Popular Matchings in the
Weighted Capacitated House Allocation Problem

Colin T.S. Sng* and David F. Manlovef

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.
Email: {sngts,davidm}@dcs.gla.ac.uk.

Abstract

We consider the problem of finding a popular matching in the Weighted Capacitated
House Allocation problem (WCHA). An instance of WCHA involves a set of agents
and a set of houses. Each agent has a positive weight indicating his priority, and a
preference list in which a subset of houses are ranked in strict order. Each house has
a capacity that indicates the maximum number of agents who could be matched to
it. A matching M of agents to houses is popular if there is no other matching M’
such that the total weight of the agents who prefer their allocation in M’ to that in
M exceeds the total weight of the agents who prefer their allocation in M to that in
M. Here, we give an O(v/Cny 4+ m) algorithm to determine if an instance of WCHA
admits a popular matching, and if so, to find a largest such matching, where C' is the
total capacity of the houses, n; is the number of agents, and m is the total length of
the agents’ preference lists.

1 Introduction

An instance I of the Weighted Capacitated House Allocation problem, abbreviated by
WCHA, involves a bipartite graph G = (A, H, E), where A = {ay,a2,...,a,, } is the set
of agents, H = {hi,ha,...,h,,} is the set of houses and E is the set of edges in G. We
let n = ny + ny and m = |E|. Each agent a € A ranks in strict order a subset of H (the
acceptable houses for a) represented by his preference list, and E consists of all pairs (a, h)
such that the house h; appears in the preference list of agent a. We also create a unique
last resort house [(a) for each a and append I(a) to a’s preference list. We also henceforth
assume that G contains the vertex [(a) and the edge (a,l(a)) for each a € A. Every agent
a has a positive weight w(a) indicating the priority of the agent, and we partition A into
sets P;,Ps, ..., Py, such that the weight of agents in P, is w,, and wy > wg > ... > wy > 0.
For each agent a € A, a has priority z if a € P,, and in such a case we let P(a) = z.
Each house h; € H has a capacity c; > 1 which indicates the maximum number of agents
that may be assigned to it. We assume that m > max{ni,n2}, i.e. no agent has an
empty preference list and each house is acceptable to at least one agent. We also assume
that ¢; < nj for each h; € H. Let C = Z?; c¢; denote the sum of the capacities of the
houses. A matching M in I is a subset of E such that (i) each agent is assigned to at
most one house in M, and (ii) each house h; € H is assigned to at most ¢; agents in
M. We say that a house h; € H is full in M if |M(h;)| = ¢; and undersubscribed in

*Supported by Department of Computing Science and ORSAS scholarships.
fSupported by an RSE/Scottish Executive Personal Research Fellowship and by EPSRC grant
EP/E011993/1.

M if [M(h;)| < ¢;. If an agent a € A is matched in M, we denote by M (a) the house
that a is matched to in M. We define M(h;) to be the set of agents matched to h; in
M (thus M (h;) could be empty). Given two matchings M and M’ in I, we say that an
agent a prefers M’ to M if either (i) a is matched in M’ and unmatched in M, or (ii) a
is matched in both M’ and M and prefers M'(a) to M(a). Let P(M', M) denote the set
of agents who prefer M’ to M. Then, the satisfaction of M’ with respect to M is defined
as sat(M', M) =3 e por vy w(@) = X gepiasnry w(a). We say that M’ is more popular
than M if sat(M’, M) > 0. Furthermore, a matching M in [is popular if there is no other
matching in I that is more popular than M.

WCHA is an example of a bipartite matching problem with one-sided preferences
[1, 2, 9, 3]. These problems have applications in areas such as campus housing allocation
in US universities [1], hence the problem name; in assigning probationary teachers to their
first posts in Scotland; and in Amazon’s DVD rental service. In many situations where
the total capacity of the houses is fewer than the number of agents or where we would like
to give some agents a better chance of “doing well”, the assignment of weights to agents
allow us to build up a spectrum of priority levels for agents in the competition for houses.
For instance, Amazon can give priority to those members of its DVD rental service who
have paid more for privileged status whenever a certain title is limited in stock. A variety
of optimality criteria have been defined for such problems. Gérdenfors [8] first introduced
the notion of a popular matching in the context of voting theory. Alternatively, Pareto
optimality [1, 2] is often regarded by economists as a fundamental property to be satisfied.
A matching M is Pareto optimal if there is no matching M’ such that some agent prefers
M’ to M, and no agent prefers M to M’'. Finally, a matching is rank mazimal [9] if it
assigns the maximum number of agents to their first-choice houses, and subject to this,
the maximum number of agents to their second-choice houses, and so on. However, Pareto
optimal matchings and rank maximal matchings need not be popular.

Popular matchings were considered by Abraham et al. [3] in the context of the House
Allocation problem (HA) — the special case of WCHA where each house has capacity 1
and each agent has the same priority. They gave an instance of HA in which no popular
matching exists and also noted that popular matchings can have different sizes. They
described an O(n + m) algorithm for finding a maximum cardinality popular matching
(henceforth a maximum popular matching) if one exists, given an instance of HA. They
also described an O(y/nm) algorithm for HA when preferences may include ties, i.e. HA
with Ties (HAT).

Several other recent papers have also focused on popular matchings. Chung [6] con-
sidered popular matchings in instances of the Stable Roommate problem (a non-bipartite
generalisation of HA) and noted that a stable matching is popular; however, the same need
not be true in the presence of ties. Mahdian [10] showed that a popular matching exists
with high probability when (i) preference lists are random, and (ii) the number of houses is
a small multiplicative factor larger than the number of agents. Abraham and Kavitha [4]
considered voting paths in relation to popular matchings in a dynamic matching market in
which agents and houses can enter and leave the market. Manlove and Sng [11] studied a
special case of WCHA in which all agents have the same priority — the Capacitated House
Allocation problem (CHA). They gave an O(v/Cny + m) algorithm for finding a (maxi-
mum) popular matching, if one exists, when preferences are strict, and an O((v/C 4n1)m)
algorithm when preferences contain ties. Mestre [12] studied a special case of WCHA in
which all houses have unitary capacity — the Weighted House Allocation problem (WHA).
He gave an O(n +m) algorithm for finding a (maximum) popular matching, if one exists,
when preferences are strict, and an O(min(k+/n,n)m) algorithm when preferences contain
ties.

1. for each h; € H loop

2. for i in 1..k loop

3. fi,j = 0;

4. for each a € P, loop

5. f(a) := first-ranked house h; on a’s preference list;
6. frg++

7. for each z in 2..k loop

8. for each a € P, loop

9. q:=1,;

10. h; := house at position ¢ on a’s preference list;
11. while (Zf:_ll f@j > Cj) 100p

12. q++;

13. h; := house at position ¢ on a’s preference list;
14. f(a) == hy;

15. fZJ‘ ++;

Figure 1: Algorithm Label-f.

In this paper, we consider popular matchings in an instance I of WCHA (i.e. preference
lists are strict), which is a natural generalisation of the one-one WHA model. We give
a non-trivial extension of the results from [12] to WCHA. We first develop in Section
2 a characterisation of popular matchings in WCHA. Then, in Sections 3.1 and 3.2, we
show how to remove certain edges in the underlying graph G which cannot belong to a
popular matching. In Section 3.3, we show how this leads to an O(\/Enl + m) algorithm
for finding a popular matching in I, if one exists. Also, we show in Section 3.3 that any
alternative straightforward approach using “cloning” to solve WCHA instances leads to
slower algorithms than our direct approach. Finally, we show in Section 3.4 how to modify
our algorithm to compute a maximum popular matching if one exists, without altering
the time complexity.

2 Characterising a popular matching

For each agent a € A, we introduce the notion of a’s f-house and a’s s-house denoting
these by f(a) and s(a) respectively. Intuitively, f(a) is the most preferred house h; on a’s
preference list to which a could be matched in a popular matching. Therefore, f and s
stand for first possible and second possible house, respectively. We use Algorithm Label-f
shown in Figure 1 to define f(a) precisely.

Here, we will define the f-houses for all the agents in phases, with each phase corre-
sponding to a priority level P,. Intuitively, during the course of the algorithm’s execution,
fi,; will denote the number of agents with priority ¢ whose f-house is defined and equal
to h;. Initially, f;; = 0 for all ¢ (1 <4 < k) and j (1 < j < ng). We then define the
f-house for each agent as follows. For every agent a € Pj, we let f(a) be the first-ranked
house h; on a’s preference list, and we call such a house an fi-house. Given 2 < z < k,
for every agent a € P,, we let f(a) be the most-preferred house h; on a’s preference list
such that Zf;ll fi,j < c¢j — we call h; an f,-house. Once the algorithm has terminated,
we let f;(h;) denote the set {a € P; : f(a) = h;}. Then, f;; = |fi(h;j)| (possibly f;; =0).
It is straightforward to verify that Algorithm Label-f runs in O(m) time if we use virtual
initialisation (described in [5, p.149]) for the steps in lines 1-3. The following example
in Figure 2 gives an illustration of the definition of f-houses. Here, the f-houses of the
agents are as follows: f(a1) = hi, f(a2) = hs, f(as) = hs, f(as) = hy4, f(as) = hg and
flag) = hy.

Now, for each h; € H, let f(hj) = {a€ A: f(a) = h;} and f; = |f(h;)| (possibly

Agent Priority Weight Pref list House Capacity

ap: 1 7 h1 hg h3 hl 1
as: 2 4 h1 h3 h4 hg 2
as: 2 4 h3 h5 h3 2
aq: 3 2 h3 h1 h4 h5 h4 2
as: 3 2 h1 h4 h5 h5 1
ag: 3 2 h4 h1 hg

Figure 2: Example WCHA instance.

fj=0),ie f(hj)= Up 1 fo(hj). Clearly each h; may be an f.-house for more than one
priority level z. For every such hj, let us define d to denote the priority level such that

4 — max{r:0<r <kA f,; #0},if f;j <¢j,
- maX{T’:OSTSk/\Z;:le‘,jSCj},iffj>Cj.

Note that for every h; such that f; > ¢;, clearly Ul;: ;41 fp(hj) # 0. Hence, for every such
hj, we define g; to be the priority level such that g; = max{r:d; <r < kA f,; # 0}. We
refer to Figure 2 for illustration. Here, di = 1, d3 = 2 and d4 = 2. Note that do and d5 are
not defined, for hy and hy are not f-houses for any agent. Also, since f4 > ¢y, it follows
that g4 = 3; however, hy is the only f-house h; such that f; > c;.

The following lemmas are vital first steps in characterising popular matchings in
WCHA (due to space limitations, see [13] for the proofs of all lemmas and theorems).

Lemma 1. Let M be a popular matching in any given WCHA instance I. Then, for each
hj € H, UL, fi(hj) C M(h;).

Lemma 2. Let M be a popular matching in any given WCHA instance I. Then, for each
hi € H, if f; > cj, then M(hy)\UyLy fy(hs) € fo,(hy).

We now define the concept of an s-house for each agent. If M(a) # f(a), then as we
shall show, M(a) = s(a). Given 1 < z < k, for every agent a € P,, we define s(a) to be
the most preferred house h; on a’s preference list such that hj # f(a) and >°7 ;| fi;j < ¢;.
To illustrate s-houses, let us look at the example in Figure 2 again. We may verify from
the definition of s-houses that s(ay1) = ha, s(az) = ha, s(as) = hs, s(aq) = hs, s(as) = hs
and s(ag) = hy. Clearly, the set of f;-houses need not be disjoint from the set of s;-houses
for i # j. Now, since the process of defining s-houses is analogous to the algorithm for
defining f-houses, the time complexity for defining s-houses is also O(m). Note that s(a)
may not exist if f(a) = I(a). However, all such agents will be matched to their f-houses
in any matching since last resort houses are unique to individual agents. Now, it may be
shown that a popular matching M will only match an agent a to either f(a) or s(a) as
indicated by the next lemma.

Lemma 3. Let M be a popular matching in any WCHA instance I. Then, every agent
a € A is matched in M to either f(a) or s(a).

Lemmas 1-3 give rise to the following result.
Theorem 4. Let M be a popular matching in any given WCHA instance I.
1. For every f-house hj,

(a) if fj < ¢j, then f(h;) € M(hy);
(b) if fj > . then [M(hy)| = ¢, UyLy fp(hy) € M(hy), and
M(hy)\UpZy o) € fo, (hy)-

2. Every agent a is matched to either f(a) or s(a).

3 Algorithm for finding a popular matching

Let us form a subgraph G’ of G by letting G’ contain only two edges for each agent
a € A, that is, one to f(a) and the other to s(a). It follows that all popular match-
ings must be contained in G’ by Conditions 1 and 2 of Theorem 4. However, Theorem 4
only gives us necessary conditions for a matching to be popular in an instance of WCHA,
since not all matchings in G’ satisfying these conditions are popular. For let us consider
the example WCHA instance in Figure 2. We have two matchings which satisfy Condi-
tions 1 and 2 of Theorem 4: M1 = {(al, hl), (ag, hg), (ag, hg), (a4, h5), (a5, h4), (a6, h4)}
and MQ = {(al, hl), (CLQ, hg), (ag, hg), (04, h4), (a5, h5), (06, h4)} I’IOW(BVE‘:I‘7 while M1 is
a popular matching, M is not popular because there exists another matching M3z =
{(ag2, h1), (a3, hs3), (aq, hs), (a5, ha), (ag, ha)} which gives an improvement in satisfaction of
w(az) + w(as) + w(as) —w(a) =4+2+2—7> 0 over Ma. Hence, we will “enforce”
the sufficiency of the conditions by removing certain edges in G’ that cannot form part of
any popular matching in I. We show how to do this by first introducing the notion of a
potential improvement path or PIP in short, which generalises the concept of a promotion
path from [12] to WCHA.

3.1 Potential improvement paths

Let us now define a matching M that satisfies Conditions 1 and 2 of Theorem 4 to be
well-formed. Then, a PIP leading out of some f-house h;, with respect to M is an
alternating path IT = (hy,, aiy, hiy , @iy -, hi, , i,) such that by, = f(a;;) and (a;;, hi;) € M
for 0 < j <z, and ay; strictly prefers h;; , to h;; for j < z. A PIP leading out of hy,
always exists, which can be seen as follows. Since h;, is an f-house and ¢;, > 1, there
exists some agent a;, € f(hi,) N M(h;,) by Theorem 4. Then, by definition, (hi,,a;,) is
a PIP leading out of h;,. The next lemma shows that any PIP leading out of h;, must
contain a sequence of agents with strictly decreasing priorities. Hence, the sequence of
agents in II must be distinct since the priority of agents is strictly decreasing.

Lemma 5. Let M be a well-formed matching. Let I1 = (h;,, a;y, ..., hi,, ai,) be a potential
improvement path with respect to M leading out of h;, as defined above. Then, P(a;;) <
P(ai;) for 0 <j <.

Let us define the cost of II to be cost(Il) = w(a;,) — w(ai, ,) — ... — w(a;,). Note that
cost(IT) = w(a;,) if x = 0. We now motivate the notion of a PIP as follows. Let us suppose
that there exists some agent a, who prefers h;, to M(a,). The next lemma shows that
any such agent cannot belong to II. Now, if cost(II) < w(a,), we can conclude that the
well-formed matching M is not popular because we can promote a, to hj, and use the
PIP to promote each a;; to h;, , for all j < 2 and demote a;, to l(a;,) to obtain a new
matching that is more popular than M.

Lemma 6. Let M be a well-formed matching. Let I1 = (h;,, a;y, ..., hi,, ai,) be a potential
improvement path with respect to M leading out of h;, as defined above. Then, any agent
a who prefers h;, to M(a) does not belong to II.

3.2 Pruning the graph

Let us now introduce Algorithm Prune-WCHA as given in Figure 3, which will enable us
to remove certain edges in G’ that cannot be part of any popular matching. The algorithm
is divided into two stages, and the first stage is carried out in phases, with each phase
corresponding to a priority level P,. Intuitively, in each phase in the first stage, we compute
the costs of PIPs and determine the minimum of these for each f-house h;, and then use

these values to identify and remove certain edges incident to f-houses in G’ that cannot
belong to any popular matching. Based on the minimum values of PIPs calculated for
f-houses in the first stage, we then identify and remove in the second stage edges incident
to s-houses in G’ that cannot belong to any popular matching. Let G denote the graph
obtained from G’ once the algorithm terminates (following these pruning operations). The
removal of these edges will ensure that any well-formed matching in G” is popular. Over
the phases of execution, certain conditions may arise which signal to the algorithm that
no popular matching exists.

Recall that h; may be an f-house for more than one priority level, and h; may be
an f-house for more than one agent for each priority level. In the algorithm, we will
use A;(h;) to compute the minimum cost of a PIP leading out of h; taken over all well-
formed matchings in G” such that (a,,h;) is the first edge for some a, € P,. We will
also use A(h;) to compute the minimum cost taken over all A, (h;). Let IL,,;,(h;) denote
a PIP with minimum cost leading out of h; taken over all well-formed matchings in G”.
Let cost(Il,nn(h;)) denote the cost of this path. Then, the final value of A(h;) in the
execution of the algorithm gives us the value of cost(Il,nin(hj)). For any agent as € A,
let S contain the set of houses on ay’s preference list that as prefers to f(as). If S # 0,
we will use A\pyin(as, f(as)) within the algorithm to compute the minimum cost of a PIP
out of hy taken over all h, € S, and over all well-formed matchings in G”; otherwise,
Amin(as, f(as)) = oo. Similarly, let R contain the set of houses on as’s preference list after
f(as) that as prefers to s(as). If R #), we will use Apin(as, s(as)) within the algorithm
to compute the minimum cost of a PIP out of h, taken over all h, € R, and over all
well-formed matchings in G”; otherwise, Apin(as, s(as)) = oo.

The next three lemmas are vital results which establish the correctness of the algorithm.

Lemma 7. Any edge removed by Algorithm Prune-WCHA cannot belong to a popular
matching.

Lemma 8. If Algorithm Prune-WCHA reports that no popular matching exists, then there
does not exist any well-formed matching in G’ that is popular.

Lemma 9. Suppose that Algorithm Prune-WCHA does not state that no popular matching
exists. Let M be a well-formed matching in the pruned graph G”. Then, M is popular.

We now use the example in Figure 2 to illustrate our algorithm. After the first stage,
we have A(h1) = 7, A(h3) = 3 and A(hy) = 2. We remove the edges (a1, h2) in phase 1, and
(a2, hq) and (ag, hs) in phase 2 of the first stage (in line 17) since a; belongs to fq, (h1),
and ag and ag belong to fg,(hs) respectively. We also remove the edge (a4, hq) in phase
3 of the first stage (in lines 20-21) since \jipn(aq, hy) = 3 < 2w(ayq). No further edges are
removed in the second stage.

3.3 Finding a popular matching

We are now left with the task of finding a well-formed matching M in G” in order to find
a popular matching if one exists. Note that the removal of edges from G’ by Algorithm
Prune-WCHA effectively reduces the problem to that of finding a popular matching in an
instance of CHA. For let us consider the problem of trying to match each f-house h; so that

h; satisfies the conditions of a well-formed matching. Now, if f; < ¢;, then ensuring that

Ugj:l Ip(h;) € M(hj) is equivalent to ensuring Condition 1(a) of Theorem 1 of [11]. On

the other hand, if f; > ¢;, we need to ensure that those agents with the correct priorities
are matched to h; in M, i.e. there does not exist any agent a € UZLl fp(hj)\M (h;). Now,
since line 17 in the first stage of Algorithm Prune-WCHA ensures the removal of the edge

1. for each f-house h loop

2. A(R) :=w1; /* a suitable upper bound */

3. ----- first stage - - - - - - -

4. for z in 1..k loop

5. for each a € P, loop

6. S:={h € H : a prefers h to f(a)};

7. if S # 0 then

8. Amin(a, f(a@)) == min{\(h) : h € S};

9. else

10. Amin(a, f(a)) := oco; /* a suitable default value */
11. if Anin(a, f(a)) < w, then

12. return “No popular matching exists”;

13. for each f.-house h; loop

n F1(h3) = f-(hy);

15. if z <d;

16. for each a € f.(h;)

17. remove (a, s(a)) from G’;

18. else (// z>d;)

19. for each a € f.(h;) such that Anin(a, hj) < 2w, loop
20. remove (a, h;) from G';

21. remove ¢ from f1(h;);

22. if f/(h;) =0 then

23. return “No popular matching exists.”;
24. Az (hj) := min(w,, min {\pin(a, hj) —w, :a € fL(h;)});
25, A(h) = min(A(h;), As ()

26. if z =g; and A(h;) < w, then

27. return “No popular matching exists.”;

28, ------ second stage - - - - - - - -

29. for each a € A loop

30. hy := s(a);

31. R:={h € H : a prefers h to i} \(SU{f(a)});
32. if R# () then

33. Amin (@, hy) ;== min{\(h) : h € R};

34. else

35. Amin (@, hy) 1= 00;/* a suitable default value */
36. if A\pin(a,hy) < w(a) or f; > ¢ then

37. remove (a, h;) from G;

Figure 3: Algorithm Prune-WCHA for removing edges from G’

(a,s(a)) of every such a where a € Uzjzl fp(hj), a must be matched to f(a) if an agent-
complete matching (i.e. a matching in which all agents are matched) is to exist. This
is equivalent to the work done by lines 10-18 of Algorithm Popular-CHA of [11], which
tries to find an agent-complete matching and reports that no popular matching exists if
unsuccessful. Lastly, we need to ensure that each agent is matched to either f(a) or s(a)
and it is evident that Algorithm Popular-CHA also does this. Hence, we can find a popular
matching in WCHA, if one exists, by running Algorithm Popular-CHA on the pruned
graph G”. As illustration, if we run Algorithm Popular-CHA on the example in Figure 2
after edge removals through Algorithm Prune-WCHA, then Algorithm Popular-CHA will
return the following matching M = {(a1, h1), (a2, hs), (a3, h3), (aq, hs), (a5, hs), (ag, ha)}
which may be verified to be popular.

Let us now consider the time taken to find a popular matching in an instance of WCHA,
or to report that no such matching exists. First of all, it takes O(m) time to define the
f- and s-houses. Algorithm Prune-WCHA may be verified to run in O(m) time overall
(see [13]). Now, it takes O(v/Cny + m) time, using Algorithm Popular-CHA, to find a

well-formed matching (if one exists) in G”, where C' is the total capacity of the houses.
This gives us the following.

Theorem 10. Let I be an instance of WCHA. Then, we can find a popular matching in
I, or determine that none exists, in O(v/Cny +m) time.

“Cloning” versus our direct approach

A straightforward solution to finding a popular matching, given an instance I of WCHA,
may be to use “cloning” to create an instance J of WHA where preference lists are allowed
to contain ties, and then to apply the O(min(k+\/n,n)m) algorithm of [12] to J. Firstly,
we create ¢; clones hjl., h?, - h;j of each house h; in I, where each clone has a capacity of
1. In addition, we replace each occurrence of h; in a given agent’s preference list with the
sequence h}, h?, cery h;j , the elements of which are listed in a single tie at the point where
h; appears. Let G denote the underlying graph of J. Then, G contains n' = n; + C
nodes. For each a; € A, let A; denote the set of acceptable houses for a;, and let ¢, =
min {¢; : hj € H}. Then the number of edges in G is m' = ZaieA ZhjeAi Cj > MCin.-
Hence, the complexity of applying the algorithm of [12] to J is Q(min(kv/ny + C,ny +
C)YMCmin). Now, the complexity of our algorithm may be rewritten as O(v/Cny) or O(m)
depending on which component dominates the running time. If ny 4+ C > k+v/ny 4+ C, then
the cloning approach takes Q(kv/n1 + Cmepiy)) time which is slower than our algorithm
by a factor of Q(kcyin). Otherwise, if n1+C < ky/n; + C, then the cloning approach takes
Q(memin(n1 + C)) time which is slower than our algorithm by a factor of Q(\/acmm) It
follows that the cloning method is slower than our direct approach for all possible cases.

3.4 Finding a maximum popular matching

It remains to consider the problem of finding a maximum popular matching in WCHA.
Let us run Algorithm Label-f and Algorithm Prune-WCHA as before to define f- and
s-houses and to delete certain edges which cannot belong to any popular matching. We
then adopt a similar algorithm to that in [11] as follows. That is, let A; be the set of
all agents a with s(a) = l(a), and let Ay = A\A;. Our objective is to find a well-formed
matching in G” which minimises the number of A;j-agents who are matched to their last

resort house. We let A’ denote the set {a € UZLI fp(hj)}. We begin by carrying out a

pre-processing step on G” to compute a matching M, that matches each agent in A’ to his
f-house. We then try to find a maximum matching M’ in G” that only involves the A\ A’
agents that remain unmatched after pre-processing and their incident edges. If M’ is not
an agent-complete matching of Ao\ A" agents that remain unmatched after pre-processing,
then clearly I admits no popular matching. Otherwise, we remove all edges in G” that are
incident to a last resort house, and try to match additional Ai-agents to their f-houses
by repeatedly finding an augmenting path with respect to M’ using Gabow’s algorithm
[7] in a similar approach to that for CHA [11]. Let M"” be the matching obtained by
augmenting M’. If any Aj-agent remains unmatched at the end of this step, we simply
assign him to his last resort house, to obtain an agent-complete matching of A\ A’ agents
in G". Let M = MyUM”. If any agent a belonging to A\ A’ is not matched to his f-house
h; but h; is undersubscribed in M, we promote a from M (a) to h;. Then, clearly M will
be a well-formed matching in G”, and hence popular by Lemma 9. It follows that M is a
maximum popular matching, giving the following theorem.

Theorem 11. Given an instance of WCHA, we can find a mazimum popular matching,
or determine that none exists, in O(v/Cny +m) time.

Acknowledgement

We would like to thank Rob Irving for helpful discussions concerning this paper.

References

1]

[2]

A. Abdulkadiroglu and T. Sénmez. Random serial dictatorship and the core from ra
ndom endowments in house allocation problems. Econometrica, 66:689-701, 1998.

D.J. Abraham, K. Cechlarovéa, D.F. Manlove, and K. Mehlhorn. Pareto optimality in
house allocation problems. In Proceedings of ISAAC 04, vol. 3341 of Lecture Notes
in Computer Science, pp. 3—15. Springer, 2004.

D.J. Abraham, R.W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. In
Proceedings of SODA 2005, pp. 424-432. ACM-STAM, 2005.

D.J. Abraham, T. Kavitha. Dynamic matching markets and voting paths. In Pro-
ceedings of SWAT 2006, vol. 4059 of Lecture Notes in Computer Science, pp. 65—76.
Springer, 2006.

G. Brassard, P. Bratley. Fundamentals of Algorithmics. Prentice-Hall, 1996.

K.S. Chung. On the Existence of Stable Roommate Matchings. In Games and Eco-
nomic Behavior, 33:206-230, 2000.

H.N. Gabow. An efficient reduction techique for degree-constrained subgraph and
bidirected network flow problems. In Proceedings of STOC 1983, pp. 448-456. ACM,
1983.

P. Gérdenfors. Match making: assignments based on bilateral preferences. vol. 20,
pp- 166-173. Behavioural Science, 1975.

R.W. Irving, T. Kavitha, K. Mehlhorn, D. Michail and K. Paluch. Rank maximal
matchings. In Proceedings of SODA 2004, pp. 68-75. ACM-STAM, 2004.

M. Mahdian. Random popular matchings. In Proceedings of EC 2006, pp. 238-242.
ACM, 2006.

D.F. Manlove, C.T.S. Sng. Popular matchings in the capacitated house allocation
problem. In Proceedings of ESA 2006, vol. 4168 of Lecture Notes in Computer Science,
pp- 492-503. Springer-Verlag, 2006.

J. Mestre. Weighted poopular matchings. In Proceedings of ICALP 2006, vol. 4051
of Lecture Notes in Computer Science, pp. 715-726. Springer-Verlag, 2006.

C.T.S. Sng, D.F. Manlove. Popular matchings in the weighted capacitated house allo-
cation problem. Technical Report TR-2007-254, University of Glasgow, Department
of Computing Science, July 2007.

