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Abstract

We study the Stable Marriage problem (SM), which
is a combinatorial problem that arises in many prac-
tical applications. We present two new models of
an instancd of SM with » men andn women as
an instance/ of a Constraint Satisfaction Problem.
We prove that establishing arc consistency.jin
yields the same structure as given by the established
Extended Gale/Shapley algorithm for SM as ap-
plied toI. Consequently, a solution (stable match-
ing) of I can be derived without search. Further-
more we show that, in both encodingsd| stable
matchings inf may be enumerated in a failure-free
manner. Our first encoding is ¢#(n3) complex-

ity and is very natural, whilst our second model,
of O(n?) complexity (which is optimal), is a de-
velopment of the Boolean encoding[i@Gentet al.,
2001], establishing a greater level of structure.

Introduction

a matching in/. A modified version of this algorithm — the
Extended Gale/Shapley (EGS) algorith@usfield and Irv-
ing, 1989, Section 1.2]4- avoids some unnecessary steps by
deleting from the preference lists certain (man,woman) pairs
that cannot belong to a stable matching. Moreover the EGS
algorithm aids the development of some useful structural
properties of SMGusfield and Irving, 1989, Section 1.2.4
The man-orientedversion of the EGS algorithm (henceforth
referred to as the MEGS algorithm) involves a sequence of
proposals from the men to the women, provisional engage-
ments between men and women, and deletions from the pref-
erence lists. A pseudocode description of MEGS algorithm is
given in Figure 1 (the terrdelete the paii(p, w) means that

p should be deleted from’s list and vice versa.) The stable
matching returned by the MEGS algorithm is called rinen-
optimal (or equivalently,woman-pessimalstable matching,
denoted byM, since each man has the best partner (accord-
ing to his ranking) that he could obtain, whilst each woman
has the worst partner that she could obtain, in any stable
matching. A similar proposal sequence from the women to
the men yields thevoman-orientedeGS (WEGS) algorithm.
This gives rise to thevoman-optimalor man-pessimalsta-

The classical Stable Marriage problem (SM) has been thele matching, denoted by/,, with analogous properties.
focus of much attention in the literature over the last few Upon termination of the MEGS algorithm, the reduced
decade$Gale and Shapley, 1962; Knuth, 1976; Gusfield andpreference lists that arise following the deletions are referred

Irving, 1989; Roth and Sotomayor, 199@n instance of SM
comprisesn men,mq, . .

., My, andn women,w, ..., wy,

to as theMGS-lists Similarly, theWGS-listsarise upon ter-
mination of the WEGS algorithm. The intersection of the

and each person has a preference list in which they rank aMGS-lists with the WGS-lists yields th€S-lists[Gusfield

members of the opposite sex in strict order. A matchirg

and Irving, 1989, p.16 Some important structural properties

is a bijection between the men and women. We denote thef the GS-lists are given by the following theorem.

partner inM of a persong by M(g). A (man,woman) pair

(m;, w;) blocksa matchingM, or forms ablocking pair of

M

, if m; prefersw; to M (m;) andw, prefersm; to M (w;).

A matching that admits no blocking pair is said todiable

otherwise the matching isnstable SM and its variants arise
in important practical applications, such as the annual match
of graduating medical students to their first hospital appoint-

ments in a number of countries (see ¢Rpth, 1983).

Gale and ShaplejGale and Shapley, 1962howed that
every instancd of SM admits a stable matching, and gave an
O(n?) algorithm, linear in the instance size, for finding such

Theorem 1 (Gusfield and Irving, 1989, Theorem 1.2.5.
For a given instance of SM:

(i) all stable matchings are contained in the GS-lists;

(i) no matchingM contained in the GS-lists can be blocked
by a pair that is not in the GS-lists;

(i) in the man-optimal (respectively woman-optimal) stable
matching, each man is partnered by the first (respec-
tively last) woman on his GS-list, and each woman by
the last (respectively first) man on hers.
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assign each person to be free; 1.1 Related work
while some mann is freeand m has a nonempty lidbop

w = first woman onm’s list; {m ‘proposes’ tow}
if some marp is engaged tav then
assignp to be free;

The Stable Marriage problem has its roots as a combina-
torial problem, but has also been the subject of much in-

end if: terest from the Game Theory and Economics community

assignm andw to be engaged to each other: [Roth and Sotomayor, 199@nd the Operations Research

for each successgrof m onw’s list loop community [Vate, 1989. In recent years SM and SMI
delete the paifp, w); have also been the focus of interest from the Constraint

end loop Programming communityAldershof and Carducci, 1999;

end loop, Dye, 2001; Gentet al, 2001; Lustig and Puget, 2001;
Figure 1: The man-oriented Extended Gale/Shapley algoGent and Prosser, 2002a; 2002b; Green and Cohen, 2003;
rithm for SM and SMI. Thorn, 2003. These papers have presented a range of encod-

ings of SM and its variants as an instance of a Constraint Sat-
isfaction Problem (CSP). In all references apart fi@entet

sume that a person’s preference list is ordered with his/he L, 2(.)9[]]' strug:tcL:lral reIathlwt_sr[llgs bgtweendtfs _effetlzgggArc
most-preferred partner leftmost.) This figure also indicates OS?LS eGngyl'(t ) propa%a IOI esse_redar: i gm’d'd th
those preference list entries that belong to the GS-listg, In '?hn € d 'St‘;’] were nci ef>;p'|ore f'n ctar, nort. d the au-
the man-optimal stable matchidd, and the woman-optimal ors consider E_’ aspectotial ure.- ree enumeration.
stable matching/, are as follows: tHPV‘é%\ge]]r Suﬁh Issues Wgrte cogggered %Y Gemféseglmlz
_ etal, , who proposed two encodings o . For
My = {(ma,wn), (m2,ws), (ms, wa), (ma, wa)} each model, it was shown that AC propagation can be used
M. = {(m1,ws), (m2, w1), (m3,ws), (M4, w2)}. to achieve similar results to the EGS algorithm in a certain
The extension SMI of SM arises when preference lists magense. The first encoding creates a CSP instdhagsing
be incomplete. This occurs when a person may find a memg set of ‘conflict matrices’ to encode an SMI instariceln
ber of the opposite seunacceptable If a personp finds a .7, AC may be established i@ (n*) time, following which
persong unacceptabley does not appear on the preferencethe variables’ domains correspond to the GS-listg.ofrhe
list of p. In the SMI case, a matching/ in an instance/  second encoding creates a Boolean CSP instdpcén Js,
of SMI is a one-one correspondence between a subset of theC may be established if?(n?) time, however the variables’
men and a subset of the women, such thatw) € M im-  domains after AC propagation only correspond to a weaker
plies that each ofn andw finds the other acceptable. Given structure called th&XGS-listsin I, which in general are su-
a matchingM in an SMI instance, a paifm,w) blocks a  persets of the GS-lists ifi. (The XGS-list for a persop
matching if each ofm andw finds the other acceptable, consists of all entries ip’s preference list between the first
and each is either unmatched M or prefers the other to and last entries of his/her GS-list inclusive.) In both encod-
their partner inM. If a personp finds a persoy unaccept- ings the set of all stable matchingsiirtan be enumerated in
able, therp and ¢ cannot be paired in any stable matching, a failure-free manner (using a value-ordering heuristic in the
nor can they form a blocking pair. Hence, from the point of case of the first encoding).
view of finding stable matchings, we lose no generality by
assuming thag finds p unacceptable also, so that preference TR
lists areconsistent It is straightforward to adapt the EGS 1.2 Our contribution
algorithm to the SMI caséGusfield and Irving, 1989, Sec- The work of[Gentet al, 2001 left open the question as to
tion 1.4.2 — see Figure 1 for a pseudocode description. Thavhether there exists a@(n2) CSP encoding of SM that cap-
woman-oriented algorithm is analogous. In the SMI context aures exactly the structure of the GS-lists. In this paper we
stable matching need not be complete; however the same sgifesent two encodings of an instantef SMI (and so of
of men and women are matched in all stable matchiGgse SM) as a CSP instancé. Again, for each encoding, we
and Sotomayor, 1935 Furthermore, the concept of GS-lists show that AC propagation achieves the same results as the
can be extended to SMI, with analogous properties (for PropEGS algorithm in a precise sense. The first model is a natural
erty (i) in Theorem 1, each person with a non-empty GS-list(n, + 1)-valued encoding of SMI; it bears some resemblance
should be matched in/; for Property (iii), each person with  to the encoding of SM given ifL_ustig and Puget, 200-and
an empty GS-list is unmatched in both stable matchings). develops the ‘conflict matrices’ model fBentet al, 2001.
In this model we show that AC propagation may be carried
out in O(n?) time. Our model is more intuitive, and is more

An example SM instancé is given in Figure 2. (We as-

ml:M;n;hztlsw?) wl\:lvr(r):;f&s”l::t;l time and space—effi_cient, than the ‘conflict matrices’ model.
M’ W W Wy Wy Wo! g M3 My Ty Our second model is a more compact 4-valued encodl_ng that
M+ Wy Wa W1 W We: s Mg 1Ty My develops the Boolean encoding frd@entet al, 2001 —in
T Wa r W Wt TTin TTn T T this case we show that AC propagation may be carrleq outin
AL 2 4842 T O(n?) time. For both models we prove that the GS-lists in

] . ) I correspond to the domains remaining after establishing AC
Figure 2: An SM instance with 4 men and 4 women; prefer-in 7. Furthermore, we show that, for both encodings, we are
ence list entries that belong to the GS-lists are underlined. guaranteed a failure-free enumeration of all stable matchings



in I using AC propagation combined with a value-ordering We define a CSP encodinfjfor an instancd of SMI by
heuristic inJ. Our second encoding therefore answers théntroducing2n variables to represent the men and women in
question left open bjGentet al,, 2001. the original instancd. For each mamn; € M, we intro-
Our results show that, provided the model is chosen careduce a variable:; in J whose domain, denoted llpm (z;),
fully, AC propagation within a CSP formulation of SMI cap- is initially defined aslom(xz;) = {1,2,...,I"} U {n + 1}.
tures the structure produced by the EGS algorithm. MoreSimilarly, for each womam; € W, we introduce a variable
over our second encoding indicates that AC propagation cap; in J whose domain, denoted lajpm(y; ), is initially de-
be achieved within the same time complexity as the (optimalfined asdom(y;) = {1,2,...,l’} U {n + 1}.
MEGS algorithm for SMI, producing equivalent structural re-  An intuitive meaning of the variables is now given. In-
sults. This strengthens the assertiof@entet al, 2001 formally, if z; = p (1 < p < [), thenm,; marries the
regarding the applicability of constraint programming to thewomanw; such thatrank(m;,w;) = p, and similarly for
general domain of stable matching problems. Furthermore, ithe case thay; = ¢ (1 < ¢ < (). More formally, if
many practical situations there may be additional constraintsiin dom(z;) > p (1 < p < 1), then the pair(m;, w;)
that cannot be accommodated by a straightforward modificahas been deleted as part of the MEGS algorithm applied to
tion of the EGS algorithm. Such constraints could however bg, for all w; such thatrank(m;,w;) < p. Hence ifw; is
built on top of either of the two models that we present herethe woman such thatank(m;,w;) = p, then eithem; pro-
Possible extensions could arise from variants of SMI that ar@oses taw; during the execution of the MEGS algorithm or
NP-hard[Ronn, 1990; Ng and Hirschberg, 1991; Kato, 1993;the pair(m;, w;) will be deleted before the proposal occurs.
Manloveet al, 2002. Similarly if mindom(y;) > ¢ (1 < ¢ < %), then the pair
We remark that, independently, Unsworth and Prosser havgy,, , w ;) has been deleted as part of the WEGS algorithm
formulated a specialisee-ary constraint for SMI, such that applied toz, for all m;, such thatrank(my,, w;) < ¢. Hence
AC propagation gives rise to the GS-lists, where the comif ,,; is the man such thatank(w;, m;) = ¢, then either
plexity of establishing AC i$)(n?) [Unsworth and Prosser, . proposes ton; during the execution of the WEGS algo-
20054d. They have also constructed a specialised binary conthm or the pair(m;, w;) will be deleted before the proposal
straint for SMI that yields the same structure, where AC mayoceurs. Ifz; = n + 1 (respectivelyy; = n + 1) thenm,
be established i)(r°) time [Unsworth and Prosser, 2005b  (respectivelyw;) is unmatched upon termination of each of
In both cases, all stable matchings may be generated usingige MEGS or WEGS algorithms applied fo
failure-free enumeration. . _ The constraints used for the + 1)-valued encoding are
The remainder of this paper is organised as follows. Secshown in Figure 3. In the context of Constraints 1 and 4,
tion 2 contains th¢n +1)-valued encoding. We show that AC ; is the integer such thatank(m;,w;) = p; alsoq =
may be established i@(n?) time, proving the structural re- gpnj(w;, m;,). In the context of Constraints 2 andids the
lationship between AC propagation and the GS-lists. This isnteger such thatank(w;, m;) = ¢; alsop = rank(m;, w;).
followed by the failure-free enumeration result for this model.  An interpretation of Constraints 1 and 3 is now given (a
In Section 3 we present the 4-valued encoding, following asimilar interpretation can be attached to Constraints 2 and 4
similar approach, however in this case we show that AC mayyith the roles of the men and women reversed). First con-
be established iD(n?) time. Finally, Section 4 contains sider Constraint 1, a stability constraint. This ensures that

some concluding remarks. if a manm; obtains a partner no better than hié-choice
womanw;, thenw; obtains a partner no worse than g&f-
2 (n+ 1)-valued encoding choice manm;. Now consider Constraint 3, a consistency

. . constraint. This ensures that if maty is removed fromw;’s
2.1 Overview of the encoding list, thenw; is removed frommn;’s list.

In this section we present afm + 1)-valued binary CSP . ) )
encoding for an instancd of SMI. We assume that 2.2 ArCconsistency inthe(n + 1)-valued encoding
M = {mi,ma,...,m,} is the set of men andV = We now show that, given the above CSP encodingf an
{w,wa, ..., w,} is the set of women id (it is not difficult ~ SMI instancel, the domains of the variables ihfollowing
to extend our encoding to the case that the numbers of mefAC propagation correspond to the GS-lists/ofThat is, we
and women are not equal, but for simplicity we assume thaprove that, after AC is established, for any (1 < i,j < n),
they are equal). For each man € M andwomanu; € W,  w; € GS(m;) if and only if p € dom(x;), and simi-
the length ofm;’s andw;’s preference list is denoted By*  larly m; € GS(w;) if and only if ¢ € dom(y;), where
and[¥ respectively. We lef. denote the total length of the rank(m;,w;) = p andrank(w;, m;) = q.

preference lists inf. Also, for any persorr € M U W,
we let PL(z) denote the set of persons eis original pref-

erence list in, and we letGS(z) denote the set of persons Low2p=zyisq (Is ismlsps l;‘;)
on z's GS-list in I. For each mam,; € M and woman 2. yizq=>z;<p (1< J <n,1<g¢g< l{ﬂ)
w; € PL(m;), we denote the position af; onm;’s original 3. yiFg=uwiFp (1<j<nl<g< l%)
preference list (regardless of any deletions that may be carried 4 zi#Fp=y#q (A<i<nl<p<l")

out by the MEGS/WEGS algorithms) byink(m;, w;), with
rank(w;, m;) being similarly defined. Ifv; € W\PL(m;),  Figure 3: The constraints for tHe + 1)-valued encoding of
thenrank(m;, w;) andrank(w;, m;) are undefined. an instance SMI.



The proof is presented using two lemmas. The first lemmaeither (i) m; proposed tow;, or (i) the pair (m;,w;) was
shows that the arc consistent domains are equivalent to subdeleted, where-ank(m;,w;) = p andrank(w;,m;) = q.
sets of the GS-lists. This is done by proving that the deletion¥Ve consider the two cases below:
made by the MEGS and WEGS algorithms applied tare  Case (i)If m; proposed tow; during the execution of the
correspondingly made during AC propagation. The secondMEGS algorithm, then all men ranked belew; onw;’s list
lemma shows that the GS-lists correspond to a subset of there deleted, i.ey; < g as required.
domains remaining after AC propagation. This is done byCase (ii)If (m;,w;) was deleted during the execution of the
proving that the GS-lists fof give rise to arc consistent do- MEGS algorithm therw; must have received a proposal from
mains for the variables id. amanm;, whom she prefers to;, whererank(w;, my) = s
Lemma 2. For a giveni (1 < i < n), let p be an integer (s < gq). Therefore the MEGS algorithm deletes all those
(1 < p < ™) such thatp € dom(z;) after AC propagation. Menm. from w;'s list such thatrank(w;, m.) > s, i.e.
Then the womam; such thatrank(m;,w;) = p belongs ¥;j < s < g asrequired.

to the GS-list ofn;. A similar correspondence holds for the  Next consider Constraint 3. Suppose that # ¢, so
women. that during an execution of either the MEGS or WEGS algo-

rithms, m; is deleted fromw;’s list, whererank(w;, m;) =

Proof. The GS-lists are constructed as a result of the deley. To ensure that the preference lists are consistent, the same
tions made by the MEGS and WEGS algorithms applied taalgorithm deletesw; from m;’s list, i.e. z; # p, where
I. We show that the corresponding deletions are made to theunk(m,, w;) = p, as required.
relevant variables’ domains during AC propagation. In the \erifying Constraints 2 and 4 is similar to the above with
following proof, only deletions made by the MEGS algorithm the roles of the men and women reversed and the MEGS al-
are considered; a similar argument can be used to prove thforithm exchanged for the WEGS algorithm. O
result for an execution of the WEGS algorithm. i

We prove the following fact by induction on the number of _ The two lemmas above, together with the fact that AC algo-
proposals: during an executioi of the MEGS algorithm. If rithms find the unique maximal set of arc consistent domains,
proposalz consists of mam; proposing to womanm;, with  1€ad to the following theorem.
rank(m;,w;) = p andrank(w;,m;) = ¢, thenz; > p,  Theorem 4. Let I be an instance of SMI, and let be a
y; < ¢ and for each mamy, such thatrank(w;,mi) = s  CSP instance obtained by the (n+1)-valued encoding. Then
(q < s <IY), i # r, whererank(my, w;) = 7. the domains remaining after AC propagation Jh corre-

First consider the base case where= 1. Thenp = 1. spond to the GS-lists dfin the following sense: for any j
Sincez; > 1, propagation of Constraint 1 yieldg; < (1 < 4,5 < n), w; € GS(m;) if and only ifp € dom(z;),
q. Then for eachs (¢ < s < [}), propagation of Con- and similarlym; € GS(w;) if and only if¢ € dom(y;),

straint 3 givesz, # r whererank(w;,m;) = s and  whererank(m;,w;) = p andrank(w;, m;) = q.
rank(my,w;) = 7. The constraints shown in Figure 3 may be revise®(n)

Now suppose that = ¢ > 1 and that the result holds for time during propagation, assuming that upper and lower
z < c. We consider the cases where= 1 andp > 1. bounds for the variables’ domains are maintained. Hence the
Case (i). Forp = 1 the proof is similar to that of the base time complexity for establishing AC i (ed), wheree is the
case. number of constraints andlis the domain sizévan Henten-

Case (ii). Now suppose that > 1. Letw; be any woman ryck et al, 1994. For this encoding we have = O(n?)
such thatrank(m;, w;) = r < p. Thenw, has been deleted andq = O(n), therefore AC may be established @(n?)
from m;’s list during the MEGS algorithm. Now suppose time; also the space complexity@¥L). These complexities
rank(w;,m;) = s1. Thenm; was deleted fromw,'s pref-  represent an improvement on the ‘conflict matrices’ encod-
erence list because she received a proposal from arman  ing in[Gentet al, 2001, whose time and space complexities
whom she prefers ten;, whererank(w;,mi) = s2 < s1. areO(n*) andO(L?) respectively. Moreover we claim that
Sincemy, proposed tow; before thec' proposal, we have  the model that we present in this section is a very natural and
by the induction hypothesis thgi < so, so thaty, # s; intuitive encoding for SMI.

andz; # r. Butw, was arbitrary and hence; # r for Theorems 4 and 1(iii) show that we can find a solution to
1 <r <p-1,sothat; > p. The rest of the proofis similar  the CSP giving the man-optimal stable matchidg without
to that of the base case. 0 search: for each mam; € M, we letp = min dom(z;). If

Lemma 3. For eachi (1 < i < n), define a domain of values ? = n+ 1 thenm, is unmatched in,, otherwise the partner

dom(z;) for the variablez; as follows: ifG:S(m;) = 0, then ~ ©f 77 iS the womanw; € W such thatrank(m;, w;) = p.
dom(z;) = {n+1}; otherwisedom(z;) = {rank(m;, w;) : Considering they; variables in a similar fashion gives the
w; € GS(m;)}. The domain of each; (1 < j < n) is woman-optimal stable matchiny, .

defined analogously. Then the domains so defined are arc " fact we may go further and show that the CSP encoding
consistent inJ. yields all stable matchings if without having to backtrack

due to failure. That is, we may enumerate all solutions of
Proof. To show that the variables’ domains are arc consistenf in a failure-free manner using AC propagation.rcom-
we consider each constraint in turn. bined with a value-ordering heuristic. The following theo-
First consider Constraint 1 and suppose that p. Then  rem, proved ifManlove and O'Malley, 2005 describes the
during the execution of the MEGS algorithm appliedto enumeration procedure.



Theorem 5. Let I be an instance of SMI and Igtbe a CSP  proposal sequence and can be interpreted as each man ini-
instance obtained using the + 1)-valued encoding. Then tially proposing to the first woman on his list during the
the following search process enumerates all solutiong in MEGS algorithm. Constraint 2 states that(if;, w;) has
without repetition and without ever failing due to an incon- been deleted by the MEGS algorithm for al} such that
sistency: rank(m;,w;) < p, and (m;,w;) has also been deleted,
; . . hererank(m;, w;) = p, then(m;, w;) has been deleted by
— AC s established as a preprocessing step, and after eadf J).
branching decision, including the decision to remove athe by MEGS algorlthn;lnfor all; such thatrank(m;, w;) <
value from a domain: p. Hence, ifp + 1 < I, m; will subsequently propose to
' the womanw, such thatrank(m;,w;) = p + 1 during the
— if all domains are arc consistent and some variable MEGS algorithm, or the paifm,, w;) will be deleted before
has two or more values in its domain, then the searchthe proposal occurs. Constraint 3 states that if a woman’s
proceeds by setting; to the minimum valug inits do-  ¢**-choice partner is deleted during an iteration of the MEGS
main. On backtracking, the valyeis removed from the algorithm, then hefq + 1)**-choice partner should also be
domain ofz;; deleted. Constraint 4 shows a stability constraint: this en-
— when a solution is found, it is reported and backtrackingSUres that if mam:; obtains a partner no better thag, then
is forced. w; obtalr]s a partner no worse tharny. Lastly Constralnt 5
is a consistency constraint: this ensures that,ifis removed
) fromw;’s list during the MEGS algorithm themn; is also re-
3 4-valued encoding moved fromm,’s list. Constraints 6-10 have a similar mean-
; ; ing with the roles of the men and women reversed, and with
3.1 Overview of the encoding MEGS replaced by WEGS.
In this section we present a CSP encoding of SMI that is more
complex but more efficient than tife + 1)-valued encoding 3.2 Arc consistency in the 4-valued encoding

given in Section 2.1. We assume the notation as defined fafye now prove that, given the above CSP encodingf an
an instance of SMI in the first paragraph of Section 2.1. g instancel, the domains of the variables ihfollowing
~ We construct a CSP encodinfgfor an SMl instance by AC propagation correspond to the GS-lists/ofThat is, we
introducing L variables, each of which represents a prefer-show that, after AC is established, for any (1 < 4, j < n),
ence list entry. For each man; (1 < i < n) we introduce w; € GS(m;) if and only if {2,3} C dom(z;,), and simi-
[ variablesz; , (1 < p < [j""), corresponding to the mem- |arly ;m; € G:S(w;) if and only if {2,3} C dom(y,,), where
bers of PL(m;). Similarly for each womam,; (1 < j < n) rank(m;,w;) = p andrank(w;, m;) = q.

we introducel}’ variablesy; , (1 < ¢ < [}¥). As before the In order to establish this correspondence, we defin&the
domain of a variable: is denoted bylom(z); initially each  domainsfor the variables inJ as follows. Initially let each
variable is given the domaif0, 1, 2, 3}. variable in.J have domain{0, 1,2, 3}. Run the MEGS algo-

An intuitive meaning of the variables’ values is given in rithm on instancd. Then use rules (i), (ii) and (v) in Figure 4
Figure 4. The table indicates that deletions carried out byo remove 0's and 2's from the appropriate domains, obtain-
the MEGS and WEGS algorithms applied tare reflected ing CSP instancd’ from J. Next run the WEGS algorithm
by the removal of elements from the relevant variables’ do-on the original instancé. Now use rules (iii), (iv) and (vi)
mains. In particular, removal of the value 2 (respectivelyin Figure 4 to remove 0’'s and 3's from the appropriate do-
3) from a variable’s domain corresponds to a preference listains in.J’, obtaining CSP instanc&’. The domains of the
entry being deleted by the MEGS (respectively WEGS) al-variables inJ” are referred to as th@S-domains
gorithm applied to/. Note that potentially a given prefer-  As in Section 2.2, two lemmas are used to prove that en-
ence list entry could be deleted by both algorithms. Alsoforcing AC gives the GS-lists. The first lemma shows that
if the value 0 is removed frondom(z;,) (1 < ¢ < n, the domains remaining following AC propagation are equiv-
1 < p < 1™), then eithern, proposes tav; duringthe MEGS  alent to subsets of the GS-lists. This is done by proving that
algorithm (whererank(m;,w;) = p) or the entry is deleted if a deletion is made as part of either the MEGS or WEGS
prior to the proposal occurring. Similarly if the value 0 is algorithms, then a corresponding deletion is made during AC
removed fromdom(y; ) (1 < j < n, 1 < g < 1Y), then  propagation. The second lemma shows that the GS-lists cor-
eitherw; proposes ter; during the WEGS algorithm (where respond to a subset of the domains remaining after AC is en-
rank(w;, m;) = q) or the entry is deleted prior to the pro- forced. This is done by proving that the GS-domains.for
posal occurring. are arc consistent.

The constraints for th_is encoding are Iisted_ in Figure 5. IN_ amma 6. For a giveni (1 < i < n), letp be an integer
the context of Constraints 4 and 10,is the integer such ¢, that{2,3} C dom(x;,) after AC propagation. Then
that rank(m;, w;) = p; alsog = rank(w;,m;). In the he \womanw, such thatrank(m;,w;) = p belongs to the

context of Constraints 5 and 9,is the integer such that Gg jist ofn,."A similar correspondence holds for the women.
rank(w;,m;) = ¢; alsop = rank(m;,w;). Further, we

remark that Constraints 4 and 9 are present onjyifl < [7° Proof. The GS-lists are obtained through deletions made by

andp + 1 <[ respectively. the MEGS and WEGS algorithms. We prove that the cor-
An interpretation of each constraint is now given. Firstly responding deletions are made to the relevant variables’ do-

consider Constraint 1. This constraint is used to start thenains during AC propagation. In particular, suppose that



() 0¢ dom(x;p)
(i) 2¢ dom(z;,p)
(i) 3 ¢ dom(x;p)
(iv) 0¢ dom(y,,q)
(V) 2 ¢ dom(yjq)
(vi) 3¢ dom(y;q)

p=10r2¢dom(x;,)forallr (1 <r<p) (i.e.man
m;'s rth-choice woman is removed from his list as part of
MEGS algorithm applied td@, for all » (1 < r < p));
manm;’s p'"*-choice woman is removed from his list

as part of the MEGS algorithm applied fp

manm;'s pt"-choice woman is removed from his list

as part of the WEGS algorithm applied &p

g=1lor3 ¢ dom(y, ) foralls (1 <s<gq) (i.e.woman
w;'s st"-choice man is removed from her list as part of
the WEGS algorithm applied th, for all s (1 < s < q));
womanw;’s ¢'"-choice man is removed from her list

as part of the MEGS algorithm applied fp

womanw;’s ¢'"-choice man is removed from her list

as part of the WEGS algorithm applied fo

e

Figure 4: Intuitive variable meanings for the 4-valued SMI encoding.

m; € M andw; € PL(m;). Letp = rank(m;,w;) and
q = rank(w;, m;). Then we prove:
— (m;,w;) deleted during MEGS algorithre> z; ;, # 2
andy;  # 2.
— (m;,w,) deleted during WEGS algorithre z; ,, # 3
andy; , # 3.

Case (i)For p = 1 the proof is similar to that of the base
case.

Case (ii))Now assume thap > 1. Let w; be any woman
such thatrank(m;,w;) = r < p. Thenw; has been deleted
from m;’s list during the MEGS algorithm. Now suppose
that rank(w;,m;) = s;. Thenm; was deleted fromwy;’s
list because she received a proposal from a manwhom

In this proof, only deletions made by the MEGS algorithm she prefers ton;, whererank(w;, mi) = s < s1. Since
are considered; a similar argument can be used for deletions, proposed taw;, before thect” proposal, by the induction

made by the WEGS algorithm.

hypothesis it follows that; , # 2. However sinceu; was

It suffices to prove the following by induction on the num- grpitrary, it follows thatr; . # 2 for 1 < r < p — 1. From

ber of proposalg during an executio®' of the MEGS algo-
rithm. If proposalz consists of mamn; proposing to woman
wj, With rank(m;, w;) = p andrank(w;, m;) = ¢, then
Tip > 0,yjs #2 (g <s < l;“), and for each mam,
such thatrank(w;,my) = s (g < s < l;-”), x,r 7 2, Where
rank(my, w;) = r.

First consider the base case where= 1. Thenp = 1.
By Constraint 1,2;; > 0, and by Constraint 4 we have
Yj.q+1 7 2. Hence by Constraint 3, it follows that ; # 2
for eachs (¢ < s < [}’). Also for each such, propagation of
Constraint 5 ensures thaf ,. # 2, whererank(w;, my) = s
andrank(mg,w;) = 7.

Now suppose that = ¢ > 1 and that the result holds for
z < ¢. We consider the cases where- 1 andp > 1.

Constraint 1 we have; ; > 0, and hence the propagation of
Constraint 2  — 1 times) yieldsz; , > 0. The rest of the
proof is similar to that of the base case. O

Lemma 7. The GS-domains (corresponding to the GS-lists
in I) are arc consistent ity.

Proof. We consider each constraint in turn to show that the
GS-domains are arc consistent.

Clearly Constraint 1 is satisfied, as= 1 in rule (i) of
Figure 4, i.e.z;; > 0. Now consider Constraint 4 and
suppose that; , > 0. Then during the execution of the
MEGS algorithm, either (iyn; proposed tow;, or (ii) the
pair (m;,w;) was deleted, whereank(m;,w;) = p and

1. Ii71>0 (ISZS’H,)
2. (Tip#2NTip>0)=>ap11 >0 (1<i<n1<p<i™—-1)
3. Yjg F 2= Yjg+1 F 2 (1§j§n71§qSl§”—1)
4, zip > 0= yjgr1 #2 (1<i<n,1<p<IiM
5 YigF2=>TipF?2 (1§j§n,1SQSl;’})
6. yj.,1>0 (1§]§n)
7. (yj,q7é3/\yj,q>0>:yj,q+1>0 (1§j§n,1SQSl§”—1)
9. Yjq>0=mp01 #3 (1§j§n,1§q§l}”)
10, %, #3=yq#3 (1<i<n,1<p<iM

Figure 5: The constraints for the 4-valued encoding of an instance SMI.



rank(w;,m;) = ¢. Assumingg + 1 < [, we consider
the two cases separately.
Case (i)If m; proposed tow; during the execution of the

As in Section 2, we may go further and show that the CSP
encoding yields all stable matchings irwithout having to
backtrack due to failure. As before we enumerate all solu-

MEGS algorithm, themw; deletes all those men ranked below tions of I in a failure-free manner using AC propagation in

m; on her preference list, so that in particulgf, ., # 2.

Case (i) If the pair (m;, w;) was deleted during the execu-

tion of the MEGS algorithm, thew; must have received a
proposal from a mam:, whom she prefers tar;. Conse-
quently, all men ranked below,, onw;’s list are deleted by
the MEGS algorithm, so that in particulat, ;1 # 2.

Now suppose thag; , # 2. Then by construction of the
GS-domains, the MEGS algorithm deleted the mansuch

thatrank(w;, m;) = ¢. Soin addition, 2 is removed from the

domain ofz; ,, whererank(m;,w;) = p, satisfying Con-
straint 5. Also, as in Case (ii) abovg; ,+1 # 2, satisfying
Constraint 3.

Now consider Constraint 2 and suppose thgt # 2 and
z;p > 0. Thenw; has been removed from the list of;,
whererank(m;,w;) = p. Alsoz;, > 0 implies that either
(i) p =1, or (i) z; » #2 (1 < r < p). We consider the two
cases separately.

Case (i)If p = 1, we havez; ; # 2, and hencer; » > 0 by
construction of the GS-domains.

Case (ii))As z; , > 0, it follows thatz; , # 2 (1 < r < p).
Also z;, # 2. Hencez;, # 2 (1 < r < p), so that
x; p+1 > 0 by construction of the GS-domains.

A similar argument can be used to verify that Constraints
6-10 are satisfied. Here the roles of the men and women are —

reversed and MEGS is replaced by WEGS. O

J combined with a value-ordering heuristic, however in this
case, maintenance of AC is much less expensive. The fol-
lowing theorem, proved ifiManlove and O’Malley, 2005
describes the enumeration strategy in this context.

Theorem 9. Let ] be an instance of SMI and lgtbe a CSP
instance obtained fronh using the 4-valued encoding. Then
the following search process enumerates all solutiong in
without repetition and without ever failing due to an incon-
sistency:

— AC is established as a preprocessing step, and after each
branching decision, including the decision to remove a
value from a domain;

— if all domains are arc consistent and some variable
z;» has{0,1,2,3} in its domain, then we let be the
unique integer such thatom(z; ,) = {1,2,3} and we
choosep’ to be the minimum integép < p’) such that
dom(xz; ) ={0,1,2,3};

— the search proceeds by removing the value 3 from the do-

main ofz; ,,. On backtracking, the value 2 is removed

from the domain ofj; ,, whererank(m;, w;) = p and

rank(w;, m;) = q;

when a solution is found, it is reported and backtracking

is forced.

The two lemmas above, together with the factthat ACalgo4  Concluding remarks

rithms find the unique maximal set of arc consistent domains

lead to the following theorem.
Theorem 8. Let I be an instance of SMI, and Igtbe a CSP

In this paper we have described two models for the Stable
Marriage problem and its variant SMI as a CSP. Our first en-
coding is very natural and may be used to derive the GS-lists

instance obtained by the 4-valued encoding. Then the dagiowing AC propagation, although the time complexity for

mains remaining after AC propagation ihcorrespond to the
GS-lists off in the following sense: foranyj (1 < ,j <
n), w; € GS(m;) if and only if {2,3} C dom(z;,), and
similarly m; € GS(w;) if and only if{2,3} C dom(y,,q),
whererank(m;, w;) = p andrank(w;, m;) = q.

In general AC may be establisheddned”) time, where
e is the number of constraintd, the domain size, and the
arity of each constrainiBessere and Rgin, 19971. In the
context of the 4-valued encoding, it follows that= O(L),

establishing AC is worse than that of the EGS algorithm. Our
second encoding, whilst more complex, again yields the GS-
lists, but this time the time complexity for AC propagation
is optimal. Using both encodings we are able to find all sta-
ble matchings for a given instance of SMI using a failure-free
enumeration without search.

A natural extension of this work is to the case where there
is indifference in the preference lists. It has already been
demonstratefiGent and Prosser, 2002a; 2002hat the ear-

d = 4 andr = 2, and hence AC may be enforced in time lier encodings ofGentet al, 2001 can be extended to the

O(L) = O(n?). The time complexity oD (L) is linear in

case where preference lists in a given SMI instance may in-

the size ofl and gives an improvement over the encodingclude ties, suggesting that the same should be possible with

presented in Section 2.1. Moreovex(L) is also the time

the models that we present here. Another direction is to con-

complexity of the EGS algorithm, which is known to be opti- sider the Hospitals / Residents problem (HR) (a many-one

mal[Ng and Hirschberg, 1990The space complexity of the
4-valued encoding is alsO(L).

generalisation of SMI). Thén + 1)-valued encoding from
this paper, and the specialised constraints flamsworth

Theorems 8 and 1(iii) show that we can find a solution toand Prosser, 2005a; 20Q5have already been generalised to

the CSP giving the man-optimal stable matchivig without

search: for each mam,; € M, if {2,3} Z dom(x;,) for

eachr (1 < r <) thenm; is unmatched in\/,, otherwise
we letp be the unique integer such thatn(z, ,) = {1, 2,3}

and define the partner of; to be the womanv; € W such
that rank(m;,w;) = p. Considering they; variables in a
similar way gives the woman-optimal stable matchivig.

the HR case (séiManloveet al., 2009 for further details).

Finally, it remains to conduct an empirical investigation of
the encodings presented in this paper, based on randomly-
generated and real-world data. Such investigations have al-
ready been carried out for other encodings for SM and its
variants [Gent and Prosser, 2002a; 2002b; Unsworth and
Prosser, 2005a; 200kb



Acknowledgements [Lustig and Puget, 20011.J. Lustig and J. Puget. Program

We would like to thank Rob Irving and Patrick Prosser for ~d0€s not equal program: constraint programming and its
helpful comments on earlier drafts of this paper. We would relfat|onsh|p to mathematical programmingnterfaces
also like to thank Patrick Prosser for suggesting that previous 31:29-53, 2001.

(man-oriented and woman-oriented) versions of the modelfvianlove and O’Malley, 2006 D.F. Manlove and

that we present here could be amalgamated. G. O'Malley. Modelling and solving the stable mar-
riage problem using constraint programming. Technical

References Report TR-2005-192, University of Glasgow, Department

[Aldershof and Carducci, 1999B. Aldershof and O.M. Car- of Computing Science, 2005.
ducci. Refined inequalities for stable marriag€on- [Manloveet al, 2004 D.F. Manlove, R.W. Irving,
straints 4:281-292, 1999. K. lwama, S. Miyazaki, and Y. Morita. Hard vari-

[Bessere and Rgin, 1997 C. Bessére and J-C. Bgin. Arc ants of stable marriageTheoretical Computer Science
consistency for general constraint networks: Preliminary 276(1-2):261-279, 2002.
results. InProceedings of IJCAI '9/Aolume 1, pages 398— [Manloveet al, 2009 D.F. Manlove, G. O’'Malley,
404. Morgan Kaufmann, 1997. P. Prosser, and C. Unsworth. A Constraint Program-

[Dye, 2001 J. Dye. A constraint logic programming ap- ming Approach to the Hospitals / Residents Problem.
proach to the stable marriage problem and its applica- Technical Report TR-2005-196, University of Glasgow,
tion to student-project allocation. BSc Honours project Department of Computing Science, 2005.
report, University of York, Department of Computer Sci- [Ng and Hirschberg, 1990C. Ng and D.S. Hirschberg.
ence, 2001. Lower bounds for the stable marriage problem and its vari-

[Gale and Shapley, 195D. Gale and L.S. Shapley. College  @nts.SIAM Journal on Computindl9:71-77, 1990.
admissions and the stability of marriagemerican Math-  [Ng and Hirschberg, 1991C. Ng and D.S. Hirschberg.
ematical Monthly69:9-15, 1962. Three-dimensional stable matching problef®sAM Jour-

[Gale and Sotomayor, 19B®D. Gale and M. Sotomayor. ~ nal on Discrete Mathematicg:245-252, 1991.

Some remarks on the stable matching problddiscrete  [Ronn, 1999 E. Ronn. NP-complete stable matching prob-
Applied Mathematicsl1:223-232, 1985. lems. Journal of Algorithms11:285-304, 1990.

[Gent and Prosser, 2002&4P. Gent and P. Prosser. An em- [Roth and Sotomayor, 199A.E. Roth and M.A.O. So-
pirical study of the stable marriage problem with ties and  tomayor. Two-sided matching: a study in game-theoretic
incomplete lists. IrProceedings of ECAI 'O2ages 141- modeling and analysjsolume 18 ofEconometric Society
145. 10S Press, 2002. Monographs Cambridge University Press, 1990.

[Gent and Prosser, 200RbP. Gent and P. Prosser. SAT JRoth, 1983 A.E. Roth. The evolution of the labor market
encodings of the stable marriage problem with ties and  for medical interns and residents: a case study in game the-

incomplete lists.  InProceedings of SAT 'Q22002. ory. Journal of Political Economy92(6):991-1016, 1984.
http://gauss.ececs.uc.edu/Conferences/ . .
SAT2002/Abstracts/gent.ps _ [Thorn, 2003 M. Thorn. A constraint programming ap-

proach to the student-project allocation problem. BSc

[Gentetal, 2001 I.P. Gent, R.W. Irving, D.F. Manlove,  anours project report, University of York, Department
P. Prosser, and B.M. Smith. A Constraint Programming ¢ Computer Science, 2003.

Approach to the Stable Marriage Problem Piroceedings

of CP '01, volume 2239 of ecture Notes in Computer Sci- [Unsworth and Prosser, 2045&. Unsworth and P. Prosser.

ence pages 225-239. Springer-Verlag, 2001. An n-ary constraint for the stable marriage problem. To
[Green and Cohen, 20D3V.J. Green ar;d DA Cohen appear irProceedings of the Fifth Workshop on Modelling

d Solving Probl ith Constrain005.
Tractability by approximating constraint languages. In and Solving Problems wi onstrain
Computer Scieng@ages 392—406. Springer-Verlag, 2003. A specialised binary constraint for the sta’ble marriage
[Gusfield and Irving, 1999D. Gusfield and R.W. Irving. problem. To appear iRroceedings of SARA '05, Lecture

The Stable Marriage Problem: Structure and Algorithms Notes in Computer SciencBpringer-Verlag, 2005. )

MIT Press, 1989. [van Hentenryclet al, 1992 P. van Hentenryck, Y. Deville,
and C-M. Teng. A generic arc-consistency algorithm and
its specializations. Artificial Intelligence 57:291-321,
1992.

[Vate, 1989 J.E. Vande Vate. Linear programming brings
marital bliss.Operations Research Lettei®(3):147-153,
1989.

[Kato, 1993 A. Kato. Complexity of the sex-equal stable
marriage problem.Japan Journal of Industrial and Ap-
plied Mathematics10:1-19, 1993.

[Knuth, 1976 D.E. Knuth. Mariages Stables Les Presses
de L'Universi€ de Monteal, 1976. English translation in
Stable Marriage and its Relation to Other Combinatorial
Problems volume 10 of CRM Proceedings and Lecture
Notes, American Mathematical Society, 1997.



