
Vertex and Edge Covers with Clustering
Properties: Complexity and Algorithms

Henning Fernau1,∗ and David F. Manlove2,†

1 FB 4—Abteilung Informatik, Universität Trier, 54286 Trier, Germany

Email: fernau@informatik.uni-trier.de.

2 Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK

Email: davidm@dcs.gla.ac.uk.

Abstract

We consider the concepts of a t-total vertex cover and a t-total edge cover

(t ≥ 1), which generalize the notions of a vertex cover and an edge cover,
respectively. A t-total vertex (respectively edge) cover of a connected graph
G is a vertex (edge) cover S of G such that each connected component of the
subgraph of G induced by S has least t vertices (edges). These definitions are
motivated by combining the concepts of clustering and covering in graphs.
Moreover they yield a spectrum of parameters that essentially range from a
vertex cover to a connected vertex cover (in the vertex case) and from an edge
cover to a spanning tree (in the edge case). For various values of t, we present
NP-completeness and approximability results (both upper and lower bounds)
and FPT algorithms for problems concerned with finding the minimum size
of a t-total vertex cover, t-total edge cover and connected vertex cover, in
particular improving on a previous FPT algorithm for the latter problem.

1 Introduction

In graph theory, the notion of covering vertices or edges of graphs by other vertices
or edges has been extensively studied (see [24] for a survey). For instance, covering
vertices by other vertices leads to parameters concerned with vertex domination
[20, 21]. When edges are to be covered by vertices we obtain parameters connected
with the classical vertex covering problem [19, p.94]. Covering vertices by edges,
i.e. finding edge covers, was first considered by Norman and Rabin [30]. Finally,
when edges are to cover other edges, we obtain parameters associated with edge
domination (introduced by Mitchell and Hedetniemi [25]). These problems have
long been a testbed for the design of parameterized algorithms (or for showing

∗Part of this work was carried out whilst visiting the University of Glasgow, supported by
Engineering and Physical Sciences Research Council grant EP/D030110/1.

†Supported by Engineering and Physical Sciences Research Council grant GR/R84597/01 and
by a Royal Society of Edinburgh / Scottish Executive Personal Research Fellowship. Email

1

the limitations of that approach) [9]. However, in particular only recently has a
systematic study of variants of vertex cover problems been initiated with respect to
parameterized complexity [18, 29].

Clustering in graphs is another fundamental concept with a large range of prac-
tical applications [14]. Connectedness can be seen as one of the weakest notions of
clustering: it is reasonable to assert that a vertex set can be termed a cluster only
if it is connected. When being used for classification purposes, there is rarely only
one cluster, but rather a number of them, each representing some concept, i.e., one
is looking for connected components. In order to exclude trivial cases and to define
meaningful concepts, it may often be appropriate to impose a lower bound on the
number of elements per cluster.

In this paper we consider a synergy of the notion of clustering with each of the
concepts of vertex and edge covering. Throughout we assume that G = (V, E) is a
connected graph, where n = |V | and m = |E| ≥ 1. For 1 ≤ t ≤ n, a t-total vertex
cover (henceforth a t-tvc) in G is a vertex cover S in G such that each connected
component of G[S], the subgraph of G induced by S, has at least t vertices. Similarly,
for 1 ≤ t ≤ m, a t-total edge cover (henceforth a t-tec) in G is an edge cover S of G
(i.e. each vertex of G is incident to an edge in S) such that each connected component
of G[S], the subgraph of G induced by S, has at least t edges. Hence, if S is a t-tvc
or t-tec, then S is a vertex cover or edge cover respectively such that each member
of S belongs to a “cluster” containing at least t elements of S.

The concept of a total dominating set in a graph, first defined and studied by
Cockayne et al. [6], illustrates one case where the notions of clustering and covering
(vertices by vertices) have already been brought together. A set of vertices S is a
total dominating set of G if (i) S is a dominating set (i.e. every vertex in V \S is
adjacent to a vertex in S), and (ii) each connected component of G[S] has at least
two vertices.

The notion of a 2-tvc was first defined by Jean Blair [2] using the terminology total
vertex cover (by analogy to the term total dominating set). It is straightforward
to present relationships between the minimum size of a t-tvc (respectively t-tec)
for various values of t and established parameters concerned with vertex covering
(respectively edge covering) in G. Throughout this paper, our notation follows and
extends that of Harary [19]. Let α0(G) denote the minimum size of a vertex cover
in G. A connected vertex cover (henceforth a cvc) in G is a vertex cover S in G
such that G[S] is connected. Let αc

0(G) denote the minimum size of a cvc in G. It
follows that a 1-tvc is simply a vertex cover (recall that m ≥ 1), whilst a cvc of
size t is a t-tvc. For t ≥ 1, let α0,t(G) denote the minimum size of a t-tvc in G.
Then α0,1(G) = α0(G). The parameters α0,t(G) for t ≥ 2 do not appear to have
been studied in the literature previously. In Section 2, we present some additional
relationships involving the parameters α0(G), α0,t(G) and αc

0(G).
Now let 1 ≤ t ≤ m – we turn to the concept of a t-tec. It follows that a 1-tec

is simply an edge cover (again recall that m ≥ 1), whilst a minimum (n − 1)-tec
is a minimum connected edge cover, i.e. a spanning tree. Let α1,t(G) denote the
minimum size of a t-tec of G, and let α1(G) denote the minimum size of an edge
cover of G. Then α1,1(G) = α1(G). The parameters α1,t(G) for t ≥ 2 do not appear
to have been studied in the literature previously. In Section 2, we present some
additional relationships between the parameters α1(G) and α1,t(G).

2

We remark that, for a t-tvc (respectively t-tec) to exist, it is sufficient that each
connected component of G has at least t vertices (edges), and the results in this
paper also hold in such a setting. However for ease of exposition, and due to the
correspondence between t-tvcs and t-tecs with connected vertex covers and spanning
trees respectively, we choose to assert throughout that G is connected.

Given t ≥ 1, let vc, t-tvc, t-tec and cvc denote the problems of computing
α0(G), α0,t(G), α1,t(G) and αc

0(G) respectively, given a connected graph G where
n = |V | and m = |E| ≥ 1 (additionally n ≥ t in the case of t-tvc and m ≥ t in the
case of t-tec). Let vc-d, t-tvc-d, t-tec-d and cvc-d denote the decision versions
of vc, t-tvc, t-tec and cvc, respectively. Hence, the question is, given a graph
G and a parameter k, whether there is a cover C (with the additional properties
specified by the problem) such that |C| ≤ k.

For each t ≥ 2, we show in Section 3 that t-tvc is NP-hard and not approx-
imable within an asymptotic performance ratio of 10

√
5 − 21 − δ (> 1.3606), for

any δ > 0, unless P=NP. However on the other hand we prove that t-tvc is
approximable within 2. We also prove that t-tvc-d is NP-complete, even for pla-
nar bipartite graphs of maximum degree 3. Moreover we show that there exists a
constant δt > 1 such that t-tvc in bipartite graphs of maximum degree 3 is not
approximable within δt unless P = NP. Finally, we give a parameterized algorithm
for 2-tvc-d with complexity O∗(2.3655k). Here the parameter is the size of the
2-tvc.

cvc is NP-hard, even for planar graphs of maximum degree 4 [16], though
polynomial-time solvable for graphs of maximum degree 3 [34]. For a tree T , finding
a minimum cvc is trivial (if T = K2, one vertex will suffice, otherwise the set of
non-leaf nodes is a minimum cvc in T). It is known that cvc is approximable
within 2 [33, 1]. In Section 4, we show that cvc is not approximable within an
asymptotic performance ratio of 10

√
5 − 21 − δ, for any δ > 0, unless P=NP.

The complexity of cvc in bipartite graphs does not seem to have been considered
in the literature so far. We show that cvc-d is NP-complete, even for planar
bipartite graphs of maximum degree 4. We also present a parameterized algorithm
for cvc-d with complexity O∗(2.9316k), improving on a previous algorithm due to
Guo et al. [18], having complexity O∗(6k). Here the parameter is the size of the
cvc. We remark that, independently and by using different techniques, Moelle et
al. [26] present a parameterized algorithm for cvc-d with complexity O∗(3.2361k).
Furthermore, following that approach, an improved algorithm for the same problem,
having complexity O∗(2.7606k), will be reported [27].

1-tec, i.e. the problem of finding a minimum edge cover, is polynomial-time
solvable [30]. In Section 5, we give a Gallai identity involving α1,t(G) for each t ≥ 1.
We use this to prove that t-tec-d is NP-complete for each t ≥ 2. We also show
that t-tec is approximable within 2 for each t ≥ 2, though there exists some δ > 1
such that 2-tec is not approximable within δ unless P=NP. Finally we show that
t-tec-d is in FPT for each t ≥ 2 (where the parameter is the size of the t-tec) and
the parametric dual of 2-tec-d is also in FPT . This gives one of the few examples
where both a problem and its dual belong to FPT .

3

2 Preliminary observations involving α0,t(G) and

α1,t(G)

We begin this section by presenting some relationships involving the parameters
α0(G), α0,t(G) and αc

0(G).

Proposition 1. Let G = (V, E) be a connected graph where n = |V |, m = |E| ≥ 1,
and let 1 ≤ t ≤ n. Then:

1. α0(G) ≤ α0,t(G), and for t < n, α0,t(G) ≤ α0,t+1(G);

2. α0,t(G) ≥ t;

3. for αc
0(G)/2 < t ≤ αc

0(G), α0,t(G) = αc
0(G);

4. for t ≥ αc
0(G), α0,t(G) = t;

5. the minimum t such that α0,t(G) = t satisfies t = αc
0(G).

Proof. 1. If S is a (t + 1)-tvc then clearly S is a t-tvc. Moreover clearly any t-tvc is
a vertex cover.

2. If S is any t-tvc, then as m ≥ 1, it follows that G[S] has at least one connected
component, which contains at least t vertices.

3. Let S be a minimum t-tvc and let C be a minimum cvc. Then C is a t-tvc, so
that |S| ≤ |C| = αc

0(G). Now suppose that G[S] contains at least two connected
components. Then |S| ≥ 2t > αc

0(G), a contradiction. Hence S is a cvc, so that
|C| ≤ |S|. Hence α0,t(G) = αc

0(G).

4. Let C be a minimum cvc and let t′ = t − |C|. As G is connected we may
construct a t-tvc S by adding t′ vertices to C. Then |S| = t, so that α0,t(G) ≤ t.
Hence α0,t(G) = t by Part 2.

5. Let t = αc
0(G). By Part 4, α0,t(G) = t. Now suppose that t′ < t and α0,t′(G) = t′.

Let S be a t′-tvc such that |S| = t′. Then G[S] contains one connected component,
for otherwise |S| ≥ 2t′, a contradiction. Hence S is a cvc such that |S| = t′ < αc

0(G),
a contradiction.

We next present some relationships involving the parameters α1(G) and α1,t(G).

Proposition 2. Let G = (V, E) be a connected graph where n = |V |, m = |E| ≥ 1,
and let 1 ≤ t ≤ m. Then:

1. α1(G) ≤ α1,t(G), and for t < m − 1, α1,t(G) ≤ α1,t+1(G);

2. α1,t(G) ≥ t;

3. for n−1

2
< t ≤ n − 1, α1,t(G) = n − 1;

4. for t ≥ n − 1, α1,t(G) = t.

5. the minimum t such that α1,t(G) = t satisfies t = n − 1.

4

Proof. 1. If S is a (t + 1)-tec then clearly S is a t-tec. Moreover clearly any t-tec is
an edge cover.

2. If S is any t-tec, then as m ≥ 1, it follows that G[S] has at least one connected
component, which contains at least t edges.

3. Let S be a minimum t-tec and let T be a spanning tree of G. Then T is a t-tec,
so that |S| ≤ |T | = n − 1. Now suppose that G[S] contains at least two connected
components. Then |S| ≥ 2t > n − 1, a contradiction. Hence G[S] is connected, so
that |S| ≥ n − 1. Thus α1,t(G) = n − 1.

4. Let T be a spanning tree of G and let t′ = t − (n − 1). As G is connected we
may construct a t-tec S by adding t′ edges to T . Then |S| = t, so that α1,t(G) ≤ t.
Hence α1,t(G) = t by Part 2.

5. Let t = n− 1. By Part 4, α1,t(G) = t. Now suppose that t′ < t and α1,t′(G) = t′.
Let S be a t′-tec such that |S| = t′. Then G[S] contains one connected component,
for otherwise |S| ≥ 2t′, a contradiction. Hence S is a spanning tree such that
|S| = t′ < n − 1, a contradiction.

3 Complexity and approximability of t-tvc

We begin with a lower bound for the approximability of t-tvc in general graphs.

Theorem 3. For each t ≥ 1, t-tvc is NP-hard and not approximable within an
asymptotic performance ratio of 10

√
5 − 21 − δ, for any δ > 0, unless P=NP.

Proof. For t = 1 the result follows by [8]. Now assume that t ≥ 2. Let G = (V, E) be
an instance of vc. We lose no generality in assuming that G is connected and |V | ≥
2. Create a new graph G′ = (V ′, E ′) such that V ′ = V ∪ W and E ′ = E ∪ E1 ∪ E2,
where W = {wi : 1 ≤ i ≤ t} is a set of new vertices, E1 = {{v, w1} : v ∈ V } and
E2 = {{wi, wi+1} : 1 ≤ i ≤ t− 1}. Let W ′ = W\{vt}. It is straightforward to verify
that if S is a minimum vertex cover in G, then S ∪ W ′ is a t-tvc in G′. Conversely
if S ′ is a minimum t-tvc in G′, then S ′ ∩ W = W ′, and S ′ ∩ V is a vertex cover in
G. Hence α0,t(G

′) = α0(G) + t − 1. The result follows by [8].

We now present an upper bound for the approximability of t-tvc.

Theorem 4. For each t ≥ 1, t-tvc is approximable within 2.

Proof. Let G = (V, E) be an instance of t-tvc (then G is a connected graph, where
n = |V | ≥ t and m = |E| ≥ 1). Savage [33] presents an approximation algorithm
for cvc: the algorithm computes a cvc S in G such that |S| ≤ 2α0(G). Suppose
firstly that t ≤ |S|. Then S is a t-tvc, and |S| ≤ 2α0(G) ≤ 2α0,t(G) by Proposition
1, as required. Now suppose that t > |S|. Let t′ = t − |S|. As G is connected, we
may construct a t-tvc S ′ in G by adding t′ vertices to S. Then |S ′| = t, so that S ′

is in fact a minimum t-tvc by Proposition 1.

The next two results concern the complexity and approximability of t-tvc in
bounded degree bipartite graphs, for each t ≥ 2.

Theorem 5. For each t ≥ 2, t-tvc-d is NP-complete for planar bipartite graphs
of maximum degree 3.

5

Proof. Clearly t-tvc-d belongs to NP. To show NP-hardness, we give a reduction
from the NP-complete restriction of vc-d to planar graphs of maximum degree 3
[17, 16]. Hence let G = (V, E) (a planar graph of maximum degree 3) and k (a
positive integer) be an instance of this problem. Let E = {e1, e2, . . . , em} for some
m. We define an instance of t-tvc-d as follows. Construct a graph G′ = (V ′, E ′)
by letting V ′ = V ∪ W , where W = {wi,j : 1 ≤ i ≤ m ∧ 1 ≤ j ≤ t}. For each i
(1 ≤ i ≤ m), suppose that ei = {u, v} for some u, v ∈ V . Add the edges {u, wi,1},
{wi,j, wi,j+1} (1 ≤ j ≤ t − 1) and {wi,1, v} to E ′. Clearly G′ can be constructed in
polynomial time from G, and G′ is planar, bipartite and has maximum degree 3.
Let k′ = k + (t − 1)m. We claim that G has a vertex cover of size at most k if and
only if G′ has a t-tvc of size at most k′.

For, suppose that G has a vertex cover S of size at most k. Let S ′ = S ∪ W ′,
where W ′ = W\{wi,t : 1 ≤ i ≤ m}. Then it may be verified that S ′ is a t-tvc of G′,
and |S ′| = |S| + (t − 1)m ≤ k + (t − 1)m = k′.

Conversely suppose that G′ has a t-tvc of size at most k′. Choose S ′ to be such
a set that minimizes |S ′ ∩ W |. It is straightforward to verify that W ′ ⊆ S ′, since
t ≥ 2. Also, S ′ ∩ W = W ′. For, suppose that wi,t ∈ S ′ for some i (1 ≤ i ≤ m). Let
ei = {u, v} for some u, v ∈ V . Define S ′′ = (S ′\{wi,t}) ∪ {u}. Then S ′′ is a t-tvc of
G′, |S ′′| ≤ |S ′| ≤ k′, and |S ′′ ∩W | < |S ′ ∩W |, contradicting the choice of S ′. Hence
the claim is established. Let S = S ′ ∩ V . Then it may be verified that S is a vertex
cover of G, and |S| = |S ′| − (t − 1)m ≤ k′ − (t − 1)m = k.

Corollary 6. For each t ≥ 2, t-tvc in bipartite graphs of maximum degree 3 is not
approximable within 1 + 1

500t−400
unless P=NP.

Proof. vc in cubic graphs is not approximable within 100

99
unless P=NP [5]. By

considering this problem as the starting point for the same reduction as in the proof
of Theorem 5, it again follows that α0,t(G

′) = α0(G) + (t − 1)m. Now α0(G) ≥
β1(G) ≥ m

5
[35, Theorem 60], where β1(G) is the size of a maximum matching in

G, since G is cubic. It follows that α0,t(G
′) ≤ (5t − 4)α0(G). Hence the reduction

of Theorem 5 is an L-reduction (defined in [31]) with parameters α = 5t − 4 and
β = 1. The result follows by [35, Theorem 63].

The next result concerns the parameterized complexity of 2-tvc.

Theorem 7. 2-tvc-d is in FPT and can be solved in time O∗(3.2361k), where k
is the size of the 2-tvc.1

Proof. Let G = (V, E) be a connected graph. Firstly, we describe an algorithm
running in time O∗(4k). It is known (see [9, 7]) that all minimal vertex covers of
size at most k can be enumerated in time O∗(2k). Of course, a (minimal) vertex
cover need not be a 2-tvc, but all 2-tvcs of size k can be obtained by “extending”
minimal vertex covers of size at most k.

For each minimal vertex cover C of G described at a leaf of the search tree, we
construct a hypergraph H as follows: V ′ = V \C are the vertices of the hypergraph,
and the hyperedges E ′ are the open neighbourhoods of the vertices in C that do not
contain (other) vertices from C. Now, a “minimum extension” of C to a valid 2-tvc
corresponds to a minimum hitting set in H. Since |E ′| ≤ k, this can be done in time

1In [11], we show how this upper bound can be further improved to O∗(2.3655k).

6

O∗(2k) according to [12]; see also [9, Theorem 8.1]. This shows that 2-tvc-d can
be solved in time O∗(4k).

To improve on this running time, observe that the degree-0 and degree-1 reduc-
tion rules of vc-d (c.f. [9, p.21]) are also valid for 2-tvc-d with some variation, since
we should now deal with instances in which some vertices are already marked. More
precisely, we say that a vertex is 1-marked if it is known to belong to the vertex
cover, and it is 2-marked if, in addition, also one of its neighbours is known to belong
to the vertex cover. Moreover, a vertex is 0-marked if it is unknown if it belongs to
the vertex cover, but one of its neighbours does belong to the vertex cover. Notice
that the particular neighbour that testifies why a vertex has become say 0-marked
may be later deleted since the necessary information is kept in the markings. To
be coherent with the search tree part, we manage the parameter budget in a way
that the 1- and 2-marked vertices are already taken into account; hence we have
a NO-instance (corresponding to this branch of the search tree) if the parameter
budget falls below zero.

We use the following colouring handling rules:

• If vertex x is unmarked but neighbour of a 1-marked or 2-marked vertex, then
0-mark x.

• If vertex x is 1-marked and neighbour of a 1-marked or 2-marked vertex, then
2-mark x.

• Merge two 2-marked vertices.

• If the parameter drops below zero, we have a NO-instance.

These rules guarantee that the 1-marked and 2-marked vertices form an indepen-
dent set in the graph, and that there is at most one 2-marked vertex in a reduced
instance.

In the following, we always assume that we have already exhaustively executed
the colouring handling rules.

Let us first consider the case that x is a vertex of degree 0.

• If x is unmarked or 0-marked, then delete x.

• If x is 1-marked, then we have a NO-instance.

• If x is 2-marked, then delete x.

If x is a vertex of degree 1 with unique neighbour y, then do the following:

• If x is unmarked or 0-marked, we distinguish two subcases:

– If y has degree 1, decrease the parameter by 2 if x and y are both un-
marked, and decrease the parameter by 1 if x or y is 0-marked. In both
cases, delete both x and y.

– Otherwise, y has degree at least 2. If y is unmarked, 1-mark y. If y is
0-marked, 2-mark y. In both cases delete x and decrement the parameter.
(For if C is a minimum 2-tvc that includes x, then (C \ {x}) ∪ {z} is a
minimum 2-tvc excluding x, where z 6= x is adjacent to y.)

• If x is 1-marked, then 2-mark y and decrement the parameter.

7

• Finally, if x is 2-marked, then delete x.

If the vertices that are unmarked or 0-marked form an independent set, a vertex
cover has been found; without any 1-marked vertices, we have a 2-tvc.

When we branch in the first phase of the algorithm (that basically enumerates
the minimal vertex covers), the branching itself must also respect the markings of
the vertices. Of course, only 0-marked or unmarked vertices will be considered for
branching. If x is an unmarked vertex chosen for branching, then in the case that x
is put into the cover, it will show up as a 1-marked vertex in the recursion. If x is
0-marked, it will show up as a 2-marked vertex in the recursion. In the case that x is
not taken into the cover, it will be deleted from the instance (as usual), irrespective
of whether x is 0-marked or unmarked. At the beginning of each recursive call, all
reduction rules will be exhaustively applied.

We arrange our search tree so that it always tries to branch at an unmarked
vertex if such a vertex x exists. By the reduction rules, x has degree at least 2,
and none of its neighbours is 1-marked or 2-marked. Hence, we either take x into
the cover (reducing the parameter by 1) or all of its neighbours go into the cover
(reducing the parameter by at least 2). Therefore, the running time of this part of the
enumeration can be estimated by the recurrence relation T (k) ≤ T (k−1)+T (k−2).
The partial search tree T ′ based on branching at unmarked vertices therefore has
O∗(1.618k) nodes.

After having branched at all unmarked vertices, we next consider an edge whose
endpoints x, y are both 0-marked. Since it might well be that all other neighbours
of x and y are 1-marked or 2-marked, we cannot guarantee to reduce the parameter
by more than 1 in the branching that takes either x or all of its neighbours into the
cover. Hence a leaf node of T ′ at parameter height i will be replaced by a tree of
height O∗(2k−i) in the complete search tree T .

We finally consider the Hitting Set phase of the algorithm. Any leaf node x of
T (corresponding to a vertex cover but not necessarily a 2-tvc) has an ancestor y
that is a leaf node of T ′ at parameter height i. Recall that branching on a vertex
that is already 0-marked produces a 2-marked vertex. Such vertices do not need
to be taken into account in the Hitting Set instance. That is, the Hitting Set
instance corresponding to node x involves only the i vertices that are 1-marked,
created at y and above in T ′. Since at most i hyperedges will be created, the
Hitting Set phase at node x runs in O∗(2i) time. Hence if T ′ has li leaf nodes at
parameter height i, the overall complexity of our algorithm can be estimated as
O∗(

∑k

i=0
(li2

k−i2i)) = O∗(2k
∑k

i=0
li)) = O∗(3.2361k) as claimed.

4 Complexity and approximability of cvc

We begin with two results concerning the complexity and approximability of cvc

in general graphs and planar bipartite graphs of bounded degree.

Theorem 8. cvc is not approximable within an asymptotic performance ratio of
10
√

5 − 21 − δ, for any δ > 0, unless P=NP.

Proof. The result follows using the construction in the proof of Theorem 3 for the
case that t = 2.

8

Theorem 9. cvc-d is NP-complete for planar bipartite graphs of maximum degree
4.

Proof. Clearly cvc-d belongs to NP. To show NP-hardness, we use the same
reduction as in Theorem 5 with t = 2, however in this case we reduce from the
NP-complete restriction of cvc-d to planar graphs of maximum degree 4 [16]. The
graph G′ so constructed is then also a planar bipartite graph of maximum degree 4.
If S is a connected vertex cover of size at most k in G, then S ∪ W ′ is a connected
vertex cover of size at most k′ in G′. Conversely if S ′ is a minimum connected vertex
cover of size at most k′ in G′, then S∩W = W ′. It follows that S ′∩V is a connected
vertex cover in G of size at most k.

We now consider the parameterized complexity of cvc. Combining the recently
improved Steiner tree algorithm [13, 28] with a colouring technique similar to that
described in detail for 2-tvc-d in the proof of Theorem 7, we are able to achieve
the following result (see [11] for the full proof):

Theorem 10. cvc-d is in FPT and can be solved in time O∗(2.9316k), where k
is the size of the cvc.

5 Complexity and approximability of t-tec

Let G = (V, E) be a connected graph, where n = |V |, m = |E| ≥ 1, and let
1 ≤ t ≤ n − 1. We begin this section by presenting a Gallai identity involving
the concepts of a t-tec and a t-tree packing. A t-tree packing of G is a collection
P = {G1, . . . , Gk} of vertex-disjoint (non-induced) subgraphs of G, each of which is
a tree containing exactly t edges. The value k is defined to be the size of P. Let
β1,t(G) denote the maximum size of a t-tree packing of G. Then β1,1(G) = β1(G),
the size of a maximum matching in G. The following result gives a Gallai identity
involving α1,t(G) and β1,t(G).

Theorem 11. Let G = (V, E) be a connected graph, where n = |V |, m = |E| ≥ 1,
and let 1 ≤ t ≤ n − 1. Then α1,t(G) + β1,t(G) = n.

Proof. Let P = {G1, . . . , Gk} be a t-tree packing of G such that k = β1,t(G). Let S
initially contain the edges belonging to the subgraphs in P. Then |S| = kt and S
covers k(t+1) vertices of G, so that n− k(t+1) vertices are as yet uncovered. Pick
any uncovered vertex v. Then v is at distance at most t from a covered vertex w, for
otherwise we contradict the maximality of P. Let v0 = v, and let v0, v1, . . . , vs be the
vertices (in order) on a path in G from v0 to vs, where vs is covered, vi is uncovered
(1 ≤ i ≤ s− 1), and 1 ≤ s ≤ t. Add {vi, vi+1} to S (0 ≤ i ≤ s− 1). Continue in this
way until all vertices are covered. Then S is a t-tec of G. Moreover we add one edge
for every additional vertex that we cover, so that |S| = kt + (n− k(t + 1)) = n− k,
i.e. α1,t(G) ≤ n − β1,t(G).

Conversely let S = {S : S is a t-tec in G and |S| = α1,t(G)}. Choose S ∈ S such
that G[S] contains the fewest number of cycles. Let Gi = (Vi, Si) (1 ≤ i ≤ k) be the
connected components of G[S], for some k ≥ 1. Let i (1 ≤ i ≤ k) be given. Then
by definition of S, it follows that Gi contains at least t edges. Now suppose that Gi

contains a cycle, and let e be any edge on this cycle. If k = 1 then S ′ = S\{e} is a

9

connected subgraph of G that spans V , and hence |S ′| ≥ n− 1, so that S ′ is a t-tec,
contradicting the minimality of S. Hence k ≥ 2. Since S is an edge cover, there
exists an edge e′ = {u, v} in G such that u is covered by Gi and v is covered by
some Gj (1 ≤ j 6= i ≤ k). Let S ′ = (S\{e})∪{e′}. Then S ′ is a t-tec, |S ′| = |S| and
S ′ has one fewer cycle than S, contradicting the choice of S. Hence Gi is acyclic. It
follows that |Si| = |Vi| − 1, so that

|S| =
k∑

i=1

|Si| =
k∑

i=1

(|Vi| − 1) = n − k.

Let P = {H1, . . . , Hk} be formed by “pruning” each Gi in order to form a tree Hi

containing exactly t edges (this may be carried out by repeatedly deleting edges
incident to vertices of degree 1 in Gi, until exactly t edges remain). Then P is a
t-tree packing of G, and |P| = k = n − α1,t(G), so that β1,t(G) ≥ n − α1,t(G).

We remark that, in the case t = 1, Theorem 11 gives the familiar Gallai identity
α1(G) + β1(G) = n [15].

For each t ≥ 1, let t-tree packing denote the problem of computing β1,t(G),
given a connected graph G = (V, E), where n = |V | ≥ t+1. Let t-tree packing-d

denote the decision version of t-tree packing. Kirkpatrick and Hell [23] proved
the following result concerning t-tree packing-d.

Theorem 12 ([23]). For each t ≥ 2, t-tree packing-d is NP-complete.

The following is an immediate consequence of Theorems 12 and 11.

Corollary 13. For each t ≥ 2, t-tec-d is NP-complete.

The next two results concern the approximability of t-tec for t ≥ 2.

Theorem 14. For each t ≥ 2, t-tec is approximable within 2.

Proof. Let G = (V, E) be an instance of t-tec (a connected graph where n = |V |
and m = |E| ≥ t). Any edge cover S of G satisfies |S| ≥ n

2
, since each edge of S

covers 2 vertices of G. Now let T be a spanning tree of G. Suppose firstly that
t ≤ n − 1. Then T is a t-tec of G and |T | = n − 1 ≤ 2α1(G) ≤ 2α1,t(G) by
Proposition 2, as required. Now suppose that t > n − 1. Let t′ = t − (n − 1). As G
is connected, we may construct a t-tec S by adding t′ edges to T . Then |S| = t, so
that S is in fact a minimum t-tec by Proposition 2.

Theorem 15. 2-tec in bounded degree graphs is not approximable within some
δ > 1 unless P=NP.

Proof. 2-tree packing in graphs of maximum degree B is not approximable within
some ε > 1 unless P=NP [22]. We may consider this problem as the starting
point for a reduction to 2-tec that essentially follows the same lines as the proof of
Theorem 11 in the case that t = 2 and G = (V, E) is a connected graph of maximum
degree B, where n = |V | and m = |E|. Now β1,2(G) ≥ m/(3B − 1), since any P3 in
a 2-tree packing P of G rules out at most 3B − 1 edges for inclusion in some other
P3 in P. By Theorem 11, α1,2(G) + β1,2(G) = n ≤ m, since the graph constructed
by Kann’s reduction [22] is not acyclic. Hence the reduction described here is an
L-reduction (see [31]) with parameters α = 3B − 2 and β = 1. The result follows
by [35, Theorem 63].

10

We now consider the parameterized complexity of t-tec (t ≥ 2).

Theorem 16. For each t ≥ 2, t-tec-d is in FPT .

Proof. Let 〈G, k〉 be an instance of t-tec-d. Then k is a parameter and G = (V, E)
is a connected graph where n = |V | and m = |E| ≥ t. As observed in the proof of
Theorem 14, k ≥ n

2
or else 〈G, k〉 is a NO-instance. Hence n ≤ 2k, so m ≤ (2k)2.

Generating every subset S of E with at most k edges and verifying whether S is a
t-tec is a process that takes O∗((2k)2k) overall time.

We now consider the concept of parametric duality (see [4, 9] for a recent ex-
position), which is in a sense quite related to the family of Gallai identities proved
above. Define dual-t-tec-d to be the problem of deciding, given a connected graph
G = (V, E) where n = |V | and m = |E| ≥ t, and a (dual) parameter kd, whether
there a t-tec of size at most n − kd. Using the fact that 2-tree-packing-d is in
FPT and solvable in time O∗(25.3k), where k is the size of the 2-tree-packing [32],
Theorem 11 implies the following result.

Theorem 17. dual-2-tec-d is in FPT and can be solved in time
O∗(25.3kd).

Theorems 16 and 17 therefore imply that both 2-tec-d and dual-2-tec-d are in
FPT , a result rarely observed in the context of parameterized complexity. However,
in the case of t-tvc and cvc, we can show:

Theorem 18. dual-2-tvc-d is W[1]-complete. Also dual-t-tvc-d (t ≥ 3) and
dual-cvc-d are W [1]-hard.

Proof. To show membership in W [1] of dual-2-tvc-d, we employ the “Turing way”
[3, 9]. That is, we exhibit a Turing machine whose f(kd)-step halting problem is
solvable if and only if the given instance of dual-2-tvc-d is a YES-instance.

A 1-tape nondeterministic Turing machine MG for graph G = (V, E) would work
as follows. The alphabet is V × {0, 1} (plus the end markers).

1. Guess kd letters from V × {0} and write them on the tape.

2. Sweep back and forth on the tape and verify that the vertices are independent.
(If two vertices u, v have been guessed with u ∈ N(v), then the Turing machine
would enter an infinite loop.)

The second part of the tape alphabet can be used to protocol which two
vertices are tested. If all pairs have been tested, then the tape contains an
independent set I.

3. Now use the second part of the tape alphabet to cycle through all subsets of
I. For each subset ∅ 6= X ⊆ I, we have to test whether X = N(v) for some
v /∈ I. If this is the case, then we have detected a vertex from the vertex cover
V \ I that has no neighbour from V \ I.

To this end, an n-bit internal memory is used. Initially, this is an all-zero
vector. Upon reading X off the tape, at most kd bits are set to 1. Then, by
the internal memory bit vector X = N(v) can be checked in one further step.

11

If the infinite loop is not entered (i.e., X 6= N(v) for all v ∈ V \ I), then the
kd bits are set to 0 again, and then the “next set” is selected by the bit vector
counter on the tape.

Finally, the bit vector counter on the tape contains only ones, and then the
machine will stop.

Hence, there is a function f(kd) such that G has a total vertex cover of size n−kd

iff MG stops in at most f(kd) steps.
We now show that dual-t-tvc-d is W [1]-hard, for each t ≥ 2. We use the same

reduction as in Theorem 3, where G = (V, E) is a connected graph with n = |V | ≥ 2
and kd is a parameter, given as an instance of independent set-d. Then G has
an independent set of size kd if and only if the (n + t)-vertex graph G′ has a t-tvc
of size n − kd + (t − 1) = (n + t) − (kd + 1).

In the case of dual-cvc-d, the proof is similar; the same reduction may be used
with t = 2.

6 Concluding remarks

In this paper we have defined the concepts of a t-tvc and a t-tec for t ≥ 1, which
are motivated by the notions of covering and clustering in graphs. We have pre-
sented NP-completeness, approximability and parameterized complexity results for
associated optimization and decision problems.

Until now, enumeration-based solutions to parameterized decision problems seem-
ed to be doomed to give rise to a complexity function O∗(Ck) where C is quite large.
Our FPT algorithms in this paper demonstrate how this can be overcome by in-
troducing appropriate “colourings” and corresponding reduction rules within the
search tree algorithm. A further example is the edge dominating set algorithm
described in [10]. Moreover, a novel way of analyzing search trees that can be de-
composed into two phases is exhibited; this has proved to be highly effective in the
case of 2-tvc-d and cvc-d, and should also be applicable in improving the analysis
of other fixed-parameter algorithms.

In Section 4, we described very briefly in outline an O∗(2.9316k) algorithm for
cvc-d. As mentioned in Section 1, an improved O∗(2.7606k) algorithm for cvc-d

will be reported in [27]. It is likely that a further improvement could be obtained
by combining the approach of Moelle et al. with the reduction rules that we employ
for our cvc-d algorithm.

The results in this paper leave open the following problems, among others, that
are worthy of further consideration: (1) Formulate polynomial-time algorithms for
t-tvc and t-tec in restricted classes of graphs. (2) Formulate (if possible) FPT
algorithms for t-tvc-d (t > 2). Are the corresponding parametric dual problems in
W [1] ? (3) Consider “clustering” variants of vertex domination and edge domination.

Acknowledgements

The second author would like to thank Michele Zito for helpful discussions regarding
2-total vertex covers, and Pavol Hell for drawing our attention to reference [23] in
connection with t-tree packings.

12

References

[1] E.M. Arkin, M.M. Halldórsson, and R. Hassin. Approximating the tree and
tour covers of a graph. Information Processing Letters, 47:275–282, 1993.

[2] J.R.S. Blair. Personal communication, 2001.

[3] M. Cesati. The Turing way to parameterized complexity. Journal of Computer
and System Sciences, 67:654–685, 2003.

[4] J. Chen, H. Fernau, I. A. Kanj, and G. Xia. Parametric duality and kerneliza-
tion: Lower bounds and upper bounds on kernel size. In Proceedings of STACS
2005: the 22nd Annual Symposium on Theoretical Aspects of Computer Science,
volume 3404 of Lecture Notes in Computer Science, pages 269–280. Springer,
2005.

[5] M. Chleb́ık and J. Chleb́ıková. Complexity of approximating bounded variants
of optimization problems. Theoretical Computer Science, 354(3):320–338, 2006.

[6] E.J. Cockayne, R.M. Dawes, and S.T. Hedetniemi. Total domination in graphs.
Networks, 10:211–219, 1980.

[7] P. Damaschke. Parameterized enumeration, transversals, and imperfect phy-
logeny reconstruction. Theoretical Computer Science, 351:337–350, 2006.

[8] I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162(1):439–485, 2005.

[9] H. Fernau. Parameterized algorithmics: A graph-theoretic approach. Habilita-
tionsschrift, University of Tübingen, 2005.

[10] H. Fernau. Edge dominating set: efficient enumeration-based exact algorithms.
In Proceedings of IWPEC 2006: the Third International Workshop on Param-
eterized and Exact Computation, volume 4169 of Lecture Notes in Computer
Science, pages 142–153. Springer, 2006.

[11] H. Fernau and D.F. Manlove. Vertex and edge covers with clustering proper-
ties: Complexity and algorithms. Technical Report TR-2006-210, University of
Glasgow, Department of Computing Science, 2006.

[12] F. Fomin, D. Kratsch, and G. Woeginger. Exact (exponential) algorithms for
the dominating set problem. In Proceedings of WG ’04: the 30th International
Workshop on Graph-Theoretic Concepts in Computer Science, volume 3353 of
Lecture Notes in Computer Science, pages 245–256. Springer, 2004.

[13] B. Fuchs, W. Kern, Daniel Mölle, S. Richter, P. Rossmanith, and X. Wang.
Dynamic programming for minimum Steiner trees. Technical Report zaik2005-
492, University of Cologne, 2005.

[14] M. Gaertler. Clustering. In U. Brandes and T. Erlebach, editors, Network
Analysis, volume 3418 of Lecture Notes in Computer Science, chapter 8, pages
178–215. Springer, 2005.

13

[15] T. Gallai. Über extreme Punkt-und Kantenmengen. Ann. Univ. Sci. Budapest,
Eötvös Sect. Math., 2:133–138, 1959.

[16] M.R. Garey and D.S. Johnson. The rectilinear Steiner tree problem is NP-
complete. SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

[17] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1:237–267, 1976.

[18] J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity of general-
ized vertex cover problems. In Proceedings of WADS 2005: the 9th International
Workshop on Algorithms and Data Structures, volume 3608 of Lecture Notes in
Computer Science, pages 36–48. Springer, 2005.

[19] F. Harary. Graph Theory. Addison-Wesley, 1969.

[20] T. Haynes, S.T. Hedetniemi, and P.J. Slater, editors. Domination in Graphs:
Advanced Topics. Marcel Dekker, 1998.

[21] T. Haynes, S.T. Hedetniemi, and P.J. Slater. Fundamentals of Domination in
Graphs. Marcel Dekker, 1998.

[22] V. Kann. Maximum bounded H-matching is MAX SNP-complete. Information
Processing Letters, 49:309–318, 1994.

[23] D.G. Kirkpatrick and P. Hell. On the completeness of a generalized matching
problem. In Proceedings of STOC ’78: the 10th Annual ACM Symposium on
Theory of Computing, pages 240–245. ACM, 1978.

[24] D.F. Manlove. On the algorithmic complexity of twelve covering and indepen-
dence parameters of graphs. Discrete Applied Mathematics, 91:155–175, 1999.

[25] S. Mitchell and S.T. Hedetniemi. Edge domination in trees. In Proceedings of
the 8th South-Eastern Conference on Combinatorics, Graph Theory and Com-
puting, pages 489–509. Utilitas Mathematica, 1977.

[26] D. Mölle, S. Richter, and P. Rossmanith. Enumerate and expand: Improved
algorithms for connected vertex cover and tree cover. In Proceedings of CSR
’06: International Computer Science Symposium in Russia, volume 3967 of
Lecture Notes in Computer Science, pages 280–290. Springer, 2006.

[27] D. Mölle, S. Richter, and P. Rossmanith. Enumerate and expand: New runtime
bounds for vertex cover variants. In Proceedings of COCOON 2006: the 12th
Annual International Computing and Combinatorics Conference (to appear),
Lecture Notes in Computer Science. Springer, 2006.

[28] D. Mölle, S. Richter, and P. Rossmanith. A faster algorithm for the Steiner
Tree problem. In Proceedings of STACS 2006: the 23rd Annual Symposium
on Theoretical Aspects of Computer Science, volume 3884 of Lecture Notes in
Computer Science, pages 561–570. Springer, 2006.

14

[29] N. Nishimura, P. Ragde, and D.M. Thilikos. Fast fixed-paramter tractable
algorithms for nontrival generalizations of vertex cover. Discrete Applied Math-
ematics, 152:229–245, 2005.

[30] R.Z. Norman and M.O. Rabin. An algorithm for a minimum cover of a graph.
Proceedings of the American Mathematical Society, 10:315–319, 1959.

[31] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation and
complexity classes. Journal of Computer and System Sciences, 43(3):425–440,
1991.

[32] E. Prieto and C. Sloper. Looking at the stars. Theoretical Computer Science,
351:437–445, 2006.

[33] C. Savage. Depth-first search and the vertex cover problem. Information Pro-
cessing Letters, 14:233–235, 1982.

[34] S. Ueno, Y. Kajitani, and S. Gotoh. On the nonseparating independent set
problem and feedback set problem for graphs with no vertex degree exceeding
three. Discrete Mathematics, 72:355–360, 1988.

[35] M. Zito. Randomised Techniques in Combinatorial Algorithms. PhD thesis,
University of Warwick, Department of Computer Science, 1999.

15

