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Abstract

We study the Stable Marriage problem (SM), which
is a combinatorial problem that arises in many prac-
tical applications. We present two new models of
an instanceI of SM with n men andn women as
an instanceJ of a Constraint Satisfaction Problem.
We prove that establishing arc consistency inJ
yields the same structure as given by the established
Extended Gale/Shapley algorithm for SM as ap-
plied toI. Consequently, a solution (stable match-
ing) of I can be derived without search. Further-
more we show that, in both encodings,all stable
matchings inI may be enumerated in a failure-free
manner. Our first encoding is ofO(n3) complex-
ity and is very natural, whilst our second model,
of O(n2) complexity (which is optimal), is a de-
velopment of the Boolean encoding in[Gentet al.,
2001], establishing a greater level of structure.

1 Introduction
The classical Stable Marriage problem (SM) has been the
focus of much attention in the literature over the last few
decades[Gale and Shapley, 1962; Knuth, 1976; Gusfield and
Irving, 1989; Roth and Sotomayor, 1990]. An instance of SM
comprisesn men,m1, . . . ,mn, andn women,w1, . . . , wn,
and each person has a preference list in which they rank all
members of the opposite sex in strict order. A matchingM
is a bijection between the men and women. We denote the
partner inM of a personq by M(q). A (man,woman) pair
(mi, wj) blocksa matchingM , or forms ablocking pairof
M , if mi preferswj to M(mi) andwj prefersmi to M(wj).
A matching that admits no blocking pair is said to bestable,
otherwise the matching isunstable. SM and its variants arise
in important practical applications, such as the annual match
of graduating medical students to their first hospital appoint-
ments in a number of countries (see e.g.[Roth, 1984]).

Gale and Shapley[Gale and Shapley, 1962] showed that
every instanceI of SM admits a stable matching, and gave an
O(n2) algorithm, linear in the instance size, for finding such

a matching inI. A modified version of this algorithm – the
Extended Gale/Shapley (EGS) algorithm[Gusfield and Irv-
ing, 1989, Section 1.2.4] – avoids some unnecessary steps by
deleting from the preference lists certain (man,woman) pairs
that cannot belong to a stable matching. Moreover the EGS
algorithm aids the development of some useful structural
properties of SM[Gusfield and Irving, 1989, Section 1.2.4].
Theman-orientedversion of the EGS algorithm (henceforth
referred to as the MEGS algorithm) involves a sequence of
proposals from the men to the women, provisional engage-
ments between men and women, and deletions from the pref-
erence lists. A pseudocode description of MEGS algorithm is
given in Figure 1 (the termdelete the pair(p, w) means that
p should be deleted fromw’s list and vice versa.) The stable
matching returned by the MEGS algorithm is called theman-
optimal (or equivalently,woman-pessimal) stable matching,
denoted byM0, since each man has the best partner (accord-
ing to his ranking) that he could obtain, whilst each woman
has the worst partner that she could obtain, in any stable
matching. A similar proposal sequence from the women to
the men yields thewoman-orientedEGS (WEGS) algorithm.
This gives rise to thewoman-optimal(or man-pessimal) sta-
ble matching, denoted byMz, with analogous properties.

Upon termination of the MEGS algorithm, the reduced
preference lists that arise following the deletions are referred
to as theMGS-lists. Similarly, theWGS-listsarise upon ter-
mination of the WEGS algorithm. The intersection of the
MGS-lists with the WGS-lists yields theGS-lists[Gusfield
and Irving, 1989, p.16]. Some important structural properties
of the GS-lists are given by the following theorem.

Theorem 1 ([Gusfield and Irving, 1989, Theorem 1.2.5]).
For a given instance of SM:

(i) all stable matchings are contained in the GS-lists;

(ii) no matchingM contained in the GS-lists can be blocked
by a pair that is not in the GS-lists;

(iii) in the man-optimal (respectively woman-optimal) stable
matching, each man is partnered by the first (respec-
tively last) woman on his GS-list, and each woman by
the last (respectively first) man on hers.
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assign each person to be free;
while some manm is freeand m has a nonempty listloop

w := first woman onm’s list; {m ‘proposes’ tow}
if some manp is engaged tow then

assignp to be free;
end if;
assignm andw to be engaged to each other;
for each successorp of m onw’s list loop

delete the pair(p, w);
end loop;

end loop;

Figure 1: The man-oriented Extended Gale/Shapley algo-
rithm for SM and SMI.

An example SM instanceI is given in Figure 2. (We as-
sume that a person’s preference list is ordered with his/her
most-preferred partner leftmost.) This figure also indicates
those preference list entries that belong to the GS-lists. InI,
the man-optimal stable matchingM0 and the woman-optimal
stable matchingMz are as follows:

M0 = {(m1, w1), (m2, w3), (m3, w2), (m4, w4)}
Mz = {(m1, w3), (m2, w1), (m3, w4), (m4, w2)}.

The extension SMI of SM arises when preference lists may
be incomplete. This occurs when a person may find a mem-
ber of the opposite sexunacceptable. If a personp finds a
personq unacceptable,q does not appear on the preference
list of p. In the SMI case, a matchingM in an instanceI
of SMI is a one-one correspondence between a subset of the
men and a subset of the women, such that(m,w) ∈ M im-
plies that each ofm andw finds the other acceptable. Given
a matchingM in an SMI instance, a pair(m,w) blocks a
matchingM if each ofm andw finds the other acceptable,
and each is either unmatched inM or prefers the other to
their partner inM . If a personp finds a personq unaccept-
able, thenp andq cannot be paired in any stable matching,
nor can they form a blocking pair. Hence, from the point of
view of finding stable matchings, we lose no generality by
assuming thatq findsp unacceptable also, so that preference
lists areconsistent. It is straightforward to adapt the EGS
algorithm to the SMI case[Gusfield and Irving, 1989, Sec-
tion 1.4.2] – see Figure 1 for a pseudocode description. The
woman-oriented algorithm is analogous. In the SMI context a
stable matching need not be complete; however the same set
of men and women are matched in all stable matchings[Gale
and Sotomayor, 1985]. Furthermore, the concept of GS-lists
can be extended to SMI, with analogous properties (for Prop-
erty (ii) in Theorem 1, each person with a non-empty GS-list
should be matched inM ; for Property (iii), each person with
an empty GS-list is unmatched in both stable matchings).

Men’s lists Women’s lists
m1: w2 w4 w1 w3 w1: m2 m4 m3 m1

m2: w3 w4 w1 w2 w2: m4 m3 m1 m2

m3: w2 w4 w1 w3 w3: m3 m4 m1 m2

m4: w4 w1 w2 w3 w4: m3 m4 m2 m1

Figure 2: An SM instance with 4 men and 4 women; prefer-
ence list entries that belong to the GS-lists are underlined.

1.1 Related work

The Stable Marriage problem has its roots as a combina-
torial problem, but has also been the subject of much in-
terest from the Game Theory and Economics community
[Roth and Sotomayor, 1990] and the Operations Research
community [Vate, 1989]. In recent years SM and SMI
have also been the focus of interest from the Constraint
Programming community[Aldershof and Carducci, 1999;
Dye, 2001; Gentet al., 2001; Lustig and Puget, 2001;
Gent and Prosser, 2002a; 2002b; Green and Cohen, 2003;
Thorn, 2003]. These papers have presented a range of encod-
ings of SM and its variants as an instance of a Constraint Sat-
isfaction Problem (CSP). In all references apart from[Gentet
al., 2001], structural relationships between the effect of Arc
Consistency (AC) propagation[Bessìere and Ŕegin, 1997]
and the GS-lists were not explored in detail, nor did the au-
thors consider the aspect of failure-free enumeration.

However such issues were considered by Gent et al.[Gent
et al., 2001], who proposed two CSP encodings of SMI. For
each model, it was shown that AC propagation can be used
to achieve similar results to the EGS algorithm in a certain
sense. The first encoding creates a CSP instanceJ1 using
a set of ‘conflict matrices’ to encode an SMI instanceI. In
J1, AC may be established inO(n4) time, following which
the variables’ domains correspond to the GS-lists ofI. The
second encoding creates a Boolean CSP instanceJ2. In J2,
AC may be established inO(n2) time, however the variables’
domains after AC propagation only correspond to a weaker
structure called theXGS-listsin I, which in general are su-
persets of the GS-lists inI. (The XGS-list for a personp
consists of all entries inp’s preference list between the first
and last entries of his/her GS-list inclusive.) In both encod-
ings the set of all stable matchings inI can be enumerated in
a failure-free manner (using a value-ordering heuristic in the
case of the first encoding).

1.2 Our contribution

The work of[Gentet al., 2001] left open the question as to
whether there exists anO(n2) CSP encoding of SM that cap-
tures exactly the structure of the GS-lists. In this paper we
present two encodings of an instanceI of SMI (and so of
SM) as a CSP instanceJ . Again, for each encoding, we
show that AC propagation achieves the same results as the
EGS algorithm in a precise sense. The first model is a natural
(n + 1)-valued encoding of SMI; it bears some resemblance
to the encoding of SM given in[Lustig and Puget, 2001] and
develops the ‘conflict matrices’ model of[Gentet al., 2001].
In this model we show that AC propagation may be carried
out in O(n3) time. Our model is more intuitive, and is more
time and space-efficient, than the ‘conflict matrices’ model.
Our second model is a more compact 4-valued encoding that
develops the Boolean encoding from[Gentet al., 2001] – in
this case we show that AC propagation may be carried out in
O(n2) time. For both models we prove that the GS-lists in
I correspond to the domains remaining after establishing AC
in J . Furthermore, we show that, for both encodings, we are
guaranteed a failure-free enumeration of all stable matchings



in I using AC propagation combined with a value-ordering
heuristic inJ . Our second encoding therefore answers the
question left open by[Gentet al., 2001].

Our results show that, provided the model is chosen care-
fully, AC propagation within a CSP formulation of SMI cap-
tures the structure produced by the EGS algorithm. More-
over our second encoding indicates that AC propagation can
be achieved within the same time complexity as the (optimal)
MEGS algorithm for SMI, producing equivalent structural re-
sults. This strengthens the assertion in[Gent et al., 2001]
regarding the applicability of constraint programming to the
general domain of stable matching problems. Furthermore, in
many practical situations there may be additional constraints
that cannot be accommodated by a straightforward modifica-
tion of the EGS algorithm. Such constraints could however be
built on top of either of the two models that we present here.
Possible extensions could arise from variants of SMI that are
NP-hard[Ronn, 1990; Ng and Hirschberg, 1991; Kato, 1993;
Manloveet al., 2002].

We remark that, independently, Unsworth and Prosser have
formulated a specialisedn-ary constraint for SMI, such that
AC propagation gives rise to the GS-lists, where the com-
plexity of establishing AC isO(n2) [Unsworth and Prosser,
2005a]. They have also constructed a specialised binary con-
straint for SMI that yields the same structure, where AC may
be established inO(n3) time[Unsworth and Prosser, 2005b].
In both cases, all stable matchings may be generated using a
failure-free enumeration.

The remainder of this paper is organised as follows. Sec-
tion 2 contains the(n+1)-valued encoding. We show that AC
may be established inO(n3) time, proving the structural re-
lationship between AC propagation and the GS-lists. This is
followed by the failure-free enumeration result for this model.
In Section 3 we present the 4-valued encoding, following a
similar approach, however in this case we show that AC may
be established inO(n2) time. Finally, Section 4 contains
some concluding remarks.

2 (n + 1)-valued encoding
2.1 Overview of the encoding
In this section we present an(n + 1)-valued binary CSP
encoding for an instanceI of SMI. We assume that
M = {m1,m2, . . . ,mn} is the set of men andW =
{w1, w2, . . . , wn} is the set of women inI (it is not difficult
to extend our encoding to the case that the numbers of men
and women are not equal, but for simplicity we assume that
they are equal). For each manmi ∈M and womanwj ∈ W,
the length ofmi’s andwj ’s preference list is denoted bylmi
and lwj respectively. We letL denote the total length of the
preference lists inI. Also, for any personz ∈ M ∪ W,
we letPL(z) denote the set of persons onz’s original pref-
erence list inI, and we letGS(z) denote the set of persons
on z’s GS-list in I. For each manmi ∈ M and woman
wj ∈ PL(mi), we denote the position ofwj onmi’s original
preference list (regardless of any deletions that may be carried
out by the MEGS/WEGS algorithms) byrank(mi, wj), with
rank(wj ,mi) being similarly defined. Ifwj ∈ W\PL(mi),
thenrank(mi, wj) andrank(wj ,mi) are undefined.

We define a CSP encodingJ for an instanceI of SMI by
introducing2n variables to represent the men and women in
the original instanceI. For each manmi ∈ M, we intro-
duce a variablexi in J whose domain, denoted bydom(xi),
is initially defined asdom(xi) = {1, 2, . . . , lmi } ∪ {n + 1}.
Similarly, for each womanwj ∈ W, we introduce a variable
yj in J whose domain, denoted bydom(yj), is initially de-
fined asdom(yj) = {1, 2, . . . , lwj } ∪ {n + 1}.

An intuitive meaning of the variables is now given. In-
formally, if xi = p (1 ≤ p ≤ lmi ), thenmi marries the
womanwj such thatrank(mi, wj) = p, and similarly for
the case thatyj = q (1 ≤ q ≤ lwj ). More formally, if
min dom(xi) ≥ p (1 ≤ p ≤ lmi ), then the pair(mi, wl)
has been deleted as part of the MEGS algorithm applied to
I, for all wl such thatrank(mi, wl) < p. Hence ifwj is
the woman such thatrank(mi, wj) = p, then eithermi pro-
poses towj during the execution of the MEGS algorithm or
the pair(mi, wj) will be deleted before the proposal occurs.
Similarly if min dom(yj) ≥ q (1 ≤ q ≤ lwj ), then the pair
(mk, wj) has been deleted as part of the WEGS algorithm
applied toI, for all mk such thatrank(mk, wj) < q. Hence
if mi is the man such thatrank(wj ,mi) = q, then either
wj proposes tomi during the execution of the WEGS algo-
rithm or the pair(mi, wj) will be deleted before the proposal
occurs. Ifxi = n + 1 (respectivelyyj = n + 1) thenmi

(respectivelywj) is unmatched upon termination of each of
the MEGS or WEGS algorithms applied toI.

The constraints used for the(n + 1)-valued encoding are
shown in Figure 3. In the context of Constraints 1 and 4,
j is the integer such thatrank(mi, wj) = p; also q =
rank(wj ,mi). In the context of Constraints 2 and 3,i is the
integer such thatrank(wj ,mi) = q; alsop = rank(mi, wj).

An interpretation of Constraints 1 and 3 is now given (a
similar interpretation can be attached to Constraints 2 and 4
with the roles of the men and women reversed). First con-
sider Constraint 1, a stability constraint. This ensures that
if a manmi obtains a partner no better than hispth-choice
womanwj , thenwj obtains a partner no worse than herqth-
choice manmi. Now consider Constraint 3, a consistency
constraint. This ensures that if manmi is removed fromwj ’s
list, thenwj is removed frommi’s list.

2.2 Arc consistency in the(n + 1)-valued encoding
We now show that, given the above CSP encodingJ of an
SMI instanceI, the domains of the variables inJ following
AC propagation correspond to the GS-lists ofI. That is, we
prove that, after AC is established, for anyi, j (1 ≤ i, j ≤ n),
wj ∈ GS(mi) if and only if p ∈ dom(xi), and simi-
larly mi ∈ GS(wj) if and only if q ∈ dom(yj), where
rank(mi, wj) = p andrank(wj ,mi) = q.

1. xi ≥ p ⇒ yj ≤ q (1 ≤ i ≤ n, 1 ≤ p ≤ lmi )
2. yj ≥ q ⇒ xi ≤ p (1 ≤ j ≤ n, 1 ≤ q ≤ lwj )
3. yj 6= q ⇒ xi 6= p (1 ≤ j ≤ n, 1 ≤ q ≤ lwj )
4. xi 6= p ⇒ yj 6= q (1 ≤ i ≤ n, 1 ≤ p ≤ lmi )

Figure 3: The constraints for the(n + 1)-valued encoding of
an instance SMI.



The proof is presented using two lemmas. The first lemma
shows that the arc consistent domains are equivalent to sub-
sets of the GS-lists. This is done by proving that the deletions
made by the MEGS and WEGS algorithms applied toI are
correspondingly made during AC propagation. The second
lemma shows that the GS-lists correspond to a subset of the
domains remaining after AC propagation. This is done by
proving that the GS-lists forI give rise to arc consistent do-
mains for the variables inJ .
Lemma 2. For a giveni (1 ≤ i ≤ n), let p be an integer
(1 ≤ p ≤ lmi ) such thatp ∈ dom(xi) after AC propagation.
Then the womanwj such thatrank(mi, wj) = p belongs
to the GS-list ofmi. A similar correspondence holds for the
women.

Proof. The GS-lists are constructed as a result of the dele-
tions made by the MEGS and WEGS algorithms applied to
I. We show that the corresponding deletions are made to the
relevant variables’ domains during AC propagation. In the
following proof, only deletions made by the MEGS algorithm
are considered; a similar argument can be used to prove the
result for an execution of the WEGS algorithm.

We prove the following fact by induction on the number of
proposalsz during an executionE of the MEGS algorithm. If
proposalz consists of manmi proposing to womanwj , with
rank(mi, wj) = p and rank(wj ,mi) = q, thenxi ≥ p,
yj ≤ q and for each manmk such thatrank(wj ,mk) = s
(q < s ≤ lwj ), xk 6= r, whererank(mk, wj) = r.

First consider the base case wherez = 1. Thenp = 1.
Since xi ≥ 1, propagation of Constraint 1 yieldsyj ≤
q. Then for eachs (q < s ≤ lwj ), propagation of Con-
straint 3 givesxk 6= r where rank(wj ,mk) = s and
rank(mk, wj) = r.

Now suppose thatz = c > 1 and that the result holds for
z < c. We consider the cases wherep = 1 andp > 1.
Case (i). For p = 1 the proof is similar to that of the base
case.
Case (ii). Now suppose thatp > 1. Let wl be any woman
such thatrank(mi, wl) = r < p. Thenwl has been deleted
from mi’s list during the MEGS algorithm. Now suppose
rank(wl,mi) = s1. Thenmi was deleted fromwl’s pref-
erence list because she received a proposal from a manmk

whom she prefers tomi, whererank(wl,mk) = s2 < s1.
Sincemk proposed towl before thecth proposal, we have
by the induction hypothesis thatyl ≤ s2, so thatyl 6= s1

and xi 6= r. But wl was arbitrary and hencexi 6= r for
1 ≤ r ≤ p−1, so thatxi ≥ p. The rest of the proof is similar
to that of the base case.

Lemma 3. For eachi (1 ≤ i ≤ n), define a domain of values
dom(xi) for the variablexi as follows: ifGS(mi) = ∅, then
dom(xi) = {n+1}; otherwisedom(xi) = {rank(mi, wj) :
wj ∈ GS(mi)}. The domain of eachyj (1 ≤ j ≤ n) is
defined analogously. Then the domains so defined are arc
consistent inJ .

Proof. To show that the variables’ domains are arc consistent
we consider each constraint in turn.

First consider Constraint 1 and suppose thatxi ≥ p. Then
during the execution of the MEGS algorithm applied toI,

either (i) mi proposed towj , or (ii) the pair (mi, wj) was
deleted, whererank(mi, wj) = p andrank(wj ,mi) = q.
We consider the two cases below:
Case (i) If mi proposed towj during the execution of the
MEGS algorithm, then all men ranked belowmi on wj ’s list
are deleted, i.e.yj ≤ q as required.
Case (ii)If (mi, wj) was deleted during the execution of the
MEGS algorithm thenwj must have received a proposal from
a manmk whom she prefers tomi, whererank(wj ,mk) = s
(s < q). Therefore the MEGS algorithm deletes all those
men mz from wj ’s list such thatrank(wj ,mz) > s, i.e.
yj ≤ s < q as required.

Next consider Constraint 3. Suppose thatyj 6= q, so
that during an execution of either the MEGS or WEGS algo-
rithms,mi is deleted fromwj ’s list, whererank(wj ,mi) =
q. To ensure that the preference lists are consistent, the same
algorithm deleteswj from mi’s list, i.e. xi 6= p, where
rank(mi, wj) = p, as required.

Verifying Constraints 2 and 4 is similar to the above with
the roles of the men and women reversed and the MEGS al-
gorithm exchanged for the WEGS algorithm.

The two lemmas above, together with the fact that AC algo-
rithms find the unique maximal set of arc consistent domains,
lead to the following theorem.

Theorem 4. Let I be an instance of SMI, and letJ be a
CSP instance obtained by the (n+1)-valued encoding. Then
the domains remaining after AC propagation inJ corre-
spond to the GS-lists ofI in the following sense: for anyi, j
(1 ≤ i, j ≤ n), wj ∈ GS(mi) if and only ifp ∈ dom(xi),
and similarly mi ∈ GS(wj) if and only if q ∈ dom(yj),
whererank(mi, wj) = p andrank(wj ,mi) = q.

The constraints shown in Figure 3 may be revised inO(1)
time during propagation, assuming that upper and lower
bounds for the variables’ domains are maintained. Hence the
time complexity for establishing AC isO(ed), wheree is the
number of constraints andd is the domain size[van Henten-
ryck et al., 1992]. For this encoding we havee = O(n2)
andd = O(n), therefore AC may be established inO(n3)
time; also the space complexity isO(L). These complexities
represent an improvement on the ‘conflict matrices’ encod-
ing in [Gentet al., 2001], whose time and space complexities
areO(n4) andO(L2) respectively. Moreover we claim that
the model that we present in this section is a very natural and
intuitive encoding for SMI.

Theorems 4 and 1(iii) show that we can find a solution to
the CSP giving the man-optimal stable matchingM0 without
search: for each manmi ∈ M, we letp = min dom(xi). If
p = n+1 thenmi is unmatched inM0, otherwise the partner
of mi is the womanwj ∈ W such thatrank(mi, wj) = p.
Considering theyj variables in a similar fashion gives the
woman-optimal stable matchingMz.

In fact we may go further and show that the CSP encoding
yields all stable matchings inI without having to backtrack
due to failure. That is, we may enumerate all solutions of
I in a failure-free manner using AC propagation inJ com-
bined with a value-ordering heuristic. The following theo-
rem, proved in[Manlove and O’Malley, 2005], describes the
enumeration procedure.



Theorem 5. Let I be an instance of SMI and letJ be a CSP
instance obtained using the(n + 1)-valued encoding. Then
the following search process enumerates all solutions inI
without repetition and without ever failing due to an incon-
sistency:

– AC is established as a preprocessing step, and after each
branching decision, including the decision to remove a
value from a domain;

– if all domains are arc consistent and some variablexi

has two or more values in its domain, then the search
proceeds by settingxi to the minimum valuep in its do-
main. On backtracking, the valuep is removed from the
domain ofxi;

– when a solution is found, it is reported and backtracking
is forced.

3 4-valued encoding

3.1 Overview of the encoding

In this section we present a CSP encoding of SMI that is more
complex but more efficient than the(n + 1)-valued encoding
given in Section 2.1. We assume the notation as defined for
an instance of SMI in the first paragraph of Section 2.1.

We construct a CSP encodingJ for an SMI instanceI by
introducingL variables, each of which represents a prefer-
ence list entry. For each manmi (1 ≤ i ≤ n) we introduce
lmi variablesxi,p (1 ≤ p ≤ lmi ), corresponding to the mem-
bers ofPL(mi). Similarly for each womanwj (1 ≤ j ≤ n)
we introducelwj variablesyj,q (1 ≤ q ≤ lwj ). As before the
domain of a variablez is denoted bydom(z); initially each
variable is given the domain{0, 1, 2, 3}.

An intuitive meaning of the variables’ values is given in
Figure 4. The table indicates that deletions carried out by
the MEGS and WEGS algorithms applied toI are reflected
by the removal of elements from the relevant variables’ do-
mains. In particular, removal of the value 2 (respectively
3) from a variable’s domain corresponds to a preference list
entry being deleted by the MEGS (respectively WEGS) al-
gorithm applied toI. Note that potentially a given prefer-
ence list entry could be deleted by both algorithms. Also,
if the value 0 is removed fromdom(xi,p) (1 ≤ i ≤ n,
1 ≤ p ≤ lmi ), then eithermi proposes towj during the MEGS
algorithm (whererank(mi, wj) = p) or the entry is deleted
prior to the proposal occurring. Similarly if the value 0 is
removed fromdom(yj,q) (1 ≤ j ≤ n, 1 ≤ q ≤ lwj ), then
eitherwj proposes tomi during the WEGS algorithm (where
rank(wj ,mi) = q) or the entry is deleted prior to the pro-
posal occurring.

The constraints for this encoding are listed in Figure 5. In
the context of Constraints 4 and 10,j is the integer such
that rank(mi, wj) = p; also q = rank(wj ,mi). In the
context of Constraints 5 and 9,i is the integer such that
rank(wj ,mi) = q; also p = rank(mi, wj). Further, we
remark that Constraints 4 and 9 are present only ifq+1 ≤ lwj
andp + 1 ≤ lmi respectively.

An interpretation of each constraint is now given. Firstly
consider Constraint 1. This constraint is used to start the

proposal sequence and can be interpreted as each man ini-
tially proposing to the first woman on his list during the
MEGS algorithm. Constraint 2 states that if(mi, wl) has
been deleted by the MEGS algorithm for allwl such that
rank(mi, wl) < p, and (mi, wj) has also been deleted,
whererank(mi, wj) = p, then(mi, wl) has been deleted by
the by MEGS algorithm for allwl such thatrank(mi, wl) ≤
p. Hence, ifp + 1 ≤ lmi , mi will subsequently propose to
the womanwl such thatrank(mi, wl) = p + 1 during the
MEGS algorithm, or the pair(mi, wl) will be deleted before
the proposal occurs. Constraint 3 states that if a woman’s
qth-choice partner is deleted during an iteration of the MEGS
algorithm, then her(q + 1)th-choice partner should also be
deleted. Constraint 4 shows a stability constraint: this en-
sures that if manmi obtains a partner no better thanwj , then
wj obtains a partner no worse thanmi. Lastly Constraint 5
is a consistency constraint: this ensures that ifmi is removed
from wj ’s list during the MEGS algorithm thenwj is also re-
moved frommi’s list. Constraints 6-10 have a similar mean-
ing with the roles of the men and women reversed, and with
MEGS replaced by WEGS.

3.2 Arc consistency in the 4-valued encoding
We now prove that, given the above CSP encodingJ of an
SMI instanceI, the domains of the variables inJ following
AC propagation correspond to the GS-lists ofI. That is, we
show that, after AC is established, for anyi, j (1 ≤ i, j ≤ n),
wj ∈ GS(mi) if and only if {2, 3} ⊆ dom(xi,p), and simi-
larly mi ∈ GS(wj) if and only if {2, 3} ⊆ dom(yj,q), where
rank(mi, wj) = p andrank(wj ,mi) = q.

In order to establish this correspondence, we define theGS-
domainsfor the variables inJ as follows. Initially let each
variable inJ have domain{0, 1, 2, 3}. Run the MEGS algo-
rithm on instanceI. Then use rules (i), (ii) and (v) in Figure 4
to remove 0’s and 2’s from the appropriate domains, obtain-
ing CSP instanceJ ′ from J . Next run the WEGS algorithm
on the original instanceI. Now use rules (iii), (iv) and (vi)
in Figure 4 to remove 0’s and 3’s from the appropriate do-
mains inJ ′, obtaining CSP instanceJ ′′. The domains of the
variables inJ ′′ are referred to as theGS-domains.

As in Section 2.2, two lemmas are used to prove that en-
forcing AC gives the GS-lists. The first lemma shows that
the domains remaining following AC propagation are equiv-
alent to subsets of the GS-lists. This is done by proving that
if a deletion is made as part of either the MEGS or WEGS
algorithms, then a corresponding deletion is made during AC
propagation. The second lemma shows that the GS-lists cor-
respond to a subset of the domains remaining after AC is en-
forced. This is done by proving that the GS-domains forJ
are arc consistent.

Lemma 6. For a giveni (1 ≤ i ≤ n), let p be an integer
such that{2, 3} ⊆ dom(xi,p) after AC propagation. Then
the womanwj such thatrank(mi, wj) = p belongs to the
GS-list ofmi. A similar correspondence holds for the women.

Proof. The GS-lists are obtained through deletions made by
the MEGS and WEGS algorithms. We prove that the cor-
responding deletions are made to the relevant variables’ do-
mains during AC propagation. In particular, suppose that



(i) 0 /∈ dom(xi,p) ⇔ p = 1 or 2 /∈ dom(xi,r) for all r (1 ≤ r < p) (i.e. man
mi’s rth-choice woman is removed from his list as part of the
MEGS algorithm applied toI, for all r (1 ≤ r < p));

(ii) 2 /∈ dom(xi,p) ⇔ manmi’s pth-choice woman is removed from his list
as part of the MEGS algorithm applied toI;

(iii) 3 /∈ dom(xi,p) ⇔ manmi’s pth-choice woman is removed from his list
as part of the WEGS algorithm applied toI;

(iv) 0 /∈ dom(yj,q) ⇔ q = 1 or 3 /∈ dom(yi,s) for all s (1 ≤ s < q) (i.e. woman
wj ’s sth-choice man is removed from her list as part of
the WEGS algorithm applied toI, for all s (1 ≤ s < q));

(v) 2 /∈ dom(yj,q) ⇔ womanwj ’s qth-choice man is removed from her list
as part of the MEGS algorithm applied toI;

(vi) 3 /∈ dom(yj,q) ⇔ womanwj ’s qth-choice man is removed from her list
as part of the WEGS algorithm applied toI.

Figure 4: Intuitive variable meanings for the 4-valued SMI encoding.

mi ∈ M andwj ∈ PL(mi). Let p = rank(mi, wj) and
q = rank(wj ,mi). Then we prove:

– (mi, wj) deleted during MEGS algorithm⇔ xi,p 6= 2
andyj,q 6= 2.

– (mi, wj) deleted during WEGS algorithm⇔ xi,p 6= 3
andyj,q 6= 3.

In this proof, only deletions made by the MEGS algorithm
are considered; a similar argument can be used for deletions
made by the WEGS algorithm.

It suffices to prove the following by induction on the num-
ber of proposalsz during an executionE of the MEGS algo-
rithm. If proposalz consists of manmi proposing to woman
wj , with rank(mi, wj) = p and rank(wj ,mi) = q, then
xi,p > 0, yj,s 6= 2 (q < s ≤ lwj ), and for each manmk

such thatrank(wj ,mk) = s (q < s ≤ lwj ), xk,r 6= 2, where
rank(mk, wj) = r.

First consider the base case wherez = 1. Thenp = 1.
By Constraint 1,xi,1 > 0, and by Constraint 4 we have
yj,q+1 6= 2. Hence by Constraint 3, it follows thatyj,s 6= 2
for eachs (q < s ≤ lwj ). Also for each suchs, propagation of
Constraint 5 ensures thatxk,r 6= 2, whererank(wj ,mk) = s
andrank(mk, wj) = r.

Now suppose thatz = c > 1 and that the result holds for
z < c. We consider the cases wherep = 1 andp > 1.

Case (i)For p = 1 the proof is similar to that of the base
case.
Case (ii) Now assume thatp > 1. Let wl be any woman
such thatrank(mi, wl) = r < p. Thenwl has been deleted
from mi’s list during the MEGS algorithm. Now suppose
that rank(wl,mi) = s1. Thenmi was deleted fromwl’s
list because she received a proposal from a manmk whom
she prefers tomi, whererank(wl,mk) = s2 < s1. Since
mk proposed towl before thecth proposal, by the induction
hypothesis it follows thatxi,r 6= 2. However sincewl was
arbitrary, it follows thatxi,r 6= 2 for 1 ≤ r ≤ p − 1. From
Constraint 1 we havexi,1 > 0, and hence the propagation of
Constraint 2 (p − 1 times) yieldsxi,p > 0. The rest of the
proof is similar to that of the base case.

Lemma 7. The GS-domains (corresponding to the GS-lists
in I) are arc consistent inJ .

Proof. We consider each constraint in turn to show that the
GS-domains are arc consistent.

Clearly Constraint 1 is satisfied, asp = 1 in rule (i) of
Figure 4, i.e.xi,1 > 0. Now consider Constraint 4 and
suppose thatxi,p > 0. Then during the execution of the
MEGS algorithm, either (i)mi proposed towj , or (ii) the
pair (mi, wj) was deleted, whererank(mi, wj) = p and

1. xi,1 > 0 (1 ≤ i ≤ n)
2. (xi,p 6= 2 ∧ xi,p > 0) ⇒ xi,p+1 > 0 (1 ≤ i ≤ n, 1 ≤ p ≤ lmi − 1)
3. yj,q 6= 2 ⇒ yj,q+1 6= 2 (1 ≤ j ≤ n, 1 ≤ q ≤ lwj − 1)
4. xi,p > 0 ⇒ yj,q+1 6= 2 (1 ≤ i ≤ n, 1 ≤ p ≤ lmi )
5. yj,q 6= 2 ⇒ xi,p 6= 2 (1 ≤ j ≤ n, 1 ≤ q ≤ lwj )

6. yj,1 > 0 (1 ≤ j ≤ n)
7. (yj,q 6= 3 ∧ yj,q > 0) ⇒ yj,q+1 > 0 (1 ≤ j ≤ n, 1 ≤ q ≤ lwj − 1)
8. xi,p 6= 3 ⇒ xi,p+1 6= 3 (1 ≤ i ≤ n, 1 ≤ p ≤ lmi − 1)
9. yj,q > 0 ⇒ xi,p+1 6= 3 (1 ≤ j ≤ n, 1 ≤ q ≤ lwj )

10. xi,p 6= 3 ⇒ yj,q 6= 3 (1 ≤ i ≤ n, 1 ≤ p ≤ lmi )

Figure 5: The constraints for the 4-valued encoding of an instance SMI.



rank(wj ,mi) = q. Assumingq + 1 ≤ lwj , we consider
the two cases separately.
Case (i) If mi proposed towj during the execution of the
MEGS algorithm, thenwj deletes all those men ranked below
mi on her preference list, so that in particular,yj,q+1 6= 2.
Case (ii) If the pair (mi, wj) was deleted during the execu-
tion of the MEGS algorithm, thenwj must have received a
proposal from a manmk whom she prefers tomi. Conse-
quently, all men ranked belowmk onwj ’s list are deleted by
the MEGS algorithm, so that in particular,yj,q+1 6= 2.

Now suppose thatyj,q 6= 2. Then by construction of the
GS-domains, the MEGS algorithm deleted the manmi such
thatrank(wj ,mi) = q. So in addition, 2 is removed from the
domain ofxi,p, whererank(mi, wj) = p, satisfying Con-
straint 5. Also, as in Case (ii) above,yj,q+1 6= 2, satisfying
Constraint 3.

Now consider Constraint 2 and suppose thatxi,p 6= 2 and
xi,p > 0. Thenwj has been removed from the list ofmi,
whererank(mi, wj) = p. Also xi,p > 0 implies that either
(i) p = 1, or (ii) xi,r 6= 2 (1 ≤ r < p). We consider the two
cases separately.
Case (i)If p = 1, we havexi,1 6= 2, and hencexi,2 > 0 by
construction of the GS-domains.
Case (ii)As xi,p > 0, it follows thatxi,r 6= 2 (1 ≤ r < p).
Also xi,p 6= 2. Hencexi,r 6= 2 (1 ≤ r ≤ p), so that
xi,p+1 > 0 by construction of the GS-domains.

A similar argument can be used to verify that Constraints
6-10 are satisfied. Here the roles of the men and women are
reversed and MEGS is replaced by WEGS.

The two lemmas above, together with the fact that AC algo-
rithms find the unique maximal set of arc consistent domains,
lead to the following theorem.

Theorem 8. LetI be an instance of SMI, and letJ be a CSP
instance obtained by the 4-valued encoding. Then the do-
mains remaining after AC propagation inJ correspond to the
GS-lists ofI in the following sense: for anyi, j (1 ≤ i, j ≤
n), wj ∈ GS(mi) if and only if {2, 3} ⊆ dom(xi,p), and
similarly mi ∈ GS(wj) if and only if {2, 3} ⊆ dom(yj,q),
whererank(mi, wj) = p andrank(wj ,mi) = q.

In general AC may be established inO(edr) time, where
e is the number of constraints,d the domain size, andr the
arity of each constraint[Bessìere and Ŕegin, 1997]. In the
context of the 4-valued encoding, it follows thate = O(L),
d = 4 andr = 2, and hence AC may be enforced in time
O(L) = O(n2). The time complexity ofO(L) is linear in
the size ofI and gives an improvement over the encoding
presented in Section 2.1. MoreoverO(L) is also the time
complexity of the EGS algorithm, which is known to be opti-
mal [Ng and Hirschberg, 1990]. The space complexity of the
4-valued encoding is alsoO(L).

Theorems 8 and 1(iii) show that we can find a solution to
the CSP giving the man-optimal stable matchingM0 without
search: for each manmi ∈ M, if {2, 3} 6⊆ dom(xi,r) for
eachr (1 ≤ r ≤ lmi ) thenmi is unmatched inM0, otherwise
we letp be the unique integer such thatdom(xi,p) = {1, 2, 3}
and define the partner ofmi to be the womanwj ∈ W such
that rank(mi, wj) = p. Considering theyj variables in a
similar way gives the woman-optimal stable matchingMz.

As in Section 2, we may go further and show that the CSP
encoding yields all stable matchings inI without having to
backtrack due to failure. As before we enumerate all solu-
tions of I in a failure-free manner using AC propagation in
J combined with a value-ordering heuristic, however in this
case, maintenance of AC is much less expensive. The fol-
lowing theorem, proved in[Manlove and O’Malley, 2005],
describes the enumeration strategy in this context.

Theorem 9. Let I be an instance of SMI and letJ be a CSP
instance obtained fromI using the 4-valued encoding. Then
the following search process enumerates all solutions inI
without repetition and without ever failing due to an incon-
sistency:

– AC is established as a preprocessing step, and after each
branching decision, including the decision to remove a
value from a domain;

– if all domains are arc consistent and some variable
xi,r has{0, 1, 2, 3} in its domain, then we letp be the
unique integer such thatdom(xi,p) = {1, 2, 3} and we
choosep′ to be the minimum integer(p < p′) such that
dom(xi,p′) = {0, 1, 2, 3};

– the search proceeds by removing the value 3 from the do-
main ofxi,p′ . On backtracking, the value 2 is removed
from the domain ofyj,q, whererank(mi, wj) = p and
rank(wj ,mi) = q;

– when a solution is found, it is reported and backtracking
is forced.

4 Concluding remarks
In this paper we have described two models for the Stable
Marriage problem and its variant SMI as a CSP. Our first en-
coding is very natural and may be used to derive the GS-lists
following AC propagation, although the time complexity for
establishing AC is worse than that of the EGS algorithm. Our
second encoding, whilst more complex, again yields the GS-
lists, but this time the time complexity for AC propagation
is optimal. Using both encodings we are able to find all sta-
ble matchings for a given instance of SMI using a failure-free
enumeration without search.

A natural extension of this work is to the case where there
is indifference in the preference lists. It has already been
demonstrated[Gent and Prosser, 2002a; 2002b] that the ear-
lier encodings of[Gentet al., 2001] can be extended to the
case where preference lists in a given SMI instance may in-
clude ties, suggesting that the same should be possible with
the models that we present here. Another direction is to con-
sider the Hospitals / Residents problem (HR) (a many-one
generalisation of SMI). The(n + 1)-valued encoding from
this paper, and the specialised constraints from[Unsworth
and Prosser, 2005a; 2005b], have already been generalised to
the HR case (see[Manloveet al., 2005] for further details).

Finally, it remains to conduct an empirical investigation of
the encodings presented in this paper, based on randomly-
generated and real-world data. Such investigations have al-
ready been carried out for other encodings for SM and its
variants [Gent and Prosser, 2002a; 2002b; Unsworth and
Prosser, 2005a; 2005b].
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