
An algorithm for a super-stable roommates problem

Tamás Fleiner∗ Robert W. Irving† David F. Manlove‡

June 6, 2008

Abstract

In this paper we describe an efficient algorithm that decides if a stable
matching exists for a generalized stable roommates problem, where, instead of
linear preferences, agents have partial preference orders on potential partners.
Furthermore, we may forbid certain partnerships, that is, we are looking for
a matching such that none of the matched pairs is forbidden, and yet, no
blocking pair (forbidden or not) exists.

To solve the above problem, we generalize the first algorithm for the ordi-
nary stable roommates problem.

1 Introduction

The study of stable matching problems were initiated by Gale and Shapley [3] who
introduced the stable marriage problem. In this problem each of n men and n women
have a linear preference order on the members of the opposite gender. We ask if
there exists a marriage scheme in which no man and woman mutually prefer one
another to their eventual partners. The authors prove that the so called deferred
acceptance algorithm always finds a stable marriage scheme.

It is natural to ask the same question for a more general, nonbipartite (some-
times called: one sided) model, in which we have n agents with preference orders
on all other agents. This is the so called stable roommates problem, and we are
looking for a matching (i.e. a pairing of the agents) such that no two agents prefer
one another to their eventual partners. Such a matching is called a stable match-
ing. A significant difference between the stable marriage and the stable roommates
problems is that for the latter, it might happen that no stable matching exists. The
stable roommates problem was solved by Irving [4], with an efficient algorithm that
either finds a stable matching or concludes that no stable matching exists for the
particular problem. Later, Tan [8] used this algorithm to give a good characteriza-
tion, that is, he proved that for any stable roommates problem, there always exists
a so called stable partition (that can be regarded as a half integral, fractional stable
matching) with the property that either it is a stable matching, or it is a compact
proof for the nonexistence of a stable matching.

∗Department of Computer Science and Information Theory, Budapest University of Technology
and Economics, Magyar Tudósok körútja 2, Budapest, H-1117. fleiner@cs.bme.hu Research was
supported by the János Bolyai Research fellowship of the Hungarian Academy of Sciences, by the
Royal Society of Edinburgh International Exchange Programme, and by the K69027 and K60802
OTKA grants.

†Department of Computing Science University of Glasgow G12 8QQ, UK. rwi@dcs.gla.ac.uk
Supported by the Engineering and Physical Sciences Research Council grant EP/E011993/1.

‡Department of Computing Science University of Glasgow G12 8QQ, UK.
davidm@dcs.gla.ac.uk Supported by the Royal Society of Edinburgh / Scottish Executive
Personal Research Fellowship, and Engineering and Physical Sciences Research Council grant
GR/R84597/01 and EP/E011993/1.

1

In both the stable marriage and the stable roommates problems strict preferences
of the participating agents play a crucial role. However, in many practical situations,
we have to deal with indifferences in the preference orders. Our model for this is
that preference orders are partial (rather than linear) orders. We can extend the
notion of a stable matching to this model in at least three different ways. One
possibility is that a matching is weakly stable if no pair of agents a, b exists such
that they mutually strictly prefer one another to their eventual partner. Ronn
proved that deciding the existence of a weakly stable matching is NP-complete [6].
A more restrictive notion is that a matching is strongly stable if there are no agents
a and b such that a strictly prefers b to his eventual partner and b does not prefer his
eventual partner to a. Scott gave an algorithm that finds a strongly stable matching
or reports if none exists in O(m2) time [7]. The most restrictive notion is that of
super-stability. A matching is super-stable if there exist no two agents a and b such
that neither of them prefers his eventual situation to being a partner of the other.
In other words, a matching is super-stable, if it is stable for any linear extensions
of the preference orders of the agents. For the case where indifference is transitive,
Irving and Manlove gave an O(m) algorithm to find a super-stable matching, if
exists [5]. Interestingly, the algorithm has in two phases, just like Irving’s [4], but
its second phase is completely different. It is also noted there that the algorithm
works without modification for the more general poset case.

The motivation of our present work is to give a direct algorithm to this kind
of stable matching problem by generalizing Irving’s original algorithm. This latter
algorithm works in such a way that it keeps on deleting edges of the underlying
graph until a (stable) matching is left. It turnes out that deleting an edge is too
harsh a transformation, we need a finer one as well. For this reason, we extend our
model and we also allow forbidden edges. And, instead of deleting, we will also
forbid certain edges during the algorithm. Although a stable matching problem
with forbidden edges is a special case of the poset problem (for each forbidden
edge add a parallel copy and declare them equal in the preference orders), it is an
interesting problem in itself. Dias et al. gave an O(m) algorithm to the stable
marriage problem with forbidden pairs [1].

Our present problem, the super-stable matching problem with forbidden edges
is known to be polynomial-time solvable. Fleiner et al. exhibited a reduction of
this problem to 2-SAT [2]. However, this reduction does not give much information
about the structure of super-stable matchings. In particular, it is not obvious if
there exists a “short proof” for the nonexistence of a super-stable matching, just
like Tan’s stable partition [8] works for the ordinary stable roommates problem.
Our direct approach may be useful to find such a certificate.

To formalize our problem, we define a preference model as a triple (G, F,O),
where G = (V, E) is a graph, the set F of forbidden edges is a subset of the edge
set E of G, and O = {<v: v ∈ V }, where <v is a partial order on the star E(v)
of v (that is, the set of those edges of G that are incident with vertex v). It is
convenient to think that we deal with a market situation: vertices of G are the
acting agents and edges of G represent possible partnerships between them. Partial
order <v is the preference order of agent v on his possible partnerships. Parallel
edges are allowed in G: the same two agents may form different partnerships, that
may yield different profits for them. A subset M of E is a matching if edges of M

do not share a vertex, that is, each agent participates in at most one partnership.
Matching M is stable (we omit the super prefix for convenience), if M ⊆ E \ F (in
other words, no edge of M is forbidden, that is, all edges of M are free), and if each
edge e of E is dominated by M , that is, if e ∈ M or there is an edge m ∈ M and a
vertex v ∈ V such that m <v e. If M is a matching and e is not dominated by M

then e is a blocking edge of M . The stable roommates problem with partial orders
and forbidden pairs is the decision problem on an input preference model whether

2

it has a stable matching or not.
Note that in the standard terminology, agents have preferences on possible part-

ners, rather than on partnerships. It is easy to see that in our approach, this
corresponds to the case where graph G in the preference model is simple. We also
have a slightly different way of defining stability via dominance. Traditionally, we
first define the notion of blocking and then we say that a stable matching is a
matching that has no blocking edge. Also note that the stable roommates problem
is the special case where G is simple, F = ∅, and each order <v is linear.

2 The generalized algorithm

Let us fix a preference model (G0, F0,O0), as the input of our algorithm. We should
find a stable matching, if it exists. The algorithm works step by step. In each step,
it transforms the actual model (Gi, Fi,Oi) to a simpler model (Gi+1, Fi+1,Oi+1) in
such a way that the answer to the latter problem is a valid answer to the former
one, as well. That is, after the transformation no new stable matching can emerge
and if there was a stable matching in the former model, then there should also be
one in the new model. We use three kind of transformations: we forbid edges, we
delete forbidden edges and we restrict the model.

If e is a free edge of Gi, then forbidding e means that Gi+1 := Gi, Fi+1 := Fi∪{e}
and Oi+1 := Oi. The algorithm may forbid e if either no stable matching contains
e or if e is not contained in all stable matchings. After such a forbidding, there is
a stable matching in (Gi, Fi,Oi) if and only if there is one in (Gi+1, Fi+1,Oi+1),
and any stable matching of (Gi+1, Fi+1,Oi+1) is a stable matching of (Gi, Fi,Oi).
Forbidding a subset E′ of E means that we simultaneously forbid all edges of E′.

If e is a forbidden edge of Gi then deleting e means that we delete e from Gi

to get Gi+1, Fi+1 := Fi \ {e}, and the partial orders in Oi+1 are the restrictions
of the corresponding partial orders of Oi, to the corresponding stars of Gi+1. The
algorithm may delete e if there exists no matching in (Gi, Fi,Oi) that is blocked
only by e. This implies that the set of stable matchings in (Gi, Fi,Oi) and in
(Gi+1, Fi+1,Oi+1) is the same.

If U is a proper subset of the vertex set of Gi then restriction to U means
that Gi+1 is the graph we get from Gi after deleting all vertices outside U , Fi+1

is the subset of Fi that is spanned by Gi+1, and the partial orders of Oi+1 are the
restricted partial orders of Oi to the corresponding stars of Gi+1.

We shall use different kinds of steps throughout the algorithm. There is a certain
hierarchy of them: the next step of the algorithm always has the highest priority
among those steps that can be executed. To describe these step types, we say that
edge e = Ei(v) of Gi (forbidden or not) is a first choice edge of v, if there is no edge
f ∈ Ei(v) \ Fi with f <v e (i.e., if no free edge can dominate e at vertex v). Note
that there can be more than one 1st choices of v present.

0th priority (proposal) step If e = vw is a 1st choice of v then orient e from
v to w, and (Gi, Fi,Oi) = (Gi+1, Fi+1,Oi+1).

Clearly, the set of stable matchings does not change by a proposal step. We
shall call the 1st choice arcs we create by the proposal steps 1-arcs. Note that it is
possible that a 1-arc is bioriented.

After the algorithm have found all 1-arcs, it looks for a
1st priority (mild rejection) step If 1-arc e of Gi points to v and Ei(v) ∋

f 6<v e (that is, f is not better than e according to v in Gi) then forbid f .
Obviously, if f is in some matching M then e 6∈ M , and hence e (being a first

choice at its other end) blocks M . So f cannot be in a stable matching, we can
forbid it. Eventually, we have to delete edges and the algorithm does this only the
following way.

3

2nd priority (firm rejection) step If some free 1-arc e of Gi points to v and
e <v f ∈ Ei(v) (e is better than f according to v in Gi) then we delete f .

Note that the above f is already forbidden by a 1st priority step. Assume that
f blocks matching M , hence, in particular, e 6∈ M . But e is a first choice of its
other endvertex, thus e is also blocking M . So deleting f does not change the set
of stable matchings of the preference model.

Note that the so called 1st phase steps in Irving’s algorithm [4] for the stable
roommates problem are the special cases of our proposal and firm rejection steps.
It is true for the stable roommates problem that as soon as no more 1st phase steps
can be executed, the preference model has the so called first-last property: if some
edge e = uv is a first choice of u, then e is the last choice of v. A generalization
of this property holds in our setting. Assume that the algorithm cannot execute a
0th, 1st or 2nd priority step for (Gi, Fi,Oi). Let V0 denote the set of those vertices
of Gi that are not incident with any free edges, V1 stand for the set of those vertices
of Gi that are incicent with a bioriented free 1-arc and V2 refer to the set of the
remaining vertices of Gi. The following properties are true.

Theorem 1. Assume that no proposal or rejection step can be made in Gi, and let
V0, V1 and V2 be defined as above.

If v ∈ V1 ∪ V2 then there is a unique 1-arc entering v and there is a unique
1-arc leaving v, and all these 1-arcs are free. There is no edge of Gi leaving V0.
Bioriented free 1-arcs form a matching M1 that covers V1, and no more edges are
incident with V1 in Gi.

M is a stable matching of (Gi, Fi,Oi) if and only if the following properties hold:
(1) each vertex of V0 is isolated and (2) M1 ⊆ M and
(3) M \ M1 is a stable matching of the model restricted to V2.

Proof. Let v ∈ V1 ∪ V2. By definition, there is at least one free edge incident with
v, hence there is at least one free 1-arc leaving v. On the other hand, no proposal
or rejection step (mild or firm) can be made in Gi, hence at most one free 1-arc
enters v. By definition, no free 1-arc enter vertices of V0, and this means that 1-arcs
leaving vertices of V1 ∪ V2 enter this very same vertex set. Consequently, there is
a unique free 1-arc leaving and entering each vertex of V1 ∪ V2. Can there be a
forbidden 1-arc e incident with a vertex v of V1 ∪ V2? The answer is no: such an
arc cannot enter v, as otherwise v would be able to reject. So e = uv is a 1-arc
from V1 ∪ V2 to V0. But v is not incident with any free arcs by definition, thus vu

is a 1-arc that enters vertex u of V1 ∪ V2, contradiction. Hence all 1-arcs that are
incident with V1 ∪ V2 are free.

Let u ∈ V0 and e = uv be an edge of Gi. Clearly e is a 1-arc and e is forbidden
by the definition of V0, so v ∈ V0 holds. This means that all edges incident with a
vertex of V0 are completely inside V0.

If v is in V1 then there is a unique 1-arc a that leaves v, so a must bioriented
by the definition of V1. If e = uv is an edge of Gi then either e = a or e is not a
first choice of v, hence a ≺v e holds. But in this case v should delete e in a firm
rejection step as a is a 1-arc entering v. This argument shows that edges of Gi that
are incident with V1 are all bioriented and form a matching M1 covering V1.

Assume now that M is a stable matching of Gi. No edge of Gi incident with
a vertex of V0 can block M , hence V0 consists of isolated vertices. As M is not
blocked by an edge of M1, edges of M1 all belong to M . As there is no edge of Gi

that leaves V2, edges of M in V2 form a stable matching of the restricted model to
V2.

Let now M2 be a stable matching of the model restricted to V2 and assume that
V0 consists of isolated vertices. Let M := M2 ∪ M1. Clearly M is a matching.
If some edge e blocks M then e cannot be incident with V0, as these vertices are
isolated, and e cannot have a vertex in V1 either, as vertices of V1 are only incident

4

with edges of M1. Hence e is an edge within V2, contradicting to the fact that M2

is a matching.

If some vertex of V0 is not isolated then the algorithm stops and concludes that
no stable matching exists. If this is not the case, then another possibility is that
V2 = ∅. This case the algorithm stops, and reports that there is a stable matching.
To construct one, the algotithm takes M1 and completes it to a stable matching
of the original preference model with the previously listed other matchings of type
M1. Theorem 1 justifies both these terminations. If none of the above cases hold
then V2 6= ∅ and we make a

3rd priority (restriction) step: if V0 ∪ V1 6= ∅ then we restrict the model to
V2. By Theorem 1, it is enough to find a stable matching for the restricted Gi+1: if
there is such a matching M ′, then M ′ ∪M1 is a stable matching of Gi. If no stable
matching exists after the restriction, then there was no stable matching even before
it.

Assume that in (Gi, Fi,Oi), the algorithm can execute no 0th, 1st or 2nd or 3rd
priority step. An edge e ∈ Ei(v) is a second choice of v if e >v f 6∈ F implies that
f is the 1st choice of v. In other words, e is a second choice, if the only free edge
that dominates e at v is the unique 1-arc leaving v. Note that every vertex v of Gi

is incident with at least one free second choice edge: in the “worst case” it is the
unique 1-arc pointing to v.

4th priority step If e = vw is a second choice of v then (counterintuitively)
orient e from w to v. Arcs created at this step are called 2-arcs. As we do not
modify the preference model (Gi+1 = Gi, Fi+1 = Fi and Oi+1 = Oi), the set of
stable matchings does not change by a 4th priority step.

What is the meaning of a 2-arc? Let, vv′ and uu′ be 1-arcs and u′v be a 2-arc.
As vv′ is the only free edge dominating u′v at v, we get that if uu′ is present in
a stable matching M then uu′ does not dominate uv′, hence vv′ ∈ M follows. In
other words, 2-arcs represent implications on 1-arcs. This allows us to build an
implication structure on the set of 1-arcs.

In this structure, two 1-arcs e and f are called sm-equivalent, if there is a directed
cycle D formed by 1-arcs and 2-arcs in an alternating manner such that D contains
both e and f . (Note that D may use the same vertex more than once.) Sm-
equivalence is clearly an equivalence relation and if C is an sm-class and M is a
stable matching then either C is disjoint from M or C is contained in M .

Beyond determining sm-equivalence classes, 2-arcs yield further implications be-
tween sm-classes: if uu′ is a 1-arc of sm-class C and vv′ is a 1-arc of sm-class C′ and
u′v is a 2-arc, then sm-class C “implies” sm-class C′ in such a way that if C is not
disjoint from stable matching M then M contains both classes C and C′. Assume
that sm-class C is on the top of this implication structure, i.e. C is not implied by
any other sm-class (but C may imply certain other classes). Formally, we have that

if vv′ is a 1-arc of C and w′v is a 2-arc (1)

then (the unique) 1-arc ww′ is sm-equivalent to vv′.

To find a top sm-class C, introduce an auxiliary digraph on the vertices of Gi,
such that if uu′ is a 1-arc and u′v is a 2-arc, then we introduce an arc uv of the
auxiliary graph. It is well known that by depth first search, we can find a source
strong component of the auxiliary graph in linear time. If it contains vertices
u1, u2, . . . , uk then it determines a top sm-class C = {u1u

′

1, u2u
′

2, . . . , uku′

k} formed
by 1-arcs. Note that it is possible here that ui = u′

j for different i and j.
5th priority step If for 1-arcs uiu

′

i, uju
′

j ∈ C there are 2-arcs vui and vuj with
vui 6<v vuj then forbid vui.

To justify this step, assume that vui ∈ M for some stable matching M of Gi. As
vui does not dominate vuj , vuj has to be dominated at uj by uju

′

j ∈ M . As uiu
′

i

5

and uju
′

j are sm-equivalent, this means that uju
′

j also belongs to M , a contradiction.
So vui does not belong to any stable matching and after forbidding it, the set of
stable matchings does not change. Note that after we take a 5th priority step, new
2-arcs may be created so we might continue with a 4th priority step.

6th priority step Forbid all edges of C in (Gi, Fi,Oi).
To justify this kind of step, we check two cases. Case 1 is that C is not a

matching, that is, ui = u′

j for some i 6= j. As a subset of a matching is a matching,
no matching (hence no stable matching) can contain C. So by sm-equivalence, C is
disjoint from any stable matching of Gi, and forbidding C is not changing the set
of stable matchings.

Case 2 is that C is a matching. Each ui is adjacent to at least two free edges:
the incoming and the outgoing 1-arcs. So each ui receives at least one free 2-arc.
This free 2-arc must come from some u′

j by property (1). Let C′ denote the set of
free 2-arcs of the form u′

jui. As we have seen, each ui receives at least one arc of C′,
hence |C′| ≥ k. As we cannot execute any more 5th priority steps in (Gi, Fi,Oi),
from each u′

j there is at most one arc of C′ leaving, implying |C′| ≤ k. This means
that |C′| = k and each ui receives exactly one arc of C′ and each u′

i sends exactly
one arc of C′. As sets {u1, u2, . . . , uk} and {u′

1, u
′

2, . . . , u
′

k} are disjoint, this means
that set C′ forms a perfect matching on vertices u1, u

′

1, u2, u
′

2, . . . , uk, u′

k.
Let M be a stable matcing of (Gi, Fi,Oi). If M is disjoint from C then M is

stable in (Gi+1, Fi+1,Oi+1) as well. Otherwise, by sm-equivalence, M contains all
edges of C and disjoint from C′. We claim that M ′ := M \C ∪C′ is another stable
matching of (Gi, Fi,Oi) and hence it is a stable matching of (Gi+1, Fi+1,Oi+1), as
well.

Indeed: M ′ is a matching, as C and C′ cover the same set of vertices. Each
edge uiu

′

i is dominated at u′

i by M ′ by Theorem 1. Each forbidden 2-arc of type
u′

jui is dominated at u′

j by the 5th priority step. For the remaining edges, if some
edge e does not have a vertex ui then e is dominated the same way in M ′ as in M .
Otherwise, if ui is a vertex of e then e is neither a first nor a second choice of ui as
we have already checked these edges. This means that the free 2-arc pointing to ui

is dominating e, so C′ and thus M ′ also dominates e at ui.
Clearly, this 6th priority step corresponds to the so called rotation elimination

of Irving’s algorithm [4], where C ∪ C′ is the generalization of a rotation.
If the algorithm does not stop after some 2nd priority step with the conclusion

that no stable matching exists then it keeps on forbidding and deleting edges. Sooner
or later it cannot do this any more, so no further step can be made. Pick a vertex
v of the actual Gi. As no 3rd priority step is possible, there is a free edge adjacent
to v. So v sends a free 1-arc, and it also receives a free 1-arc. Again by the 3rd
priority step, these arcs are different, hence there is a 2-arc pointing to v. This
implies that a 5th or a 6th priority step can be executed, a contradiction. So the
algorithm always terminates before a 3rd priority step either by concluding that no
stable matching exists or by constructing a stable matching.

To convince ourselves about the polynomial time complexity of the algorithm
let us calculate the cost of deleting or forbidding an edge. Clearly, the most time
consuming is the 6th priority deletion step. For this we check every edge for the
1st and 2nd priority steps in O(m) time (where m is the number of edges of G0),
and we check all vertices in O(n) time for the 3rd priority step. (n is the number
of vertices of G0.) To check the possible 4th priority steps takes O(m) time, and
finding top sm-class C is a depth first search, that can be done in O(n + m) time.
Checking the 5th priority steps takes O(m) time, and after this we can forbid C.
So forbidding or deleting an edge takes altogether O(n + m) time. We can delete
or forbid at most 2m times altogether, so the total complexity of our algorithm is
O(m(n+m)). (Note that this is a pretty rough estimate. Probably, by streamlining
the algorithm, one can get a much better estimate.)

6

References

[1] Vânia M. F. Dias, Guilherme D. da Fonseca, Celina M. H.

de Figueiredo, and Jayme L. Szwarcfiter, The stable marriage prob-
lem with restricted pairs, Theoret. Comput. Sci. (2003) 306(1-3) 391–405

[2] Tamás Fleiner, Robert W. Irving, and David F. Manlove, Efficient
algorithms for generalised stable marriage and roommates problems, Theoret.
Comput. Sci. (2007) 381(1-3) 162–176 and DCS Tech Report, TR-2005-207,
http://www.dcs.gla.ac.uk/publications/ (2005)

[3] D. Gale and L.S. Shapley, College admissions and stability of marriage,
Amer. Math. Monthly (1962) 69(1) 9–15

[4] Robert W. Irving, An efficient algorithm for the “stable roommates” prob-
lem, J. Algorithms (1985) 6(4) 577-595

[5] Robert W. Irving and David F. Manlove, The stable roommates problem
with ties, J. Algorithms (2002) 43(1) 85–105

[6] Eytan Ronn, NP-complete stable matching problems, J. Algorithms (1990)
11(2) 285–304

[7] Sandy Scott, The study of stable marriage problems with ties, 2005, PhD
dissertation, University of Glasgow, Department of Computing Science.

[8] Jimmy J. M. Tan, A necessary and sufficient condition for the existence of a
complete stable matching, J. Algorithms (1991) 12(1) 154–178

7

