS algorithm, hj offers its kth post to its qth-choice resident or worse, so that in Mz, either
hj ’s kth post is filled by such a resident, or is unfilled. Similarly if max(dom(yj,k)) ≤ q, then
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1. yj,k < yj,k+1 (1 ≤ j ≤ m, 1 ≤ k ≤ cj − 1)

2. yj,k ≥ q ⇒ xi ≤ p (1 ≤ j ≤ m, 1 ≤ k ≤ cj , 1 ≤ q ≤ lhj )

3. xi 6= p ⇒ yj,k 6= q (1 ≤ i ≤ n, 1 ≤ p ≤ lri , 1 ≤ k ≤ cj)

4. (xi ≥ p ∧ yj,k−1 < q) ⇒ yj,k ≤ q (1 ≤ i ≤ n, 1 ≤ p ≤ lri , 1 ≤ k ≤ cj)

5. yj,cj
< q ⇒ xi 6= p (1 ≤ j ≤ m, cj ≤ q ≤ lhj )

Figure 3: Constraints for the CSP model of an HR instance.

during the RGS algorithm, some resident ri applied to hj’s kth post, where rank(hj, ri) ≤
q, so that hj ’s kth post is filled by ri or better in M0.

The constraints in J are given in Figure 3 (in the context of Constraints 2-5, p denotes
the rank of hj in ri’s list and q denotes the rank of ri in hj ’s list). An interpretation of
the constraints is now given. Constraint 1 ensures that hj ’s filled posts are occupied by
residents in preference order, and that if post k−1 is unfilled then so is post k. Constraint
2 states that if hj ’s kth post is filled by a resident no better than ri or is unfilled, then ri

must be assigned to a hospital no worse than hj . Constraints 3 and 5 reflect the consistency
of deletions carried out by the HGS and RGS algorithms respectively (i.e. if hj is deleted
from ri’s list, then ri is deleted from hj ’s list, and vice versa). Finally Constraint 4 states
that if ri is assigned to a hospital no better than hj or is unassigned, and hj ’s first k − 1
posts are filled by residents better than ri, then hj ’s kth post must be filled by a resident
at least as good as ri.

It turns out that establishing AC in J yields a set of domains that correspond to the
GS-lists in I. We prove this using three lemmas. The first two lemmas show that the arc
consistent domains correspond to subsets of the HGS-lists and the RGS-lists respectively.
The third lemma shows that the GS-lists correspond to arc consistent domains.

Lemma 3. (i) For a given j (1 ≤ j ≤ m), let q be an integer (q ≤ n) such that q ∈
dom(yj,k) for some k (1 ≤ k ≤ cj) after AC propagation. Then the resident ri at position
q on hospital hj’s preference list belongs to the HGS-list of hj.
(ii) For a given i (1 ≤ i ≤ n), let p be an integer (p ≤ m) such that p ∈ dom(xi) after AC
propagation. Then hospital hj at position p on resident ri’s preference lists belongs to the
HGS-list of ri.

Proof. The HGS-lists are constructed as a result of the deletions made by the HGS al-
gorithm. We show that the corresponding deletions are made to the variables’ domains
during AC propagation.

The following proof uses induction on the number of iterations of the main loop during
an execution E of the HGS algorithm to show that, if iteration z consists of some hospital
hj offering some resident ri its kth post, then xi ≤ p, proving (ii) above, yj,k ≥ q, and
yv,b 6= t (1 ≤ b ≤ cv), proving (i) above, for each hospital hv such that rank(ri, hv) > p,
where t = rank(hv, ri), p = rank(ri, hj) and q = rank(hj , ri).

First consider the case where z = 1. On the first iteration of the main loop, hospital
hj offers resident ri its first post, where q = rank(hj, ri) = 1 and p = rank(ri, hj). By
the domain initialisations, yj,k ≥ 1 (1 ≤ k ≤ cj), therefore propagation of Constraint 2
yields xi ≤ p. Finally, consider each hospital hv where rank(ri, hv) > p. By propagation
of Constraint 3 we obtain yv,b 6= t (1 ≤ b ≤ cv), where t = rank(hv, ri), giving the required
result.

Now suppose that z = d > 1, and that the result holds for z < d. We consider the two
cases where (i) k = 1 and (ii) k > 1.
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Case (i). Suppose that k = 1. Then hj offers its first post to the resident ri such that
rank(hj , ri) = q. If q = 1, the proof is similar to that of the base case. Hence suppose that
q > 1. Let ru2

be any resident such that rank(hj , ru2
) = t2 < q. Then ru2

has been deleted
from hj’s list. Let s2 = rank(ru2

, hj). Then ru2
must have received an offer from some

hospital hv whom he prefers to hj , where rank(ru2
, hv) = s3 < s2. Let t3 = rank(hv, ru2

).
Then hv offered its ath post, for some a (1 ≤ a ≤ cv), to ru2

before the dth iteration. By
the induction hypothesis, it follows that yv,a ≥ t3, xu2

≤ s3 and yj,k 6= t2 (1 ≤ k ≤ cj).
However ru2

was arbitrary, and hence yj,k 6= t2 for all t2 such that 1 ≤ t2 ≤ q − 1. Hence
yj,k ≥ q. The rest of the proof is similar to that of the base case.

Case (ii). Now suppose that k > 1. Let ru1
be the last resident to which hj offered its

(k − 1)th post. This occurred during the gth iteration for some g (g < d). Suppose that
rank(hj , ru1

) = t1 < q. Then by the induction hypothesis we have yj,k−1 ≥ t1, therefore
propagation of Constraint 1 yields:

yj,k ≥ t1 + 1. (1)

If q = t1 + 1, then the rest of the proof is similar to that of the base case. Hence suppose
that q > t1 +1. Let ru2

be any resident such that rank(hj , ru2
) = t2 (t1 + 1 ≤ t2 ≤ q − 1).

Then ru2
has been deleted from hj ’s list. Now suppose rank(ru2

, hj) = s2. Then ru2
must

have received an offer from some hospital hv whom he prefers to hj , where rank(ru2
, hv) =

s3 < s2. Let t3 = rank(hv, ru2
). Then hv offered its ath post, for some a (1 ≤ a ≤ cv),

to ru2
before the dth iteration. By the induction hypothesis, it follows that yv,a ≥ t3,

xu2
≤ s3 and yj,k 6= t2 (1 ≤ k ≤ cj). However, ru2

was arbitrary, so that:

yj,k 6= t2 for t1 + 1 ≤ t2 ≤ q − 1. (2)

Thus from Inequalities 1 and 2, we have yj,k ≥ q. The rest of the proof is similar to that
of the base case.

Lemma 4. (i) For a given i (1 ≤ i ≤ n), let p be an integer (p ≤ m) such that p ∈ dom(xi)
after AC propagation. Then hospital the hj at position p on resident ri’s preference lists
belongs to the RGS-list of ri.
(ii) For a given j (1 ≤ j ≤ m), let q be an integer (q ≤ m) such that q ∈ dom(yj,k) for
some k (1 ≤ k ≤ cj) after AC propagation. Then the resident ri at position q on hj’s
preference list belongs to the RGS-list of ri.

Proof. The RGS-lists are constructed as a result of the deletions made by the RGS al-
gorithm. We show that the corresponding deletions are made to the variables’ domains
during AC propagation.

The following proof uses induction on the number of iterations of the main loop during
an execution E of the RGS algorithm to show that, if the z th iteration of the main loop
involves some resident ri applying to some hospital hj , and at the termination of this
same iteration, residents ri1 , . . . , ridj

are assigned to hj, where dj ≤ cj , then yj,k ≤ qk

(1 ≤ k ≤ dj), where qk = rank(hj, ri) and 0 < q1 < q2 < . . . < qdj
, and also xik ≥ pik ,

where pik = rank(rik , hj) (1 ≤ k ≤ dj). We use this result (in the case that dj = cj) to
show that (ii) above is satisfied, and then propagation of Constraint 5 to show that (i) is
also satisfied.

First consider the base case where z = 1. Then during the first iteration of the main
loop, some resident ri applies for the first post at hospital hj , where p = rank(ri, hj) = 1,
and q = rank(hj , ri). Thus xi ≥ p (by construction of the xi variables’ domains), and
yj,k−1 < q, since k = 1 and yj,0 = 0 by definition. Therefore propagation of Constraint 4
yields yj,k ≤ q as required.
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Now suppose that z = d > 1, and that the result holds for z < d. Then during the dth

iteration, some resident ri applies to some hospital hj , and we let dj denote the number of
residents assigned to hj just before ri applies, where dj ≥ 0. We consider the cases where
(i) p = 1 and (ii) p > 1.

Case (i). Suppose that p = 1, and therefore xi ≥ p by initialisation of the variables’
domains. We firstly note that if dj = 0, the proof is similar to that of the base case.
Now suppose that dj ≥ 1. Then there exists an iteration g < d of the main loop, where
some resident applies to hj , such that iteration g′ of the main loop, for g < g′ < d, does
not involve a resident applying to hj . Then at the end of the gth iteration, residents
ri1 , . . . , ridj

are assigned to hj , and by the induction hypotheses, yj,k ≤ qk (1 ≤ k ≤ dj),

where qk = rank(hj, rik) and 0 < q1 < q2 < . . . < qdj
. Now consider the two subcases

where (a) dj < cj and (b) dj = cj .

Subcase (a). Suppose that dj < cj . If q > qdj
, then at the dth iteration, ri is

assigned to hj ’s (dj + 1)th post. From above we have that yj,dj
≤ qdj

< q and since
xi ≥ p, propagation of Constraint 4 yields yj,dj+1 ≤ q, as required. Now suppose that
q < qdj

. Then there exists b (1 ≤ b ≤ dj) such that qb−1 < q < qb (for convenience

we define q0 = 0). Therefore at the dth iteration, ri is assigned to hj’s bth post. Thus
from above yj,b−1 ≤ qb−1 < q, and since xi ≥ p, propagation of Constraint 4 yields
yj,b ≤ q. Furthermore, yj,b ≤ q < qb, and by the induction hypothesis xib ≥ pib ,
where pib = rank(rib , hj). Again propagation of Constraint 4 yields yj,b+1 ≤ qb.
Continuing in this manner we obtain yj,k ≤ qk−1 for all k (b + 1 ≤ k ≤ dj + 1), as
required.

Subcase (b). Now suppose that dj = cj . Then when ri applies to hj at the dth

iteration, hj becomes oversubscribed. Hence during the gth iteration of the main
loop, hj must have become full. When this happens as part of the RGS algorithm,
the worst assigned resident is identified, and all its successors on hj ’s list are deleted.
It follows that q < qcj

. Also, during the dth iteration, resident ridj
is rejected from

hj . The remainder of the proof is similar to that used in Subcase (a) when q < qdj
.

Case (ii). Now suppose that p > 1. Let hv be a hospital such that rank(ri, hv) = s1 < p.
Let t1 = rank(hv, ri). Then hv has been deleted from ri’s list during the execution of
the RGS algorithm. This can only happen if hv became full at the gth iteration (for
some g < d) of the RGS algorithm. At this point the worst resident ru assigned to hv is
identified, where rank(hv, ru) = t2 < t1. Since hv is full, ru is assigned to hv’s cth

v post at
the end of gth iteration, so by the induction hypothesis yv,cv ≤ t2 < t1. Thus propagation
of Constraint 5 yields xi 6= s1. But hv was arbitrary and hence xi 6= s1 for all s1 such that
1 ≤ s1 ≤ p − 1, so xi ≥ p. The rest of the proof is similar to that used in Case (i).

To demonstrate that the GS-lists give rise to arc consistent domains, we define some
additional notation. For each j (1 ≤ j ≤ m), define Sj = {rank(hj , ri) : ri ∈ GS(hj)}. Let
dj denote the number of residents assigned to hospital hj in M0 (or indeed in any stable
matching in I, by Theorem 2(i)). For each k (1 ≤ k ≤ dj), let qj,k = rank(hj,Mzk

(hj)) and
tj,k = rank(hj,M0k

(hj)). The GS-domains for the variables in J are defined as follows:

dom(xi) =

{

{rank(ri, hj) : hj ∈ GS(ri)}, if GS(ri) 6= ∅
{m + 1}, otherwise

dom(yj,k) =

{

{s ∈ Sj : qj,k ≤ s ≤ tj,k}, if 1 ≤ k ≤ dj

{n + k}, if dj + 1 ≤ k ≤ cj .

8



Lemma 5. The GS-domains are arc consistent in J .

Proof. First consider Constraint 1, and suppose that k < dj . Then min(dom(yj,k+1)) =
qj,k+1 > qj,k = min(dom(yj,k)). Now suppose that k = dj < cj . Then yj,k+1 = n+dj +1 >
n ≥ yj,k. Finally suppose that dj < k < cj . Then yj,k+1 = n + dj + 1 > n + dj = yj,k.

Now consider Constraint 2 and suppose that yj,k ≥ q. Then during the execution of
the HGS algorithm either (i) hospital hj offered the resident ri at position q its ath post
for some a (1 ≤ a ≤ cj), or (ii) the pair (ri, hj) was deleted, where p = rank(ri, hj) and
q = rank(hj , ri). Now consider the two cases below:
Case (i). If hj offered resident ri its ath post as part of the HGS algorithm, then ri will
delete all those hospitals ranked lower than hj on his preference list, i.e. xi ≤ p.
Case (ii). If the pair (ri, hj) is deleted, then resident ri must have received an offer from a
hospital hv that he prefers to hj , where rank(ri, hv) = s < p. Since ri deletes all hospitals
in his preference list ranked below hv when he receives such an offer, it follows that xi ≤ s.
In particular xi ≤ p.

Consider Constraint 3, and suppose that xi 6= p. Then hospital hj has been deleted
from resident ri’s preference list, where rank(ri, hj) = p, by either the RGS or HGS
algorithm. The same algorithm ensures that the preference lists are consistent and removes
ri from the list of hj , i.e. yj,k 6= q (1 ≤ k ≤ cj), where q = rank(hj , ri).

For Constraint 4, suppose that xi ≥ p and yj,k−1 < q, where p = rank(ri, hj) and
q = rank(hj , ri). If tj,k ≤ q, then yj,k ≤ q, since yj,k ≤ tj,k by definition, as required. Now
suppose for a contradiction that tj,k > q. Then tj,a < q for 1 ≤ a ≤ k − 1, and tj,a > q
for k ≤ a ≤ cj . Hence ri is not assigned to hj in M0, so (ri, hj) was deleted as part of
the RGS algorithm, since either ri is unassigned in M0 or prefers hj to M0(ri). As (ri, hj)
has been deleted, hj must have become full during an execution of RGS algorithm with
residents that it prefers to ri. It follows that tj,cj

< q, a contradiction. Hence tj,k ≤ q.
Finally consider Constraint 5 and suppose that yj,cj

< q. Then resident ri has been
deleted from hospital hj ’s preference list, where rank(hj , ri) = q, by either the HGS or
RGS algorithm. The same algorithm ensures that the preference lists are consistent and
removes hj from the list of ri, i.e. xi 6= p, where p = rank(ri, hj).

The following result follows by Lemmas 3, 4 and 5, and the fact that AC algorithms
find the unique maximal set of arc consistent domains [2].

Theorem 6. Let I be an instance of HR, and let J be a CSP instance obtained by the en-
coding of this section. Then the domains remaining after AC propagation in J correspond
exactly to the GS-lists in I.

For example, in the context of the HR instance given in Figure 1, the GS-domains
for x2, y1,1 and y1,2 are {1, 3, 4}, {1} and {3, 4} respectively. In general, following AC
propagation in J , matchings M0 and Mz may be obtained as follows. Let xi ∈ X. If
xi = m + 1, resident ri is unassigned in both M0 and Mz. Otherwise, in M0 (respectively
Mz), ri is assigned to the hospital hj such that rank(ri, hj) = p, where p = min(dom(xi))
(respectively p = max(dom(xi))).

In the context of the time complexity function for establishing AC as mentioned in
Section 3, for this encoding we have e = O(Lc) and d = O(n + m) (recall that L is the
total length of the residents’ preference lists in I). The constraints shown in Figure 3 may
be revised in O(1) time, assuming that upper and lower bounds for the variables’ domains
are maintained throughout propagation. It follows by [26] that the time complexity for
establishing AC in this model is O(Lc(n + m)). Since the space complexity is O(Lc), the
model presented in this section is more efficient than the cloned model in terms of both
time and space.
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The next result shows that the encoding presented above can be used to enumerate
all the solutions of I in a failure-free manner using AC propagation with a value-ordering
heuristic. Before presenting this result, we firstly remark that if a variable xi has two
values in its domain following AC propagation, then neither value can be m + 1. For, if
m + 1 ∈ dom(xi), then ri is unassigned in Mz, for otherwise some hospital would have
offered ri a post during an execution of the HGS algorithm, resulting in the removal of
value m + 1 from xi’s domain. Now let p = min(dom(xi)) and suppose that p ≤ m. Then
ri applies to some hospital during an execution of the RGS algorithm, so that ri is assigned
in M0. This is a contradiction to Theorem 2(ii). In what follows, for any persons p and q
in I, q is a stable partner of p if p and q are partners in some stable matching in I.

Theorem 7. Let I be an instance of HR and let J be a CSP instance obtained by the
encoding of this section. Then the following search process enumerates all solutions in I
without repetition and without ever failing due to an inconsistency:

• AC is established as a preprocessing step, and after each branching decision including
the decision to remove a value from a domain;

• if all domains are arc consistent and some variable xi has two or more values in its
domain then search proceeds by setting xi to the minimum value p in its domain.
On backtracking, the value p is removed from the domain of xi;

• when a solution is found, it is reported and backtracking is forced.

Proof. Let T be the search tree as defined above. We prove by induction on T that each
node in T corresponds to an arc consistent CSP instance J ′, which in turn corresponds to
the GS-lists I ′ for an HR instance derived from I such that any stable matching in I ′ is
also stable in I. To prove this we first show that it holds for the root node of T , then we
assume it is true at any branch node u in T and show that it is true for each child of u.

The root node of T corresponds to the CSP instance J ′ with arc consistent domains,
where J ′ is obtained from J by AC propagation. Therefore by Theorem 6, J ′ corresponds
to the GS-lists I ′ for the HR instance I. Using standard properties of the GS-lists [10,
Lemmas 1.6.2 and 1.6.4], any stable matching in I ′ is also stable in I.

Now suppose that we have reached a branching node u of T . By the induction hy-
pothesis we have, associated with u, a CSP instance J ′ with arc consistent domains.
Furthermore, J ′ corresponds to the GS-lists I ′ for an HR instance derived from I, such
that any stable matching in I ′ is stable in I. Then since u is a branching node, there exists
a variable xi (1 ≤ i ≤ n) such that the domain of xi contains at least two values. Hence in
T , u has two children, namely v1 and v2, each having an associated CSP instance J ′

1 and
J ′

2 derived from J ′ in the following way. In J ′
1, xi is assigned the smallest value p (which

corresponds to the rank of ri’s best stable partner hj in I ′) in its domain, and in J ′
2, p is

removed from xi’s domain.
First consider instance J ′

1. During AC propagation in J ′
1 we consider the revisions

made by Constraint 3 when xi is assigned the value p. Let hv be a hospital such that
rank(ri, hv) > p. Then AC propagation in J ′

1 forces yv,k 6= t (1 ≤ k ≤ cv), where
t = rank(hv, ri). After such revisions, J ′

1 corresponds to an HR instance I ′
1 obtained from

I ′ by deleting the pairs (ri, hv), where v 6= j. Now let M be any stable matching in I ′
1.

Suppose that the pair (r, h) blocks M in I ′. If h ∈ PL(r) in I ′1, then (r, h) blocks M in
I ′1, so (r, h) must have been deleted in I ′

1. Hence (r, h) = (ri, hv) for some hv such that
rank(ri, hv) > p. Now suppose that M0 denotes the resident-optimal stable matching in
I ′. In M0, each resident obtains his best possible stable partner in I ′, hence (ri, hj) ∈ M0.
It can be easily verified that M0 is also stable in I ′1. Theorem 2(ii) applied to I ′1 therefore
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implies that ri is matched in M . In particular, (ri, hj) ∈ M , as hj is the only hospital
on ri’s list in I ′1. Thus (ri, hv) cannot block in M in I ′ after all, as ri prefers hj to hv.
Therefore M is stable in I ′, and hence by the induction hypothesis M is also stable in
I. So at node v1, AC is established in J ′

1 giving instance J ′′
1 which we associate with this

node. By Theorem 6, J ′′
1 corresponds to the GS-lists I ′′

1 of HR instance I ′1. Using the
properties of the GS-lists given in [10, Lemmas 1.6.2 and 1.6.4], we have that any stable
matching in I ′′1 is stable in I ′1, which in turn is stable in I by the preceding argument.

We now consider J ′
2. Let q = rank(hj , ri). Then during AC propagation in J ′

2 we
consider the revisions made when p is removed from the domain of xi. Propagation of
Constraint 3 forces yj,k 6= q (1 ≤ k ≤ cj). Then propagation of Constraint 4 gives yj,1 ≤ q.
However yj,1 6= q, so yj,1 < q. Hence further propagation of Constraint 4 gives yj,2 ≤ q,
and hence yj,2 < q. Continuing in this way we obtain yj,k < q, for 1 ≤ k ≤ cj . Hence
after such revisions J ′

2 corresponds to an HR instance I ′
2 obtained from I ′ by deleting the

pairs (ru, hj), where rank(hj , ru) ≥ q. Now let M be any stable matching in I ′
2. Suppose

that (r, h) blocks M in I ′. Then (r, h) = (ru, hj), for some ru where rank(hj , ru) ≥ q,
for otherwise (r, h) blocks M in I ′

2. Consider Mz, the hospital-optimal stable matching in
I ′, where each resident obtains his worst possible stable partner in I ′ [10, Theorem 1.6.1].
Then Mz is a matching in I ′2, since (ri, hj) /∈ Mz, and hence hj is full in Mz and prefers
its worst assignee to ri, for otherwise (ri, hj) blocks Mz in I ′. Clearly Mz is stable in I ′′2 .
By Theorem 2 applied to I ′2, hj must be full in M . Also by construction of I ′

2, hj prefers
its worst assignee in M to ri. Hence (ru, hj) does not block M in I ′ after all. Thus M is
stable in I ′, and hence by the induction hypothesis M is also stable in I. Now at node v2,
AC is established in J ′

2 giving instance J ′′
2 which we associate with this node. The rest of

the proof is similar to that used for instance J ′
1 above. Hence by induction the claim is

true for all nodes in T .
We can now see that the branching process never fails due to an inconsistency – setting

the variable xi to p leaves the resident-optimal stable matching, while excluding p always
leaves the hospital-optimal stable matching. Also, since we explore all areas of the search
space with the branching process, all possible stable matchings for an HR instance I are
listed. We can also prove that there are no repeated solutions. First observe that the
leaf nodes of T correspond to the stable matchings in I. Suppose for a contradiction that
leaf nodes l1 and l2 correspond to the same stable matching M in I. Let b be the lowest
common ancestor of l1 and l2 in T . Without loss of generality, assume l1 is reached by
taking the path from the left child of b, and l2 is reached by taking the path from the
right child of b. We know that node b corresponds to the GS-lists I ′ for a particular HR
instance derived from I, such that some variable xi has at least two values in its domain.
This means that in I ′ there exists some resident ri who has a GS-list of length greater
than one. Then the left child of b is obtained by forcing ri to be assigned to the hospital
hj at the head of his list in I ′, and similarly the right child of b is obtained by removing
hj from ri’s list. So l1 corresponds to a stable matching M1 where (ri, hj) ∈ M1, and l2
corresponds to a stable matching M2 where (ri, hj) /∈ M2, i.e. M1 6= M2. Therefore we
have that each leaf node corresponds to a unique stable matching.

5 A specialised binary constraint

We now present a specialised binary constraint HR2 that acts between an integer variable,
representing a resident, and an object of type Hospital, enforcing stability and consistency.
The model of this section involves an HR2 constraint between each acceptable (resident,
hospital) pair.
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1. xAppliesTo(y,yRx) {
2. r = yRx;
3. for (i = 1 to y.cap)
4. if (y.post[i] = r)
5. return;
6. if (y.post[i] > r)
7. swap(y.post[i],r);
8. if (y.post[y.cap] < ∞)
9. setMax(y.pref,y.post[y.cap]); }

1. getLastChoice(y) {
2. choice = getMin(y.pref);
3. for (i = 2 to y.cap)
4. choice = getNext(y.pref,choice);
5. return choice; }

Figure 4: (a) Method xAppliesTo. (b) Method getLastChoice.

5.1 Preliminaries

Our model involves a constrained integer variable xi corresponding to each resident ri ∈ R,
as in Section 4, whose domain is initially defined as before, with similar meanings for the
domain values. In addition, we associate a Hospital object yj with each hospital hj ∈ H,
with the following attributes:

• cap : an integer constant equal to cj (the capacity of hospital hj).

• post : an array of integers of length cap, which stores assignments to hospital posts.
Each array element is initialised to ∞ (i.e. the largest integer).

• pref : a constrained integer variable whose initial domain is {1, 2, . . . , lhj } (corre-
sponding to the ranks of residents in hj ’s list), plus the value n + 1 (corresponding
to hj being under-subscribed).

We also assume that we have the following functions, each being of O(1) complexity, that
operate over constrained integer variables:

• getMin(v) delivers the smallest value in dom(v).

• getMax(v) delivers the largest value in dom(v).

• getNext(v, a) returns the smallest value greater than a in dom(v), assuming that
a < getMax(v), otherwise the function returns a.

• setMax(v, a) sets the maximum value in dom(v) to be min(getMax(v), a).

• remV al(v, a) removes the value a from dom(v).

We assume that constraints are processed by an arc consistency algorithm such as AC5
[26] or AC3 [15]. That is, the algorithm has a stack of constraints that are awaiting
revision, and if a variable v loses a value then all constraints involving v are added to the
stack along with the method that must be applied to those constraints (so that the stack
contains methods and their arguments). Furthermore, we also assume that a call to a
method, together with its argument, is only added to the stack if it is not already on the
stack. In our pseudocode below we use the . (dot) operator as an attribute selector, such
that a.b delivers the b attribute of a.

The xAppliesTo method of Figure 4(a) is called when a resident ri (represented by
variable x) applies to a hospital hj (represented by object y). In the pseudocode we assume
that yRx represents rank(hj , ri). The method stores all assignments involving hospital
hj in strict preference order, with the most-preferred resident in y.post[1]. The method
loops through each element of the y.post array (lines 3 to 7). If ri is already in the list
of hj ’s assignees then no action is taken (lines 4 and 5). If the current value of r (which
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1. deltaX(C) {
2. if getMin(C.x) = C.xRy
3. xAppliesTo(C.y,C.yRx);
4. if getMax(C.x) < C.xRy
5. remVal(C.y.pref,C.yRx); }

1. deltaY(C) {
2. if C.yRx ≤ getLastChoice(C.y)
3. setMax(C.x,C.xRy);
4. if getMax(C.y.pref) < C.yRx
5. remVal(C.x,C.xRy); }

Figure 5: (a) Method deltaX(C). (b) Method deltaY(C).

is initially rank(hj , ri)) is less then the value in y.post[i] (line 6), then the value in r is
swapped with the value in y.post[i] (line 7) and the loop continues, so that the value of r
is inserted in order into the y.post array. On termination of the loop, if the last element of
y.post has been assigned a value (line 8), then hj is assigned cj residents, consequently we
can set the maximum value of y.pref (line 9). This method contains only one loop which
iterates cj times, and all methods used are of O(1) complexity. Hence the complexity of
xAppliesTo is O(c).

A hospital hj (represented by object y) offers a post to a resident ri (represented
by variable x) if ri occupies one of the first cj undeleted entries in hj ’s preference list.
Correspondingly, y offers a post to x if rank(hj, ri) is one of the first y.cap values in
dom(y.pref). To test for this condition we use the getLastChoice method of Figure 4(b),
which returns hj ’s rank of the worst resident that it can currently offer a post to. Firstly
the lowest value in dom(y.pref) is found (line 2). The loop then iterates to find the r th-
largest rank in dom(y.pref), where r = y.cap (lines 3 and 4). This value is then returned
via variable choice (line 5). The time complexity of this method is again O(c).

5.2 The HR2 constraint

A binary Hospitals / Residents constraint (HR2) is an object that acts between a variable
x (representing a resident ri ∈ R) and an object y (representing a hospital hj ∈ H), and
has attributes x, y, xRy and yRx. Here, yRx is as above (representing rank(hj , ri)),
whilst xRy represents rank(ri, hj).

Therefore a constraint C between xi and yi is constructed via a call to the function
C = HR2(xi, rank(ri, hj), yj, rank(hj , ri)). This will construct a constraint C such that
C.x = xi, C.y = yj, C.xRy = rank(ri, hj) and C.yRx = rank(hj , ri). To construct our
encoding we would then make calls to HR2 for all i and j where ri and hj find each other
acceptable, thus creating O(nm) constraints.

Three methods, deltaX, deltaY , and init, act on a constraint C and achieve arc
consistency between a resident x and hospital y across C. The deltaX method, shown
in Figure 5(a), is called when a value is removed from dom(x). If ri’s most-preferred
undeleted hospital is hj (line 2) then ri applies to hj (line 3). In the call to xAppliesTo, ri

becomes assigned to hj if the assignment has not already been made (line 7 of xAppliesTo),
and if hj is now full, then the tail of hj ’s preference list is cropped (line 9 of xAppliesTo),
and this will in turn generate a call to deltaY (described below). If ri prefers his worst
undeleted hospital to hj (line 4), then hj has been deleted from ri’s preference list, and
consequently ri is deleted from hj ’s list (line 5) – this in turn will generate a call to deltaY ,
which is now described.

The deltaY method, shown in Figure 5(b), is called when a value is removed from
dom(y.pref). If resident ri is among the first cj undeleted residents on hj’s preference
list (line 2), then ri need consider no hospital that it finds inferior to hj (line 3). This
action may delete values from the domain of x and subsequently generate calls to deltaX.
If hj prefers its worst undeleted resident to ri (line 4), then ri has been deleted from
hj ’s preference list, and consequently hj is deleted from ri’s list (line 5). This may then
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generate calls to deltaX. Note also that lines 4 and 5 of deltaY are symmetrical to lines
4 and 5 in deltaX.

Finally, the init(C) method is called to start the process of making constraint C arc
consistent, and makes calls to the deltaX(C) and deltaY (C) methods.

5.3 Complexity

The deltaX method has no loops and thus its time complexity is that of the most complex
method it calls, which is the xAppliesTo method with a complexity of O(c), consequently
deltaX has a complexity of O(c). Similarly the complexity of the deltaY method is that
of the most complex method it calls, which is getLastChoice, with a complexity of O(c).
Both of the methods called by init thus have a time complexity of O(c), and hence init’s
complexity is also O(c).

Each HR2 constraint C has three methods. The init(C) method will be called only
once and is of complexity O(c). The deltaX(C) method can at worst be called once for
each value in the domain of C.x. As the maximum length of a resident’s preference list
is m, and deltaX(C) has a complexity of O(c), the combined worst case complexity of all
possible calls to deltaX(C) is O(mc). Similarly deltaY (C) can at worst be called once for
each of the n possible values in the domain of C.y.pref . As deltaY (C) has a complexity
of O(c), the combined worst case complexity of all possible calls to deltaY (C) is O(nc).
Therefore the overall worst case time complexity for a single constraint is O(c(m + n)),
and as there are L of the HR2 constraints, the overall time complexity of enforcing arc
consistency on this model is O(Lc(n + m)), which is the same as the time complexity for
the model of Section 4. Furthermore, as there are O(nm) HR2 constraints, each of size
O(1), the space complexity of a model using the HR2 constraint is O(nm).

6 A specialised n-ary constraint

We now present a specialised n-ary constraint HRN for the Hospitals / Residents problem.
This constraint acts between an array of integer variables, x[1], . . . , x[n], representing the
residents (as before), and an array of objects of type Hospital, y[1], . . . , y[m], representing
the hospitals (again, as before). (Strictly speaking the arity of the HRN constraint is
n + m, but for simplicity we refer to it as an n-ary constraint.) A model based on HRN
requires only one constraint for the whole problem. Henceforth we assume that we have
access to the hospital class and all the same functions as with the binary constraint defined
in Section 5.

6.1 The Constraint

An n-ary Hospitals / Residents constraint (HRN) is an object that acts between an array
of residents and an array of hospitals, and has the following attributes:

• x is an array of constrained integer variables representing the residents, such that
resident ri ∈ R is represented by x[i].

• y is an array of objects of type Hospital representing the hospitals, such that hospital
hj ∈ H is represented by y[j].

• xRy is an n × m integer array such that xRy[i][j] = rank(ri, hj) if ri finds hj

acceptable, and is 0 otherwise.

• yRx is an m × n integer array such that yRx[j][i] = rank(hj, ri) if hj finds ri

acceptable, and is 0 otherwise.
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1. deltaX(C,i,a) {
2. if (a < getMin(C.x[i]))
3. k = getMin(C.x[i]);
4. j = C.xpl[i][k];
5. xAppliesTo(C.y[j],C.yRx[j][i]);
6. else
7. j = C.xpl[i][a];
8. remVal(C.y[j].pref,C.yRx[j][i]) }

1. deltaY(C,j,a) {
2. if (a > getMax(C.y[j].pref))
3. i = C.ypl[j][a];
4. remVal(C.x[i],C.xRy[i][j]);
5. else
6. k = getMin(C.y[j].pref);
7. for (z=1 to C.y[j].cap)
8. i = C.ypl[j][k];
9. setMax(C.x[i],C.xRy[i][j])
10. k = getNext(C.y[j].pref,k) }

Figure 6: (a) Method deltaX. (b) Method deltaY .

• xpl is an n × m integer array such that, for each i (1 ≤ i ≤ n) and k (1 ≤ k ≤ lri ),
xpl[i][k] = j if and only if rank(ri, hj) = k.

• ypl is an m × n integer array such that, for each j (1 ≤ j ≤ m) and k (1 ≤ k ≤ lhj ),
ypl[j][k] = i if and only if rank(hj , ri) = k.

Again, we have three methods that act on an n-ary constraint C, namely deltaX, deltaY
and init. The deltaX method, shown in Figure 6(a), is called when a value a, where
a < m + 1, is removed from dom(x[i]). If a is the rank of a hospital hk that ri prefers to
his most-preferred undeleted hospital (line 2) (i.e. ri has been rejected by hk), the index
j of ri’s new favourite hospital is found (lines 3 and 4) and ri applies to hj (line 5). This
may result in a subsequent call to deltaY via the xAppliesTo method. If the rank of ri’s
most-preferred undeleted hospital is not larger than a, the hospital hj at position a of ri’s
list is found (line 7), and ri is deleted from hj ’s preference list (line 8). This will generate
a call to deltaY (C, j, C.yRx[j][i]), which is now described.

The deltaY method, shown in Figure 6(b), is called when a value a, where a < n+1, is
removed from dom(y[j].pref). If the removed value a is larger than the rank of hj ’s worst
undeleted resident (line 2), then the resident ri at position a of hj ’s list is found (line 3),
and hj is deleted from ri’s preference list (line 4). This will in turn generate a call to
deltaX(C, i, C.xRy[i][j]). If a is not larger than the rank of hj’s worst undeleted resident
(line 5), then hj will offer a post to the first cj undeleted residents on its list (lines 6 to 10).
Lines 6 and 8 identify the most-preferred undeleted resident ri and his corresponding rank
k in hj ’s list. All hospitals inferior to hj are then deleted from ri’s list (line 9). We then
identify the next undeleted resident in hj’s list (line 10) whilst respecting hj ’s capacity
(controlled by the loop condition in line 7). Essentially, lines 6 to 10 reconstruct the offers
from hospital hj following the removal of a from dom(y[j].pref). Note that the call to
setMax in line 9 may in turn generate calls to deltaX. Therefore the propagation of this
constraint results from the mutual recursion between methods deltaX and deltaY .

Finally the init method makes calls to deltaX(C, i, 0) for all i (1 ≤ i ≤ n), and
deltaY (C, j, 0) for all j (1 ≤ j ≤ m).

6.2 Complexity

The deltaX method of this section contains no loops, but calls the xAppliesTo() method
which has a complexity of O(c), and thus deltaX also has a complexity of O(c). The
deltaY method contains only one loop, which iterates cj times, and all methods used run
in O(1) time. Therefore the time complexity of deltaY is also O(c). The deltaX method
can be called at most once for each value in the domain of an x[i] variable, and similarly
deltaY can be called at most once for each value in the domain of the pref attribute of a
y[j] variable. Therefore we have a time complexity of O(Lc). Hence the time complexity
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Model: Cloned CBM HR2 HRN

Time: O((n + m)4 c) O(Lc(n + m)) O(Lc(n + m)) O(Lc)

Space: O((nmc)2 ) O(Lc) O(nm) O(nm)

Table 1: Summary of time and space complexities for the HR models of this paper.

for the HRN constraint improves those of the models presented in earlier sections. The
space complexity of this encoding is dominated by the ranking arrays xRy and yRx, and
is O(nm), though comparable to that of the model presented in Section 5. However, if
preference lists are short we may economically trade time for space, or use some sparse
data structure, or a hash table to map preferences to indices.

Table 1 summarises the time and space complexities for the HR models in this paper
(the columns refer respectively to the models in Sections 3, 4, 5 and 6).

6.3 Searching for all solutions, using HR2 or HRN

Arc consistency processing on the HR2 and HRN constraints yields the GS − domains
as defined in Section 4. A search process need only consider the resident variables (and
need not instantiate the hospital variables), following a similar process to that outlined
in Theorem 7. Because the search process will backtrack, the variable y[j].post would
need to be reversible, in order that values corresponding to assignment information can
be restored on backtracking.

Until now we have assumed that values are removed only as a result of arc consistency
processing. This is not true with the backtracking search. Consequently we require minor
modifications to our methods. For the HR2 constraint the deltaX method needs to con-
sider the case when C.xRy < getMin(C.x), i.e. ri prefers hj to each undeleted hospital on
his preference list. Therefore to prevent (ri, hj) being a blocking pair, hj must be full and
must prefer its worst resident to ri, i.e. we then make a call to setMax(C.y, C.yRx − 1).

For the n-ary constraint HRN, deltaX must consider the case where the deleted value
a is less than the smallest remaining value in the domain of C.x[i], i.e. a < getMin(C.x[i]).
Therefore again, to prevent (ri, hj) being a blocking pair (where j = C.xpl[i][a]), we make
the call setMax(C.y[j].pref, C.yRx[j][i] − 1).

7 Computational experience

The four encodings presented in this paper were implemented using the JSolver toolkit,
i.e. the Java version of ILOG Solver, in order to carry out an empirical analysis. The
objective was to compare the runtimes for these models as applied to randomly-generated
and real-world data. Our studies were carried out using a 2.8Ghz Pentium 4 processor
with 512 Mb of RAM, running Microsoft Windows XP Professional and Java2 SDK 1.4.2.6
with an increased heap size of 512 Mb.

Random problem instances were generated with varying number of residents n, number
of hospitals m, capacity c (uniform for each hospital), and a fixed residents’ preference
list size of 10. Hence we classify problems via the triple n/m/c. Instances were generated
as follows. First, a uniformly random preference list of length 10 was produced for each
resident, then a preference list was produced for each hospital by randomly permuting
their acceptable residents. A sample size of 100 was used for each value of n/m/c.

Table 2 shows the mean time in seconds to construct the model and find all solutions,
for the each of the four models applied to random instances with varying n/m/c attributes.
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50/13/4 100/20/5 500/63/8 1k/100/10 5k/250/20 20k/550/37 50k/1.2k/42

Cloned 5.84 − − − − − −
CBM 0.24 0.36 1.69 4.75 − − −
HR2 0.15 0.18 0.42 0.88 9.91 112 −
HRN 0.12 0.15 0.19 0.22 0.53 1.42 4.2

Table 2: Average computation times in seconds to find all solutions to 100 randomly-
generated HR instances with attributes n/m/c.

A table entry of − signifies that there was insufficient space to create the model of that
size using the specified encoding. Table 3 shows the time to establish AC (shown as “AC”)
and find all solutions (shown as “ALL”) to three anonymised HR instances arising from
SPA [11]. The first column indicates n/m/c, where c is the average hospital capacity; also
lri ≤ 5 in each case. (For each instance, the Cloned model ran out of memory.)

The results indicate that the HRN model was typically able to handle larger prob-
lem instances than the other models, and the average runtime was faster than for the
other models in all cases. The HRN model was also applied to instances as large as
500k/11.8k/85, finding all solutions on average in 35 seconds. As mentioned in the In-
troduction, instances of the NRMP typically involve around 31,000 residents and 2,300
hospitals, with residents’ preference lists of size between 4 and 7 [19]. The HRN model
finds all solutions to problems of size 200k/3k/67 in 22 seconds on average. This leads
us to believe that Constraint Programming is indeed a suitable technology for the HR
problem.

8 Conclusions and future work

In this paper we have presented four CP models of an HR instance. The empirical results
for the models as presented in Section 7 are broadly in line with what may be expected,
given the summary of time and space complexities presented in Table 1. Our results
indicate that, as is the case for SMI [6], CSP encodings of HR are “tractable”, a notion
that has been explored in detail by Green and Cohen [9]. However it remains open as to
whether there exists a CSP encoding of HR that gives rise to the GS-lists, for which AC
may be established in O(L) time and using O(nm) space. The time complexity of O(L)
is optimal, since SM is a special case of HR, and a lower bound of Ω(L) holds for the
problem of finding a stable matching, given an instance of SM [18].

The natural extension of this work is to build additional constraints on top of one of
the models presented here, in order to cope with generalisations of HR for which the RGS
and HGS algorithms are inapplicable. Section 1 described three possible variants of HR
that are relevant in this context. One of these was the Hospitals / Residents problem with
Ties (HRT), which arises when ties are permitted in the preference lists of hospitals and/or

# Solutions CBM HR2 HRN

AC ALL AC ALL AC ALL

502/41/13.2 1 1.61 1.64 0.26 0.28 0.17 0.17

510/43/11.5 1 1.64 1.7 0.27 0.31 0.17 0.17

245/34/3.9 1 0.26 0.26 0.14 0.16 0.12 0.12

Table 3: Time taken to establish AC and find all solutions to three SPA instances.
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residents. For example, a popular hospital may be indifferent among several applicants.
The SPA scheme [11] already permits ties in the hospitals’ lists. However it is known [16]
that, in the presence of ties, stable matchings can be of different sizes, and the problem of
finding a maximum stable matching is NP-hard, even for very restricted instances of SMI
with ties. It has already been demonstrated [7, 8] that the earlier encodings of [6] can be
extended to the case where preference lists in a given SMI instance may involve ties. We
have begun to consider the corresponding extension of the models presented in Sections
4, 5 and 6 to the HRT case, and further details will appear elsewhere.
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