
Popular Matchings in
the Capacitated House

Allocation Problem

David F. Manlove and Colin T.S. Sng

Department of Computing Science Technical Report

University of Glasgow TR-2006-222

Glasgow G12 8QQ June 2006

UK

Popular Matchings in the

Capacitated House Allocation Problem

David F. Manlove∗ and Colin T.S. Sng

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.

Email: {davidm,sngts}@dcs.gla.ac.uk.

Abstract

We consider the problem of finding a popular matching in the Capacitated House
Allocation problem (CHA). An instance of CHA involves a set of agents and a set of
houses. Each agent has a preference list in which a subset of houses are ranked in strict
order, and each house may be matched to a number of agents that must not exceed
its capacity. A matching M is popular if there is no other matching M ′ such that the
number of agents who prefer their allocation in M ′ to that in M exceeds the number of
agents who prefer their allocation in M to that in M ′. Here, we give an O(

√
Cn1 +m)

algorithm to determine if an instance of CHA admits a popular matching, and if so,
to find a largest such matching, where C is the total capacity of the houses, n1 is the
number of agents and m is the total length of the agents’ preference lists. For the case
where preference lists may contain ties, we give an O((

√
C + n1)m) algorithm for the

analogous problem.

1 Introduction

An instance I of the Capacitated House Allocation problem (CHA) comprises a bipartite
graph G = (A,H,E), where A = {a1, a2, ..., an1

} is the set of agents, H = {h1, h2, ..., hn2
}

is the set of houses and E is the set of edges in G. We let n = n1 +n2 and m = |E|. Each
agent ai ∈ A ranks in strict order a subset of the set of houses (the acceptable houses for
ai) represented by his/her preference list. Each house hj ∈ H has a capacity cj ≥ 1 which
indicates the maximum number of agents that may be matched to it. We assume that
m ≥ max {n1, n2}, i.e. no agent has an empty preference list and each house is acceptable
to at least one agent. We also assume that cj ≤ n1 for each hj ∈ H. Let C =

∑n2

j=1 cj

denote the sum of the capacities of the houses.
A matching M in I is a subset of E such that (i) each agent is matched to at most

one house in M , and (ii) each house hj ∈ H is matched to at most cj agents in M . If an
agent ai ∈ A is matched in M , we denote by M(ai) the house that ai is matched to in
M . We define M(hj) to be the set of agents matched to hj in M (thus M(hj) could be
empty). Given two matchings M and M ′ in I, we say that an agent ai prefers M ′ to M
if either (i) ai is matched in M ′ and unmatched in M , or (ii) ai is matched in both M ′

and M and prefers M ′(ai) to M(ai). Let P (M ′,M) denote the set of agents who prefer
M ′ to M . Then, M ′ is more popular than M if |P (M ′,M)| > |P (M,M ′)|, i.e. the number
of agents who prefer M ′ to M is greater than the number of agents who prefer M to M ′.

∗Supported by EPSRC grant GR/R84597/01 and RSE/Scottish Executive Personal Research Fellow-
ship.

1

(a) a1: h1 h2 h3 (b) a1: h1 h2

a2: h1 h2 h3 a2: h1

a3: h1 h2 h3

Figure 1: Two instances of HA.

Furthermore, a matching M in I is popular if there is no other matching M ′ in I that is
more popular than M .

CHA is an example of a bipartite matching problem with one-sided preferences [1, 2,
7, 3]. These problems have applications in areas such as campus housing allocation in
US universities [1], hence the problem name; in assigning probationary teachers to their
first posts in Scotland; and in Amazon’s DVD rental service. A variety of optimality
criteria have been defined for such problems. Gärdenfors [6] first introduced the notion of
a popular matching (also known as a majority assignment) in the context of voting theory.
Alternatively, Pareto optimality [1, 2] is often regarded by economists as a fundamental
property to be satisfied. A matching M is Pareto optimal if there is no matching M ′ such
that some agent prefers M ′ to M , and no agent prefers M to M ′. Finally, a matching is
rank maximal [7] if it assigns the maximum number of agents to their first-choice houses,
and subject to this, the maximum number of agents to their second-choice houses, and so
on. However, Pareto optimal matchings and rank maximal matchings need not be popular.

Popular matchings were considered by Abraham et al. [3] in the context of the House
Allocation problem (HA) – the special case of CHA in which each house has capacity 1.
They gave an instance of HA in which no popular matching exists (see Figure 1(a)) and also
noted that popular matchings can have different sizes (see Figure 1(b); in this HA instance
the matchings M1 = {(a1, h1)} and M2 = {(a1, h2), (a2, h1)} are both popular). Abraham
et al. [3] described an O(n + m) algorithm for finding a maximum cardinality popular
matching (henceforth a maximum popular matching) if one exists, given an instance of
HA. They also described an O(

√
nm) counterpart for the House Allocation problem with

Ties (HAT) – the generalisation of HA in which agents’ preferences may include ties.
Several other recent papers have also focused on popular matchings. Mahdian [8] gave

some probabilistic results with respect to the existence of popular matchings in a random
instance of HA. Abraham and Kavitha [4] considered popular matchings in a dynamic
matching market in which agents and houses can enter and leave the market, and showed
that there exists a 2-step voting path to compute a new popular matching from some initial
matching after every such change, provided some popular matching exists. Also Mestre
[9] studied a generalisation of the problem in which agents have a weight indicating their
priority, and the objective is to compute a weighted popular matching M (i.e. there is no
other matching M ′ such that the weighted majority of the agents prefer M ′ to M .)

In this paper, we consider popular matchings in instances of CHA and CHAT, where
CHAT denotes the Capacitated House Allocation problem with Ties – the generalisation of
CHA in which agents’ preference lists may contain ties. Both CHA and CHAT are natural
generalisations of the one-one HA and HAT models considered in [3] to the case where
houses may have non-unitary capacity. We extend the characterisations and algorithms
for popular matchings from [3] to these many-one settings. In particular, in Section 2,
we develop a characterisation of popular matchings in a CHA instance I, and then use
it to construct an O(

√
Cn1 + m) algorithm for finding a maximum popular matching in

I if one exists. In Section 3, we build a new characterisation of popular matchings in a
CHAT instance I, and then use it to construct an O((

√
C + n1)m) algorithm for finding

a maximum popular matching in I if one exists.
We finally remark that a straightforward solution to each of the problems of finding a

maximum popular matching, given an instance of CHA or CHAT, may be to use “cloning”.

2

Informally, this entails creating cj clones for each house hj , to obtain an instance C(I)
of HAT (i.e. each house has capacity 1), and then applying the HAT algorithm of [3] to
C(I). However, we will show in Sections 2 and 3 that this method in general leads to
slower algorithms than the direct approach that we will be using in each case.

2 Popular matchings in CHA

2.1 Characterising popular matchings.

Let I be an instance of CHA. For each agent ai ∈ A, let f(ai) denote the first-ranked
house on ai’s preference list. Any such house hj is called an f -house. For each hj ∈ H,
let f(hj) = {ai ∈ A : f(ai) = hj} and fj = |f(hj)| (possibly fj = 0). Now let M be a
matching in I. We say that a house hj ∈ H is full if |M(hj)| = cj , and undersubscribed
if |M(hj)| < cj . We also create a unique last resort house l(ai) with capacity 1 for each
agent ai ∈ A, and append l(ai) to ai’s preference list. The following lemma is a vital first
step in characterising popular matchings in I.

Lemma 1. Let M be a popular matching in I. Then for every f-house hj, |M(hj) ∩
f(hj)| = min {cj , fj}.

Proof. We consider the following two cases.
– Case (i): Suppose fj ≤ cj . We will show that f(hj) ⊆ M(hj). For, suppose not.

Then choose any ar ∈ f(hj)\M(hj). We consider the subcases that (a) hj is undersub-
scribed and (b) hj is full. In subcase (a), promote ar to hj to obtain a more popular
matching than M . In subcase (b), choose any as ∈ M(hj)\f(hj). Let hk = f(as). Then
hk 6= hj. If hk is undersubscribed, promote ar to hj and promote as to hk to obtain a
more popular matching than M . Otherwise, choose any at ∈ M(hk). We then promote ar

to hj, promote as to hk and demote at to l(at) to obtain a more popular matching than
M .

– Case (ii): Suppose fj > cj . If hj is undersubscribed, then f(hj) 6⊆ M(hj) so
there exists some ar ∈ f(hj)\M(hj) that we can promote to hj to obtain a more popular
matching as in Case (i)(a). Hence, hj is full. Now, suppose for a contradiction that
M(hj) 6⊆ f(hj). Then there exists some as ∈ M(hj)\f(hj). As fj > cj , it follows that
f(hj) 6⊆ M(hj) so there exists some ar ∈ f(hj)\M(hj). The remainder of the argument
follows Case (i)(b).

Hence the following properties hold for the new matching. If fj ≤ cj , then f(hj) ⊆
M(hj). Otherwise, M(hj) ⊆ f(hj) and |M(hj)| = cj . Thus, the condition in the statement
of the lemma is now satisfied.

For each agent ai, we next define s(ai) to be the most-preferred house hj on ai’s
preference list such that either (i) hj is a non-f -house, or (ii) hj is an f -house such that
hj 6= f(ai) and fj < cj . Note that s(ai) must exist in view of l(ai). We refer to such a
house hj as an s-house. We remark that the set of f -houses need not be disjoint from the
set of s-houses. It may be shown that a popular matching M will only match an agent ai

to either f(ai) or s(ai), as indicated by the next two lemmas.

Lemma 2. Let M be a popular matching in I. Then no agent ai ∈ A can be matched in
M to a house between f(ai) and s(ai) on ai’s preference list.

Proof. Suppose that ai is matched to a house hk between f(ai) and s(ai). Then hk is an
f -house and fk ≥ ck, for otherwise s(ai) = hk. As fk ≥ ck, by Lemma 1, M(hk) ⊆ f(hk).
However, f(ai) 6= hk, thus ai /∈ f(hk). Hence, ai cannot be matched to hk.

3

Lemma 3. Let M be a popular matching in I. Then no agent ai ∈ A can be matched in
M to a house worse than s(ai) on ai’s preference list.

Proof. Let hj = s(ai). If hj is undersubscribed, then we can promote ai to hj, a contra-
diction. Hence, hj is full. We consider two cases.

– Case (i): hj is an f -house. By definition of an s-house, fj < cj , so there exists some
ar ∈ M(hj)\f(hj). Let hk = f(ar). Then hk 6= hj . As ck ≥ 1 and fk ≥ 1, it follows by
Lemma 1 that M(hk) 6= ∅. Let as ∈ M(hk). We can then promote ai to hj , promote ar to
hk, and demote as to l(as) to obtain a more popular matching than M , a contradiction.

– Case (ii): hj is not an f -house. Let ar ∈ M(hj). Then ar /∈ f(hj). The remainder
of the proof of this case proceeds as in Case (i).

Let G = (A,H,E) be the underlying graph of I. We form a subgraph G′ of G by
letting G′ contain only two edges for each agent ai, that is, one to f(ai) and the other
to s(ai). We say that a matching M is agent-complete in a given graph if it matches all
agents in the graph. Clearly, in view of last resort houses, all popular matchings must
be agent-complete in G′. However, G′ need not admit an agent-complete matching if
s(ai) 6= l(ai) for some agent ai. In conjunction with Lemmas 1-3, the graph G′ gives rise
to the following characterisation of popular matchings in I.

Theorem 4. A matching M is popular in I if and only if

1. for every f -house hj,

(a) if fj ≤ cj, then f(hj) ⊆ M(hj);

(b) if fj > cj, then |M(hj)| = cj and M(hj) ⊆ f(hj).

2. M is an agent-complete matching in the reduced graph G′.

Proof. By Lemmas 1-3, any popular matching necessarily satisfies Conditions 1 and 2. We
now show that these conditions are sufficient.

Let M by any matching satisfying Conditions 1 and 2 and suppose for a contradiction
that M ′ is a matching that is more popular than M . Let ai be any agent that prefers
M ′ to M and let hk = M ′(ai). Since M is an agent-complete matching in G′, and since
G′ contains only edges from ai to f(ai) and s(ai), then M(ai) = s(ai). Hence either (i)
hk = f(ai) or (ii) hk is an f -house such that hk 6= f(ai) and fk ≥ ck, by definition of s(ai).

In Case (i), if fk < ck then by Condition 1(a), ai ∈ M(hk), a contradiction. Hence in
both Cases (i) and (ii), fk ≥ ck. In each of the cases that fk = ck and fk > ck, it follows
by Conditions 1(a) and 1(b) that |M(hk)| = ck and M(hk) ⊆ f(hk). Since hk is full in
M , it follows that |M(hk)\M ′(hk)| ≥ |M ′(hk)\M(hk)|. Hence for every ai who prefers
M ′(ai) = hk to M(ai), there is a unique aj ∈ M(hk)\M ′(hk). But as aj ∈ M(hk), it
follows that hk = f(aj). Hence aj prefers M(aj) to M ′(aj). Therefore, M is popular in
I.

2.2 Finding a popular matching.

Theorem 4 leads to Algorithm Popular-CHA for finding a popular matching in a CHA
instance I, or reporting that none exists, as shown in Figure 2. The algorithm begins by
using a pre-processing step (lines 2-9) on G′ that matches agents to their first-choice house
hj whenever fj ≤ cj, so as to satisfy Condition 1(a) of Theorem 4.

Our next step computes a maximum cardinality matching M ′ (henceforth a maximum
matching) in G′, according to the adjusted house capacities c′j that are defined following

4

1. M := ∅;
2. for each f -house hj

3. c′

j := cj ;
4. if fj ≤ cj

5. for each ai ∈ f(hj)
6. M := M ∪ {(ai, hj)};
7. delete ai and its incident edges from G′;
8. c′

j := cj − fj ;
9. remove all isolated and full houses, and their incident edges, from G′;
10. compute a maximum matching M ′ in G′ using capacities c′

j ;
11. if M ′ is not agent-complete in G′

12. output “no popular matching exists”
13. else

14. M := M ∪ M ′;
15. for each ai ∈ A
16. hj := f(ai);
17. if fj > cj and |M(hj)| < cj and hj 6= M(ai)
18. promote ai from M(ai) to hj in M ;

Figure 2: Algorithm Popular-CHA for finding a popular matching in CHA.

pre-processing. The subgraph G′ can be viewed as an instance of the Upper Degree-
Constrained Subgraph problem (UDCS) [5]. (An instance of UDCS is essentially the same
as an instance of CHA, except that agents have no explicit preferences in the UDCS case;
the definition of a matching is unchanged.)

We use Gabow’s algorithm [5] to compute M ′ in G′ and then test whether M ′ is agent-
complete. The pre-allocations are then added to M ′ to give M . As a last step, we ensure
that M also meets Condition 1(b) of Theorem 4. For, suppose that hj ∈ H is an f -house
such that fj > cj . Then by definition, hj cannot be an s-house. Thus if ak ∈ M(hj) prior
to the third for loop, it follows that ak ∈ f(hj). At this stage, if hj is undersubscribed
in M , we repeatedly promote any agent ai ∈ f(hj)\M(hj) from M(ai) (note that M(ai)
must be s(ai) and hence cannot be an f -house hl such that fl > cl) to hj until hj is full,
ensuring that M(hj) ⊆ f(hj).

It is clear that the reduced graph G′ of G can be constructed in O(m) time. The
graph G′ has O(n1) edges since each agent has degree 2 in G′. Clearly each of the pre-
and post-processing steps involving the three for loop phases takes O(n1 + n2) time. The
complexity of Gabow’s algorithm [5] for computing M ′ in G′ is O(

√
Cn1). Hence we obtain

the following result concerning the complexity of Algorithm Popular-CHA.

Lemma 5. Given an instance of CHA, we can find a popular matching, or determine that
none exists, in O(

√
Cn1 + m) time.

It remains to consider the problem of finding a maximum popular matching in I. We
begin by dividing the set of all agents into disjoint sets. Let A1 be the set of all agents ai

with s(ai) = l(ai), and let A2 = A − A1. We aim to find a matching M that satisfies the
conditions of Theorem 4, and that minimises the number of A1-agents who are matched
to their last resort house.

We begin by constructing G′, and carrying out the pre-processing step in lines 2-9
of Algorithm Popular-CHA on all agents in A1 ∪ A2. We then try to find a maximum
matching M ′ in G′ that only involves the A2-agents that remain after pre-processing and
their incident edges. If M ′ is not an agent-complete matching of the agents in A2 that
remain after pre-processing, then G admits no popular matching by Theorem 4. Otherwise,
we remove all edges in G′ that are incident to a last resort house, and try to match A1-
agents to their first-choice houses. At each step, we try to match an additional A1-agent to

5

his/her first-choice house by finding an augmenting path with respect to M ′ using Gabow’s
algorithm for UDCS [5], so that we have a maximum matching of agents in A1 ∪A2 in G′

at the end of this process. If any A1-agent remains unmatched, we simply assign him/her
to his/her last resort house, to obtain an agent-complete matching in G′. We also ensure
that Condition 1(b) of Theorem 4 is met by executing the third for loop in Algorithm
Popular-CHA. Clearly then, the matching so obtained, together with the pre-assignments
from earlier, is a maximum popular matching, giving the following theorem.

Theorem 6. Given an instance of CHA, we can find a maximum popular matching, or
determine that none exists, in O(

√
Cn1 + m) time.

An alternative approach to our algorithm would be to use cloning. Given an instance
I of CHA, we may obtain an instance J of HAT by creating cj clones h1

j , h
2
j , ..., h

cj

j of
each house hj in I, where each clone has a capacity of 1. In addition, we replace each
occurrence of hj in a given agent’s preference list with the sequence h1

j , h
2
j , ..., h

cj

j , the
elements of which are listed in a single tie at the point where hj appears. We can then
apply the O(

√
nm) algorithm for HAT given by [3] to J in order to find a maximum

popular matching in I.
We now compare the worst-case complexity of the above cloning approach with that

of our algorithm. The underlying graph GJ of J contains n′ = n1 + C nodes. Let
cmin = min{cj : hj ∈ H}, and for ai ∈ A, let Ai denote the set of acceptable houses for ai.
Then the number of edges in GJ is m′ =

∑
ai∈A

∑
hj∈Ai

cj ≥ mcmin. Hence the complexity

of applying the algorithm given by [3] to J is Ω(
√

Cmcmin). Recall that the complexity
of Algorithm Popular-CHA is O(

√
Cn1 +m). It follows that the cloning method is slower

by a factor of Ω(
√

Ccmin) or Ω(mcmin/n1) (note that m ≥ n1 and cmin ≥ 1) according
as

√
Cn1 ≤ m or

√
Cn1 > m respectively. In the case that cmin = Ω(n1), our approach

offers an improvement by a factor of Ω(n
3/2
1 n

1/2
2) or Ω(m) respectively.

3 Popular matchings in CHAT

In this section, we generalise the characterisation of popular matchings together with
Algorithm Popular-CHA as given in the previous section to the case that I is an instance
of CHAT.

3.1 Characterising popular matchings.

Let M be a popular matching in I. For each agent ai ∈ A, let f(ai) denote the set of
first-ranked houses on ai’s preference list (clearly it is possible that |f(ai)| > 1 in view
of ties in the preference lists). We refer to all such houses hj as f-houses and we let
f(hj) = {ai ∈ A : hj ∈ f(ai)}. Let G = (A,H,E) be the underlying graph of I. Define
E1 = {(ai, hj) : ai ∈ A ∧ hj ∈ f(ai)} to be the set of first-choice edges. We define the
first-choice graph of G as G1 = (A,H,E1).

For instances with strict preference lists, Lemma 1 implies that M ∩E1 is a maximum
matching in G1. As the next lemma indicates, this latter condition also extends to the
CHAT case.

Lemma 7. Let M be a popular matching in I. Then M ∩E1 is a maximum matching in
G1.

Proof. Let M1 = M∩E1. Suppose for a contradiction that M1 is not a maximum matching
in G1. Then M1 admits an augmenting path P = 〈a1, h1, ..., ak , hk〉 with respect to
G1. Clearly, in view of last resort houses, a1 must be matched in M . It follows that

6

M(a1) /∈ f(a1), for otherwise a1 /∈ P . We let M ′ = M\ {(a1,M(a1))}. We consider the
following cases for hk.

– Case (i): hk is undersubscribed in M ′. As a1 is unmatched in M ′, h1 ∈ f(a1), and
|M ′(hk)| < ck, we can augment M ′ with P to obtain a new matching M ′′. Then, a1 is
matched with h1 in M ′′. Furthermore, as all edges in G′ are first-choice edges, all other
agents in P become matched in M ′′ to one of their other first-choice houses. Hence, M ′′

is more popular than M .
– Case (ii): |M ′(hk)| = ck. Choose any as ∈ M ′(hk)\f(hk). Note that such an as

must exist, for hk is full in M ′ but undersubscribed in M1. Also, as 6= ai for 1 ≤ i ≤ k. We
remove (as, hk) from M ′ and augment M ′ with P to obtain M ′′. Choose any ht ∈ f(as).
If ht is undersubscribed in M ′′, we promote as to ht. Otherwise, choose any au ∈ M ′′(ht).
If au 6= a1, we promote as to ht and demote au to l(au) so that a1 and as prefer M ′′ to
M and au prefers M to M ′′. If au = a1, we demote a1 back to M(a1) and promote as to
ht so that as prefers M ′′ to M and no agent prefers M to M ′′. In each case, M ′′ is more
popular than M . Hence, the augmenting path P does not exist, and the result follows.

As Lemma 1 no longer holds in general in a CHAT instance, we work towards a new
definition of s-houses by using some concepts from the theory of bipartite matching. Let
M be a maximum matching in some bipartite graph G where all nodes have capacity 1.
According to the Edmonds-Gallai Decomposition (see [10]), then the nodes of G can be
partitioned into three disjoint sets: E, O and U . Nodes in E, O and U are called even,
odd, and unreachable respectively. A node v is even (odd) if there exists an alternating
path of even (odd) length from an unmatched node in G to v. If no such alternating path
exists, v is unreachable. Some fundamental properties of this node labelling (henceforth
referred to as the EOU labelling) in relation to a maximum matching in G are summarised
in Lemma 3.2 of [3].

Our aim is to obtain an EOU labelling of G1 relative to a maximum matching M1

of G1 (as obtained by Gabow’s algorithm [5], for example). However Lemma 3.2 of [3]
applies directly only to the case where each node in the given bipartite graph has capacity
1. We obtain an EOU labelling of nodes in G1 by a cloning process, as follows. The
cloned graph C(G1) can be constructed from G1 by replacing every house hj ∈ H with
the clones h1

j , h
2
j , . . . , h

cj

j . We then divide the capacity of each house among its clones
by allowing each clone to have capacity 1. In addition, if (ai, hj) ∈ G1, then we add
(ai, h

k
j) ∈ C(G1) for all k (1 ≤ k ≤ cj). We then adapt the maximum matching M1 in

G1 to obtain a matching C(M1) in C(G1), as follows. If a house hj in G1 is matched
to xj agents ai1 , ...aixj

in M1, then we add (aik , hk
j) to C(M1) for 1 ≤ k ≤ xj, so that

|C(M1)| = |M1| and C(M1) is a maximum matching in C(G1).
We next use C(M1) and C(G1) to obtain an EOU labelling of the nodes in C(G1),

and hence G1. Clearly, such a labelling in C(G1) is useful only if it can give a well-
defined characterisation of EOU labels in G1. Crucial to this is the need for the clones
corresponding to each house hj ∈ H to have the same EOU label in C(G1), as stated by
the next lemma.

Lemma 8. Let G1 be the first-choice graph in I and let M1 be a maximum matching in
G1. Define the cloned graph C(G1) and its corresponding maximum matching C(M1) as
above. Then, given any house hj ∈ H, any two clones of hj in C(G1) have the same EOU
label.

Proof. Let hx
j and hy

j be two clones corresponding to hj . We consider the cases where (1)
hx

j is even, (2) hx
j is odd, and (3) hx

j is unreachable.
Case (1): If hx

j is even, then we consider the subcases where (a) hx
j is matched in

C(M1), and (b) hx
j is unmatched in C(M1). In subcase (a), if hy

j is unmatched in C(M1),

7

then it follows that hy
j is also even. Suppose that hy

j is also matched in C(M1). As hx
j is

even, there exists an even length alternating path P from an unmatched house-clone node
to hx

j . Let ai be the agent that precedes hx
j on P . Clearly, (ai, h

x
j) ∈ C(M1) from our

definition of the path P . As hy
j is also matched in C(M1), let (ak, h

y
j) ∈ C(M1). Then, it

follows that (ak, h
x
j) must be an edge in C(G1). As hx

j is even, ak is odd. As a result, hy
j

is even. In subcase (b), if hy
j is also unmatched in C(M1), then hy

j is also even. Hence,
suppose that hy

j is matched in C(M1), to ai say. Now (ai, h
x
j) is also an edge in C(G1).

As hx
j is even, ai is odd, and hence hy

j is even.
Case (2): If hx

j is odd, then there must exist an odd-length alternating path from an
unmatched agent to hx

j . Clearly hx
j cannot be unmatched for otherwise C(M1) admits an

augmenting path, a contradiction. Hence, hx
j is matched in C(M1) to ai, say. Then, ai is

even. However, (ai, h
y
j) is an edge in C(G1), so it follows that hy

j is odd.
Case (3): Clearly, hy

j must also be unreachable. For, suppose not. If hy
j is even, then

hx
j is also even by Case (1), a contradiction. If hy

j is odd, then hx
j is also odd, by Case (2),

a contradiction.

We now use Lemma 8 to obtain an EOU labelling of the nodes in G1. Clearly, in view
of Lemma 8, a well-defined EOU labelling of hj ∈ H can be obtained by letting hj inherit
its EOU label from those of its clones. That is, we say that hj is even, odd or unreachable
in G1 if its clones are even, odd or unreachable in C(G1) respectively. It is immediate that
each agent can inherit its EOU label in G1 from its corresponding label in C(G1). The
next result is a consequence of Lemma 8.

Lemma 9. Let M be a popular matching in I. Then every odd or unreachable house
hj ∈ H satisfies |M(hj)| = cj and M(hj) ⊆ f(hj).

Proof. Let G1 = (A,H,E1) be the first-choice graph of I. Then, M1 = M ∩ E1 is a
maximum matching in G1 by Lemma 7. Let hj ∈ H be any house that is odd (or
unreachable) in G1. By Lemma 8, all clones of hj will also be odd (or unreachable) in
C(G1). Clearly, hj must be full in M1, for otherwise, at least one of its clones hx

j will
be unmatched in C(M1). However, hx

j will then be even, a contradiction. Since C(G1)
contains only first-choice edges, M1(hj) ⊆ f(hj). Moreover, since M1 = M ∩E1, it follows
that |M(hj)| = cj and M(hj) ⊆ f(hj).

Lemma 8 and Lemma 9 give rise to the following analogue of Lemma 3.2 from [3] for
the CHAT case.

Lemma 10. Let G1 be the first-choice graph in I and let M1 be a maximum matching in
G1. Define E, O and U to be the node sets corresponding to even, odd and unreachable
nodes in an EOU labelling of G1 with respect to M1. Then:

(a) The sets E, O and U are pairwise disjoint. Every maximum matching in G1 parti-
tions the nodes into the same sets of even, odd and unreachable nodes.

(b) Every maximum matching M in G1 satisfies the following properties:

(i) every odd agent is matched to an even house in M ;

(ii) every odd house is full in M and matched only to even agents in M ;

(iii) every unreachable agent is matched to an unreachable house in M ;

(iv) every unreachable house is full in M and matched only to unreachable agents
in M ;

(v) |M | = |OA|+ |UA|+
∑

hj∈OH
cj, where UA is the set of unreachable agents, OA

is the set of odd agents and OH is the set of odd houses.

8

(c) No maximum matching in G1 contains an edge between two nodes in O or a node
in O with a node in U . There is no edge in G1 connecting a node in E with a node
in U , or between two nodes of E.

We are now in a position to define s(ai), the set of houses such that, in a popular
matching M , if ai ∈ A is matched in M and M(ai) /∈ f(ai), then M(ai) ∈ s(ai). We will
ensure that any odd or unreachable house hj is not a member of s(ai), since |M(hj)| = cj

and M(hj) ⊆ f(hj) by Lemma 9. Hence, we define s(ai) to be the set of highest-ranking
houses in ai’s preference list that are even in G1. Any such house is called an s-house.
Clearly, it is possible that |s(ai)| > 1, however, ai is indifferent between all houses in s(ai).
Furthermore, s(ai) 6= ∅ due to the existence of last resort houses which are of degree 0
in G1 (and thus even). However, f(ai) and s(ai) need not be disjoint. It turns out that
Lemmas 2 and 3 also extend to CHAT as established by the following lemmas.

Lemma 11. Let M be a popular matching in I. Then no agent ai ∈ A can be matched in
M to a house between f(ai) and s(ai) on ai’s preference list.

Proof. Suppose that ai is matched to a house hj strictly between f(ai) and s(ai). Then,
ai must prefer hj to all houses in s(ai). Hence, hj must be an odd or unreachable house
in G1, as s(ai) contains the highest-ranking even houses in G1 in ai’s preference list. By
Lemma 9, M(hj) ⊆ f(hj). However, this is a contradiction as hj /∈ f(ai).

Lemma 12. Let M be a popular matching in I. Then no agent ai ∈ A can be matched in
M to a house worse than s(ai) on ai’s preference list.

Proof. Suppose that ai is matched to a house worse than s(ai). Let hj be any house
in s(ai). Clearly, if |M(hj)| < cj , we can promote ai to hj to obtain a more popular
matching. Hence, suppose that |M(hj)| = cj . Let ak ∈ M(hj). We consider two cases for
hj .
– Case (i): hj /∈ f(ak). We then choose any hl ∈ f(ak). If |M(hl)| < cl, we promote
ai to hj and promote ak to hl to obtain a more popular matching than M . Otherwise,
|M(hl)| = cl so we let am ∈ M(hl). If am = ai, we can again promote ai to hj and promote
ak to hl. If am 6= ai, we promote ai to hj , promote ak to hl and demote am to l(am) to
obtain a more popular matching than M .
– Case (ii): hj ∈ f(ak). As hj ∈ s(ai), hj must be an even node by our definition of an s-
house. Let G1 be the first-choice graph of I as previously defined. Let M1 = M∩E1. Then
M1 is a maximum matching in G1 by Lemma 7. Furthermore, there exists an alternating
path P of even length in G1, with respect to M1, from some (even) house hl, which is
undersubscribed in M1, to hj . Let M ′ = M\ {(ai,M(ai))}. We consider the subcases
that (a) hl is undersubscribed in M ′ or (b) hl is full in M ′. In subcase (a), we can reuse
the proof of Case (i) in Lemma 7 to obtain a matching M ′′ by matching ai with hj , and
then matching all other agents in P with one of their other first-choice houses in P by
augmenting along P . In subcase (b), we can always find an agent am ∈ M ′(hl)\f(hl).
The remainder of our proof then follows a similar argument to that used in Case (ii) of
Lemma 7, obtaining a matching M ′′ in which M ′′(a) ∈ f(a) for each a 6= ai ∈ P , and
either (1) M ′′(ai) = hj , M ′′(am) ∈ f(am) and at most one agent prefers M to M ′′, or (2)
M ′′(ai) = M(ai), M ′′(am) ∈ f(am) and no agent prefers M to M ′′. In each subcase, M ′′

is more popular than M so that M cannot be a popular matching.

As was the case with CHA, we can also define a subgraph G′ for the CHAT instance
I by this time letting G′ contain only edges from each agent ai to houses in f(ai) ∪ s(ai).
Clearly, all popular matchings must be agent-complete in G′ in view of last resort houses.
However, an agent-complete matching need not exist if s(ai) 6= {l(ai)} for some agent ai.

9

Lemmas 7, 11 and 12 give rise to the following characterisation of popular matchings in
I.

Theorem 13. A matching M is popular in I if and only if

1. M ∩ E1 is a maximum matching in G1, and

2. M is an agent-complete matching in the subgraph G′.

Proof. By Lemmas 7, 11 and 12, any popular matching necessarily satisfies Conditions 1
and 2. We now show that these conditions are sufficient.

Let M be any matching satisfying Conditions 1 and 2. Suppose for a contradiction
that M ′ is a matching that is more popular than M . Let ai be any agent that prefers M ′

to M . Since ai prefers M ′(ai) to M(ai), M is an agent-complete matching in G′, and G′

only contains edges from ai to f(ai) ∪ s(ai), it follows that M(ai) ∈ s(ai), and f(ai) and
s(ai) are disjoint. Hence, M ′(ai) must be an odd or unreachable house in G1, as M(ai) is
the highest-ranked even house in ai’s preference list.

Let hj1 = M ′(ai). Since hj1 is odd or unreachable, it follows by Condition 1 and Lemma
10(b) that |M(hj1)| = cj1 and M(hj1) ⊆ f(hj1). Now since ai ∈ M ′(hj1)\M(hj1), there
exists a distinct agent ak1

∈ M(hj1)\M ′(hj1). If ak1
is unmatched in M ′ or M ′(ak1

) /∈
f(ak1

), then ak1
prefers M to M ′. Otherwise, suppose M ′(ak1

) ∈ f(ak1
). Let hj2 =

M ′(ak1
). Clearly, ak1

is even or unreachable so that hj2 must be odd or unreachable. It
follows by Condition 1 and Lemma 10(b) that |M(hj2)| = cj2 and M(hj2) ⊆ f(hj2). Hence,
there exists an agent ak2

6= ak1
such that ak2

∈ M(hj2)\M ′(hj2) and hj2 ∈ f(ak2
). If ak2

is
unmatched in M ′ or M ′(ak2

) /∈ f(ak2
), then ak2

prefers M to M ′. Otherwise, suppose that
M ′(ak2

) ∈ f(ak2
). Let hj3 = M ′(ak2

). Then there exists an agent ak3
∈ M(hj3)\M ′(hj3)

by a similar argument for ak2
. Note that possibly hj3 = hj1 , but we must be able to

choose ak3
6= ak1

, for otherwise |M ′(hj1)| > |M(hj1)|, which is a contradiction since
|M(hj1)| = cj1 . Thus, ak3

is a distinct agent, so that we can repeat the above argument
to identify an alternating path P in which houses need not be distinct, but agents are
distinct. Clearly, P must terminate at some agent akr

as the number of agents are finite.
Furthermore, it must be the case that akr

is unmatched in M ′ or M ′(akr
) /∈ f(akr

) so that
for every ai that prefers M ′ to M , there must exist a distinct akr

that prefers M to M ′.
Finally, we note the uniqueness of akr

. If there exists another agent a′
i who prefers M ′

to M , then we can build another alternating path – it is possible that some of the houses
are those already used in previous alternating paths such as P . However, it must be the
case (from our argument that ak3

is a distinct agent) that we are always able to identify
distinct agents not already used in previous alternating paths, as each house on the path
is odd or unreachable, and thus full in M . Hence, M is popular in I.

3.2 Finding a popular matching.

Theorem 13 leads to Algorithm Popular-CHAT for finding a popular matching in I of
CHAT or reporting that none exists, as shown in Figure 3. The next lemma is an important
step in establishing the correctness of the algorithm.

Lemma 14. Algorithm Popular-CHAT constructs a matching M such that M ∩ E1 is a
maximum matching of G1.

Proof. We firstly claim that G′ does not contain any edges of rank greater than 1 incident
to odd nodes and unreachable houses. Clearly, by our definition of s-houses, for any odd
or unreachable house hj ∈ H, hj /∈ s(ai) for any agent ai ∈ A. Thus, there exist only
first-choice edges incident to any such hj . By Lemma 10(b), every odd agent ai in G1

10

1. Build subgraph G1=(A, H, E1), where E1={(ai, hj) : ai ∈ A ∧ hj ∈ f(ai)}.
2. Compute a maximum matching M1 of first-choice edges in G1.

3. Obtain an EOU labelling of G1 using C(G1) and C(M1).

4. Build subgraph G′=(A, H, E′), where E′={(ai, hj) : ai ∈ A ∧ hj ∈ f(ai) ∪ s(ai)}.
5. Delete all edges in G′ connecting two odd nodes, or connecting an odd node with an un-

reachable node. (This step does not delete an edge of M1.)

6. Find a maximum matching M in the reduced graph G′ by augmenting M1.

7. If M is not agent-complete in G′, then output “No popular matching exists”, otherwise
return M as a popular matching in I .

Figure 3: Algorithm Popular-CHAT for finding a popular matching in CHAT.

can only be matched in M1 to some even house hk. Since (ai, hk) is a first-choice edge in
G1 and s(ai) defines the highest-ranked even house in ai’s preference list, it follows that
s(ai) ⊆ f(ai). Hence, the claim is established.

Hence by the above claim, it follows that the edges removed from G′ during Step 5 of
the algorithm, between two odd nodes or between an odd node and an unreachable node,
are first-choice edges in G′. However by Lemma 10(c), no maximum matching in G1 can
contain these edges. Thus, no popular matching can contain these edges by Lemma 7. In
particular, no edge of M1 is deleted by Step 5.

It also follows by Lemma 10(c) that there cannot exist any (first-choice) edges in G1

between two even nodes, or between an even and an unreachable node. As a result, the
only first-choice edges that remain in G′ after the edge deletions are those edges between
(i) odd agents and even houses, (ii) even agents and odd houses, and (iii) unreachable
agents and unreachable houses. Define a second-choice edge as belonging to the edge
set {(ai, hj) ∈ E′ : hj ∈ s(ai) ∧ s(ai) 6⊆ f(ai)}. Then by the above claim, the only second-
choice edges that remain in G′ are those between even agents and even houses, and between
unreachable agents and even houses.

The matching M is obtained from M1 through successive augmentation in Gabow’s
algorithm. We claim that there does not exist any augmenting path P in which an unreach-
able agent ai (who is matched in M1 to some house in f(ai) by Lemma 10(b)) becomes
worse off, for suppose otherwise. We trace the path P from the unmatched agent end-
point. Let ai be the first unreachable agent to become worse off after we augment along
P . Let M b be the matching before we augmented along P and let M a be the matching
obtained from satisfying P . Assume that ai is matched to hj1 in M b. Then, it follows
that hj1 is unreachable. Furthermore, we can pick an agent ai1 6= ai matched to hj1 in Ma

but not in M b. It follows that ai1 must be unreachable because any unreachable house
has only incident edges from unreachable agents in G′ after Step 5 of the algorithm. If
ai1 is unmatched in M b, then we have finished tracing the path P . However, this gives
a contradiction by Lemma 10(b). Hence, ai1 must be matched to some first-choice house
hj2 in M b or else ai cannot be the first unreachable agent to become worse off. It thus
follows that hj2 must also be unreachable. We can repeat the above argument to trace
the path P until we terminate at some agent air who is matched to the unreachable house
hjr in Ma. It is evident that air must be unmatched in M b. However, any such air must
be unreachable, which is a contradiction again by Lemma 10(b).

Clearly, since all odd agents have only first-choice edges incident to them in G ′, they
must remain matched to first-choice houses in M even if they participated in any aug-
menting paths. Moreover, by the definition of an augmenting path, it must be the case
that the odd houses, each of which is full in M1, must be full in M and incident only to

11

first-choice edges in M (since odd houses are incident only to such edges in G ′). Finally,
by the above paragraph, unreachable agents cannot become worse off in M than in M1.
Hence, only even agents may become worse off in M than in M1, but this means that at
least |OA|+ |UA|+

∑
hj∈OH

cj first-choice edges matched previously in M1 remain matched

in M . It thus follows by Lemma 10(b) that M ∩ E1 is a maximum matching of G1.

Hence if Algorithm Popular-CHAT returns a matching M , then M is both an agent-
complete matching in G′ and M ∩E1 is a maximum matching of G1 by Lemma 14. Hence
M is a popular matching in I by Theorem 13.

We now consider the complexity of Algorithm Popular-CHAT. Let F be the number
of first-choice edges in G, and let cmax = max{cj : hj ∈ H}; then cmax ≤ n1. Clearly
G1 can be constructed in O(F + n2) time. We use Gabow’s algorithm [5] to compute a
maximum matching M1 in G1 in O(

√
CF) time. We next use C(M1) in C(G1) to compute

an EOU labelling of G1. The total number of edges in C(G1) is O(cmaxF). We first use
a pre-processing step to label each unmatched agent and each undersubscribed house as
even. Clearly, this step takes O(n) time. Next, breadth-first search may be used on C(G1)
to search for alternating paths with respect to C(M1), building up odd or even labels for
every node encountered. This step labels all odd and even (matched) agents, and all odd
and even (full) houses and takes O(cmaxF + n2) time. Any remaining unlabelled nodes
must be unreachable and we can directly label these nodes in G1 in O(n) time. Thus, the
total time complexity of this step is O(cmaxF + n2) = O(n1F + n2). The EOU labelling
of G1 is then used to construct G′ and to delete certain edges from G′ at Steps 4 and 5 of
the algorithm, both of which take O(m) time overall.

Finally, we then use Gabow’s algorithm again to obtain the maximum matching M
in G′ in O(

√
C(F + S)) time, where S is the number of second-choice edges in G′. The

following result gives the overall run-time of Algorithm Popular-CHAT.

Lemma 15. Given an instance of CHAT, we can find a popular matching, or determine
that none exists, in O((

√
C + n1)m) time.

It now remains to consider the problem of finding a maximum popular matching in
I. The aim is to find a matching that satisfies the conditions of Theorem 13 and that
minimises the number of agents who are matched to their last resort houses. We begin by
firstly using Algorithm Popular-CHAT to compute a popular matching M in I, assuming
such a matching exists. Then M ∩E1 is a maximum matching in G1. We remove all edges
in G′ (and thus from M) that are incident to a last resort house. Clearly, M still satisfies
the property that M ∩ E1 is a maximum matching in G1, but M need not be maximum
in G′ if agents become unmatched as a result of the edge removals. Thus, we obtain a
new maximum matching M ′ from M by using Gabow’s algorithm on G′ again. If M ′ is
not agent-complete in G′, we simply assign any agent who remains unmatched in M ′ to
their last resort house to obtain an agent-complete matching. Using an argument similar
to that in the proof of Lemma 14, it follows that M ′ ∩E1 is a maximum matching of G1.
Thus, M ′ is a maximum popular matching in I. Clearly the overall complexity of this
approach is as for Algorithm Popular-CHAT, giving the following result.

Theorem 16. Given an instance of CHAT, we can find a maximum popular matching,
or report that no such matching exists, in O((

√
C + n1)m) time.

We may compare the complexity of our direct approach for CHAT to that obtained
using cloning on I together with the algorithm of [3] on the cloned instance of I. As in
Section 2, the latter approach takes Ω(

√
Cm′ + C) time, where m′ =

∑
ai∈A

∑
hj∈Ai

cj .

The complexity of Algorithm Popular-CHAT may also be written as O(
√

Cm +mF +C),

12

where mF =
∑

ai∈A

∑
hj∈f(ai)

cj . Clearly mF ≤ m′. Since m′ ≥ mcmin, it follows that the
first term in the complexity function of the cloning method is slower than the first term
in that of Algorithm Popular-CHAT by a factor of Ω(cmin), which is Ω(n1) if cj = Ω(n1)
for each hj ∈ H.

4 Concluding remarks

We conclude with the following open problem. Suppose that we are presented with an
instance J of CHA or CHAT in which the houses have preferences over the agents. Real-
life applications of such a problem exist in many centralised matching markets such as the
National Resident Marketing Program (NRMP) [11] and counterpart schemes in Canada
and Scotland. Then, what is the complexity of finding a maximum popular matching in
J if one exists?

Acknowledgement

We would like to thank Rob Irving for helpful discussions concerning this paper.

References

[1] A. Abdulkadiroǧlu and T. Sönmez. Random serial dictatorship and the core from
random endowments in house allocation problems. Econometrica, 66(3):689–701,
1998.

[2] D.J. Abraham, K. Cechlárová, D.F. Manlove, and K. Mehlhorn. Pareto optimality
in house allocation problems. In Proceedings of ISAAC 2004: the 15th Annual Inter-
national Symposium on Algorithms and Computation, volume 3341 of Lecture Notes
in Computer Science, pages 3–15. Springer, 2004.

[3] D.J. Abraham, R.W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. In
Proceedings of SODA ’05: the 16th ACM-SIAM Symposium on Discrete Algorithms,
pages 424–432. ACM-SIAM, 2005.

[4] D.J. Abraham and T. Kavitha. Dynamic matching markets and voting paths. In
Proceedings of SWAT 2006: the 10th Scandinavian Workshop on Algorithm Theory
(to appear), Lecture Notes in Computer Science. Springer, 2006.

[5] H.N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In Proceedings of STOC ’83: the 15th Annual
ACM Symposium on Theory of Computing, pages 448–456. ACM, 1983.

[6] P. Gärdenfors. Match making: assignments based on bilateral preferences. Behav-
ioural Science, 20:166–173, 1975.

[7] R.W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Rank-maximal
matchings. In Proceedings of SODA ’04: the 15th ACM-SIAM Symposium on Discrete
Algorithms, pages 68–75. ACM-SIAM, 2004.

[8] M. Mahdian. Random popular matchings. In Proceedings of EC ’06: the 7th ACM
Conference on Electronic Commerce (to appear). ACM, 2006.

13

[9] J. Mestre. Weighted popular matchings. In Proceedings of ICALP ’06: the 33rd
International Colloquium on Automata, Languages and Programming (to appear),
Lecture Notes in Computer Science. Springer, 2006.

[10] W.R. Pulleyblank. Matchings and extensions. In R.L. Graham, M. Grötschel, and
L. Lovász, editors, Handbook of Combinatorics, volume 1, chapter 3, pages 179–232.
North-Holland, 1995.

[11] A.E. Roth. The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

14

