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Péter Biró1,†, David F. Manlove1,‡ and Shubham Mittal2,§

1 Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.

Email: {pbiro,davidm}@dcs.gla.ac.uk.

2 Department of Computer Science and Engineering, Block VI, Indian Institute of Technology,

Delhi, Hauz Khas, New Delhi 110 016, India. Email: cs1040189@cse.iitd.ernet.in.

Abstract

Given an instance I of the classical Stable Marriage problem with Incomplete
preference lists (smi), a maximum cardinality matching can be larger than a stable
matching. In many large-scale applications of smi, we seek to match as many agents
as possible. This motivates the problem of finding a maximum cardinality matching in
I that admits the smallest number of blocking pairs (so is “as stable as possible”). We
show that this problem is NP-hard and not approximable within n1−ε, for any ε > 0,
unless P=NP, where n is the number of men in I. Further, even if all preference
lists are of length at most 3, we show that the problem remains NP-hard and not
approximable within δ, for some δ > 1. By contrast, we give a polynomial-time
algorithm for the case where the preference lists of one sex are of length at most 2.
We also extend these results to the cases where (i) preference lists may include ties,
and (ii) we seek to minimise the number of agents involved in a blocking pair.

1 Introduction

The Stable Marriage problem (sm) was introduced in the seminal paper of Gale and
Shapley [6]. In its classical form, an instance of sm involves n men and n women (whom
we collectively refer to as the agents), each of whom specifies a preference list, which is a
total order on the members of the opposite sex. A matching M is a set of (man,woman)
pairs such that each agent belongs to exactly one pair. If (m,w) ∈ M , we say that w is
m’s partner in M , and vice versa, and we write M(m) = w, M(w) = m.

An agent x prefers y to y′ if y precedes y′ on x’s preference list. A matching M is
stable if it admits no blocking pair, namely a (man,woman) pair (m,w) such that m prefers
w to M(m) and w prefers m to M(w). Gale and Shapley [6] proved that every instance of
sm admits at least one stable matching, and described an algorithm – the Gale / Shapley
algorithm – that finds such a matching in time that is linear in the input size. In general,
there may be many stable matchings (in fact exponentially many in n) for a given instance
of sm [11].

∗A preliminary version of this paper appeared in the Proceedings of WAOA 2008 (the 6th Workshop
on Approximation and Online Algorithms).
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Incomplete lists. A variety of extensions of the basic problem have been studied. In the
Stable Marriage problem with Incomplete lists (smi), the numbers of men and women need
not be the same, and each agent’s preference list consists of a subset of the members of
the opposite sex in strict order. A (man,woman) pair (m,w) is acceptable if each member
of the pair appears on the preference list of the other. A matching M is now a set of
acceptable pairs such that each agent belongs to at most one pair. In this context, (m,w)
is a blocking pair for a matching M if (a) (m,w) is an acceptable pair, (b) m is either
unmatched or prefers w to M(m), and likewise (c) w is either unmatched or prefers m to
M(w). Given the definitions of a matching and a blocking pair, we lose no generality by
assuming that the preference lists are consistent (i.e., given a (man,woman) pair (m,w),
m appears on the preference list of w if and only if w appears on the preference list of
m). As in the classical case, there is always at least one stable matching for an instance of
smi, and it is straightforward to extend the Gale / Shapley algorithm to give a linear-time
algorithm for this case. Again, there may be many different stable matchings, but Gale
and Sotomayor [7] showed that every stable matching for a given smi instance has the
same size and matches exactly the same set of agents.

Motivation. The Hospitals/Residents problem (hr) is a many-to-one generalisation of
smi, so called because of its applications in centralised matching schemes that handle the
allocation of graduating medical students, or residents, to hospitals [19]. The largest such
scheme is the National Resident Matching Program (NRMP) [25] in the US, but similar
schemes exist in Canada [24], in Scotland [10, 26], and in a variety of other countries and
contexts.

In the 2006-07 run of the Scottish medical matching scheme, called the Scottish Foun-
dation Allocation Scheme (SFAS), there were 781 students and 53 hospitals, with total
capacity 789. The matching algorithm (designed and implemented at the Department
of Computing Science, University of Glasgow) found a stable matching of size 744, thus
leaving 37 students unmatched. Clearly stability is the key property to be satisfied, and
it is this that restricts the size of the resultant matching. Nevertheless the administrators
asked whether, were the stability criterion to have been relaxed, a larger matching could
have been found. We found that a matching of size 781 did exist, but the matching we
computed admitted 400 blocking pairs.

“Almost stable” maximum matchings. In practical situations, a blocking pair of a
given matching M need not always lead to M being undermined, since the agents involved
might be unaware of their potential to improve relative to M . For example, in situations
where preference lists are not public knowledge, there may be limited channels of commu-
nication that would lead to the awareness of blocking pairs in practice. Nevertheless, it
is reasonable to assert that the greater the number of blocking pairs of a given matching
M , the greater the likelihood that M would be undermined by a pair of agents in prac-
tice. In particular, a maximum cardinality matching (henceforth a maximum matching)
for the 2006-07 SFAS data that admits only 10 blocking pairs might be considered to be
“more stable” than one with 400 blocking pairs. This motivates the problem of finding a
maximum matching that admits the smallest number of blocking pairs (and is therefore,
in the sense described above, “as stable as possible”). Eriksson and Häggström [5] also
argue that counting the number of blocking pairs of a matching can be an effective way to
measure its degree of instability; earlier, this approach had already been taken by Khuller
et al. [13]. An alternative approach is to count the number of agents who are involved in
a blocking pair [22, 5].

Further applications. Further practical applications of “almost stable” maximum
matchings arise in similar bipartite settings, where the size of the matching may be consid-
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ered to be a higher priority than its stability in a particular matching market. Examples
include school placement [1] and the allocation of students to projects in a university de-
partment [3]. Furthermore, the US Navy has a bipartite matching problem involving the
assignment of sailors to billets [17, 23] in which every sailor should be matched to a billet,
and meanwhile there are some critical billets that cannot be left vacant.

In non-bipartite contexts, applications arise in kidney exchange settings [21, 27], for
example. Here, both the size and the stability of a matching have been considered as
being the most important criteria. Centralised programs have been organised in many
countries to match incompatible patient-donor pairs, including the US, the Netherlands
and the UK. In most programs, the main goal is to maximise the number of transplants
(i.e., the first priority is to find a maximum matching) [21]. However other studies [20]
consider stability as the first priority. Another example in a non-bipartite setting involves
pairing up chess players [14].

Our results. In this paper we present a range of algorithmic results for two problems,
namely max size min bp smi and max size min ba smi. max size min bp smi (respec-
tively max size min ba smi) is the problem of finding a maximum matching with the
smallest number of blocking pairs (respectively blocking agents), given an instance of smi,
where an agent is blocking if he/she is a member of at least one blocking pair. We firstly
show in Section 2 that both problems are NP-hard and not approximable within n1−ε,
for any ε > 0, unless P=NP. We then consider special cases of the problems where the
preference lists on one or both sides are short (this is motivated in practice by applications
such as SFAS, where students are asked to rank six hospitals in order of preference). We
show in Section 3 that, even when preference lists on both sides are of length at most 3,
each of max size min bp smi and max size min ba smi is NP-hard and not approximable
within δ, for some δ > 1, unless P=NP. On the other hand, for the case where the lists on
one side are of length at most 2 (and the lists on the other side are unbounded in length),
in Section 4, we give a polynomial-time algorithm for max size min bp smi. We show
how to modify this algorithm to the case where preference lists may include ties and/or we
wish to find a maximum matching with the minimum number of blocking agents, rather
than blocking pairs. We remark that ties arise naturally in practice: for example a large
hospital with many applicants may be indifferent between those in certain groups. Finally,
Section 5 contains concluding remarks.

Related work. Matchings with few blocking pairs have previously been studied from an
algorithmic point of view in the context of the Stable Roommates problem (sr), a non-
bipartite generalisation of sm, as a means of coping with the fact that, in contrast to the
case for sm, an sr instance need not admit a stable matching. Abraham et al. [2] showed
that, given an sr instance, the problem of finding a matching with the smallest number
of blocking pairs is NP-hard and not approximable within n1/2−ε, for any ε > 0, unless
P=NP. In the case that preference lists include ties, the lower bound was strengthened
to n1−ε. On the other hand, given a fixed integer K, they showed that the problem of
finding a matching with exactly K blocking pairs, or reporting that no such matching
exists, is solvable in polynomial time. This paper can be viewed as a counterpart of [2],
strengthening its results by moving to the bipartite setting, and answering the remaining
previously open questions in a table shown in Section 5.

2 Unbounded length preference lists

Before presenting the main result of this section, we define some notation and terminology
relating to matchings and graphs. Given an instance I of smi, let M denote the set
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of matchings in I and let M+ denote the set of maximum matchings in I. Given a
matching M ∈ M, let bpI(M) (respectively baI(M)) denote the set of blocking pairs
(respectively blocking agents) with respect to M in I (we omit the subscript when the
instance is clear from the context). Let bp+(I) = min{|bpI(M)| : M ∈ M+} and let
ba+(I) = min{|baI(M)| : M ∈ M+}. Define max size min bp smi (respectively max

size min ba smi) to be the problem of finding, given an smi instance I, a matching
M ∈M+ such that |bpI(M)| = bp+(I) (respectively |baI(M)| = ba+(I)).

Given a graph G, the subdivision graph of G, denoted by S(G), is a bipartite graph
obtained by subdividing each edge {u,w} of G in order to obtain two edges {u, v} and
{v,w} of S(G), where v is a new vertex. A matching M in a graph G is said to be
maximal if no proper superset of M is a matching in G. Let β(G) denote the size of a
maximum matching in G. Define exact-mm to be the problem of deciding, given a graph
G and integer K, whether G admits a maximal matching of size exactly K. exact-mm

is NP-complete, even for subdivision graphs of cubic graphs [16, Lemma 2.2.1]. We now
present a gap-introducing reduction from exact-mm to max size min bp smi.

Theorem 1. max size min bp smi is not approximable within n1−ε, where n is the
number of men in a given instance, for any ε > 0, unless P=NP.

Proof. Let ε > 0 be given. We transform from exact-mm restricted to subdivision graphs
of cubic graphs, which is NP-complete as noted above. Hence let G = (V,E) (a subdivision
graph of some cubic graph G′) and K (a positive integer) be an instance of exact-mm.
Then G is a bipartite graph, and V is a disjoint union of two sets U and W , where each
edge e ∈ E joins a vertex in U to a vertex in W . Let m = |E|. We lose no generality
by assuming that K ≤ β(G) ≤ min{|U |, |W |}. Suppose that U = {u1, u2, . . . , un1

} and
W = {w1, w2, . . . , wn2

}. Without loss of generality assume that each vertex in U has
degree 2 and each vertex in W has degree 3. For each ui ∈ U , let wpi

and wqi
be the two

neighbours of ui in G, where pi < qi. Also, for each wj ∈ W , let urj
, usj

and utj , be the
three neighbours of wj, where rj < sj < tj.

Let B =
⌈

3

ε

⌉

and let C = (n1 + n2)
B+1− (n1 + n2)+ 1. We create an instance I of smi

as follows. The sets of men and women in I are denoted by U and W respectively, where
U and W are as defined in Figure 1. It follows that |U| = |W| = 3n1 + 4n2 + 2mC −K.
Let U1 = {u1

i : 1 ≤ i ≤ n1} and let W 1 = {w1
j : 1 ≤ j ≤ n2}.

For each ui ∈ U and wj ∈ W such that {ui, wj} ∈ E, define σj,i = 1 if wj = wpi
and

σj,i = 2 if wj = wqi
, and define τi,j = 1 if ui = urj

, τi,j = 2 if ui = usj
and τi,j = 3 if

ui = utj .
Preference lists for the men and women in I are as shown in Figure 2. In a given

agent’s preference list, the symbol [S] denotes all members of the set S listed in some
arbitrary strict order at the point where the symbol appears, and the symbol [[S]] denotes
all members of S listed in increasing subscript order at the point where the symbol appears.

We now give some intuition behind this construction. Suppose that M is a maximal
matching of size K in G. For each {ui, wj} ∈M , the relevant pair in Ui ×Wj (who rank
each other in second place) will be added to a matching M ′ in I. The n1 −K men in U
(respectively n2 −K women in W ) who are unmatched in M are collectively matched in
M ′ to the women in Y (respectively men in X). The remaining members of Ui (for each
ui ∈ U) and Wj (for each wj ∈ W ) are collectively matched in M ′ to the members of Zi

and Vj respectively. Each of U ×Zi and Vj ×W contributes one blocking pair to M ′. It is
then possible to extend M ′ to a perfect matching in I without introducing any additional
blocking pairs by adding a perfect matching between the members of Gi,j ∪Hi,j for each
{ui, wj} ∈ E. Hence |bp(M ′)| = n1 + n2. Conversely, from a perfect matching M ′ in I,
it is straightforward to extract a matching M in G of size K. If M is not maximal then
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U = (∪n1

i=1
Ui) ∪

(

∪{ui,wj}∈EGi,j

)

∪ (∪n2

i=1
Vi) ∪X

W =
(

∪n2

j=1
Wj

)

∪
(

∪{ui,wj}∈EHi,j

)

∪
(

∪n1

j=1
Zj

)

∪ Y

Gi,j = G1
i,j ∪G2

i,j ({ui, wj} ∈ E)

Gd
i,j = {gc,d

i,j : 1 ≤ c ≤ C} ({ui, wj} ∈ E ∧ 1 ≤ d ≤ 2)

Hi,j = H1
i,j ∪H2

i,j ({ui, wj} ∈ E)

Hd
i,j = {hc,d

i,j : 1 ≤ c ≤ C} ({ui, wj} ∈ E ∧ 1 ≤ d ≤ 2)

Ui = {u1
i , u

2
i , u

3
i } (1 ≤ i ≤ n1)

Vi = {v1
i , v

2
i , v

3
i } (1 ≤ i ≤ n2)

Wj = {w1
j , w

2
j , w

3
j , w

4
j} (1 ≤ j ≤ n2)

X = {xi : 1 ≤ i ≤ n2 −K}
Y = {yj : 1 ≤ j ≤ n1 −K}
Zj = {z1

j , z2
j } (1 ≤ j ≤ n1).

Figure 1: Men and women in the constructed instance of max size min bp smi.

u1
i : z1

i w
τi,pi
pi [H1

i,pi
] [H1

i,qi
] [[Y ]] (1 ≤ i ≤ n1)

u2
i : z2

i w
τi,qi
qi (1 ≤ i ≤ n1)

u3
i : z1

i z2
i (1 ≤ i ≤ n1)

gc,1
i,j : hc,1

i,j w1
j hc,2

i,j ({ui, wj} ∈ E ∧ 1 ≤ c ≤ C)

gc,2
i,j : hc,2

i,j hc,1
i,j ({ui, wj} ∈ E ∧ 1 ≤ c ≤ C)

v1
i : w1

i w4
i (1 ≤ i ≤ n2)

v2
i : w2

i w4
i (1 ≤ i ≤ n2)

v3
i : w3

i w4
i (1 ≤ i ≤ n2)

xi : [[W 1]] (1 ≤ i ≤ n2 −K)

w1
j : v1

j u
σj,rj
rj [G1

j,rj
] [G1

j,sj
] [G1

j,tj
] [[X]] (1 ≤ j ≤ n2)

w2
j : v2

j u
σj,sj
sj (1 ≤ j ≤ n2)

w3
j : v3

j u
σj,tj

tj
(1 ≤ j ≤ n2)

w4
j : v1

j v2
j v3

j (1 ≤ j ≤ n2)

hc,1
i,j : gc,2

i,j u1
i gc,1

i,j ({ui, wj} ∈ E ∧ 1 ≤ c ≤ C)

hc,2
i,j : gc,1

i,j gc,2
i,j ({ui, wj} ∈ E ∧ 1 ≤ c ≤ C)

z1
j : u1

j u3
j (1 ≤ j ≤ n1)

z2
j : u2

j u3
j (1 ≤ j ≤ n1)

yj : [[U1]] (1 ≤ j ≤ n1 −K)

Figure 2: Preference lists in the constructed instance of max size min bp smi.

there is some ui ∈ U and wj ∈W , both unmatched in M , such that {ui, wj} ∈ E. In this

case, for each c (1 ≤ c ≤ C), either (u1
i , h

c,1
i,j ) ∈ bp(M ′) or (gc,1

i,j , w1
j ) ∈ bp(M ′), and hence

|bp(M ′)| ≥ C. This introduces the required ‘gap’ for the inapproximability result.
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For the formal argument showing the correctness of the reduction, we firstly show that
I admits a perfect matching. As K ≤ β(G), it follows that G admits a matching M of size
K. We form a matching M ′ in I as follows. Consider each edge {ui, wj} ∈ E. Suppose
firstly that {ui, wj} ∈M , where ui ∈ U and wj ∈ W. Let σ = 1, 2 according as wj is wpi

or wqi
respectively, and let τ = 1, 2, 3 according as ui is urj

, usj
or utj respectively. Add

(uσ
i , wτ

j ), (u3−σ
i , z3−σ

i ) and (u3
i , z

σ
i ) to M ′. Also, for each wc

j ∈ {w
1
j , w

2
j , w

3
j}\{w

τ
j }, add

(vc
j , w

c
j) to M ′. Next add (vτ

j , w4
j ) to M ′. Finally, for each c (1 ≤ c ≤ C), add (gc,1

i,j , hc,1
i,j )

and (gc,2
i,j , hc,2

i,j ) to M ′. Now suppose that {ui, wj} /∈ M . If ui is matched in M , add

(gc,1
i,j , hc,1

i,j ) and (gc,2
i,j , hc,2

i,j ) to M ′ for each c (1 ≤ c ≤ C). Otherwise add (gc,1
i,j , hc,2

i,j ) and

(gc,2
i,j , hc,1

i,j ) to M ′ for each c (1 ≤ c ≤ C). There are n1−K vertices in U that are unmatched
in M – denote these vertices by ua1

, ua2
, . . . , uan1−K

, where a1 < a2 < . . . < an1−K . Add

(u1
ai

, yi), (u2
ai

, z2
ai

) and (u3
ai

, z1
ai

) to M ′ (1 ≤ i ≤ n1 −K). Similarly there remain n2 −K
vertices in W that are unmatched in M – denote these vertices by wb1 , wb2 , . . . , wbn2−K

,

where b1 < b2 < . . . < bn2−K . Add (xj , w
1
bj

), (v2
bj

, w2
bj

), (v3
bj

, w3
bj

) and (v1
bj

, w4
bj

) to M ′

(1 ≤ j ≤ n2 −K). It may be verified that M ′ is a perfect matching in I.
We now show that if G admits a maximal matching of size K, then bp(I) ≤ n1 + n2.

For, suppose that G admits a maximal matching M of size K. As above, we form a perfect
matching M ′ in I. We now show that |bp(M ′)| = n1 + n2. For, let 1 ≤ i ≤ n1 be given.
Exactly one of (u1

i , z
1
i ), (u2

i , z
2
i ) belongs to bp(M ′). Now suppose that (u1

i , yb) ∈ M ′ for
some yb ∈ Y . Then ui is unmatched in M , so that by the maximality of M in G, each
of wpi

and wqi
is matched in M . Hence any hc,d

i,j whom u1
i prefers to yb is matched in M ′

to her first-choice partner, so that (u1
i , h

c,d
i,j ) /∈ bp(M ′). Similarly w

τi,pi
pi is matched in M ′

to her first-choice partner, so that (u1
i , w

τi,pi
pi ) /∈ bp(M ′). Also (u1

i , yb′) /∈ bp(M ′) for any
yb′ ∈ Y , for otherwise b′ < b. But by construction of M ′, it follows that (u1

i′ , yb′) ∈M ′ for
some i′ < i, and hence yb′ prefers u1

i′ to u1
i , a contradiction.

Now let {ui, wj} ∈ E. It is straightforward to verify that no pair of the form (gc,d
i,j , hc,d′

i,j )

(1 ≤ c ≤ C, 1 ≤ d, d′ ≤ 2) is in bp(M ′). Now let 1 ≤ i ≤ n2. Exactly one of (v1
i , w

1
i ),

(v2
i , w

2
i ), (v3

i , w
3
i ) belongs to bp(M ′). Finally let 1 ≤ i ≤ n2 − K and suppose that

(xi, w
1
j ) ∈ M ′. For any j′ < j, either w1

j′ is matched in M ′ to her first or second-choice

partner, or (xi′ , w
1
j′) ∈ M ′. In the latter case i′ < i, so that (xi, w

1
j′) /∈ bp(M ′). Hence

|bp(M ′)| = n1 + n2 as claimed.
We next show that if G admits no maximal matching of size K then bp(I) > (n1 +

n2)
B+1. Suppose that G admits no maximal matching of size K. Let M ′ be an arbitrary

perfect matching in I. We claim that |bp(M ′)| > (n1 + n2)
B+1. Firstly we note that, for

each i (1 ≤ i ≤ n1), u3
i is matched in M ′ to some zb

i (b = 1, 2), and thus (ub
i , z

b
i ) ∈ bp(M ′).

Similarly for each j (1 ≤ j ≤ n2), w4
j is matched in M ′ to some va

j (1 ≤ a ≤ 3), and thus
(va

j , wa
j ) ∈ bp(M ′). Hence |bp(M ′)| ≥ n1 + n2.

Now let

M =

{

{ui, wj} ∈ E :
((uσ

i , wτ
j ) ∈M ′ where 1 ≤ σ ≤ 2 ∧ 1 ≤ τ ≤ 3) ∨

((u1
i , h

c,1
i,j ) ∈M ′ where 1 ≤ c ≤ C)

}

.

We claim that M is a matching in G. For if (u1
i , w

b
j) ∈M ′ and (u2

i , w
b′

j′) ∈M ′ then either z1
i

or z2
i is unmatched in M ′, a contradiction. Similarly if (ua

i , w
b
j) ∈M ′ and (ua′

i′ , w
b′
j ) ∈M ′

for some b 6= b′ then at least one of v1
j , v

2
j or v3

j is unmatched in M ′, a contradiction.

Finally if (u1
i , h

c,1
i,j ) ∈ M ′ for some u1

i ∈ U and hc,1
i,j ∈ H, then (gc,2

i,j , hc,2
i,j ) ∈ M ′, which in

turn forces (gc,1
i,j , w1

j ) ∈M ′. Hence the claim is established.

Also |M | = K, for the n1−K members of Y are collectively matched in M ′ to U1
Y ⊆ U1.

Thus |U1\U1
Y | = K. Let u1

i ∈ U1\U1
Y . Either (u1

i , w
b
j) ∈M ′ for some b (1 ≤ b ≤ 3) and j
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(1 ≤ j ≤ n2) or (u1
i , z

1
i ) ∈M ′. In the latter case (u2

i , w
b
j) ∈M ′ for some b (1 ≤ b ≤ 3) and

j (1 ≤ j ≤ n2), for otherwise u3
i is unmatched in M ′, a contradiction.

Finally by the hypothesis, M is not maximal in G. Hence there exists some {ui, wj} ∈
E such that no edge of M is incident to either ui or wj . By construction of M it fol-
lows that (u2

i , z
2
i ) ∈ M ′, which forces (u3

i , z
1
i ) ∈ M ′ and (u1

i , yb) ∈ M ′ for some yb ∈ Y .
Similarly by construction of M it follows that (v2

j , w
2
j ) ∈ M ′ and (v3

j , w
3
j ) ∈ M ′, which

forces (v1
j , w

4
j ) ∈ M ′ and (xa, w

1
j ) ∈ M ′ for some xa ∈ X. Now let c (1 ≤ c ≤

C) be given. If {(gc,1
i,j , hc,1

i,j ), (gc,2
i,j , hc,2

i,j )} ⊆ M ′ then (u1
i , h

c,1
i,j ) ∈ bp(M ′). Otherwise

{(gc,1
i,j , hc,2

i,j ), (gc,2
i,j , hc,1

i,j )} ⊆M ′, so that (gc,1
i,j , w1

j ) ∈ bp(M ′). Hence |bp(M ′)| ≥ n1+n2+C >

(n1 + n2)
B+1 as claimed.

Hence the existence of a (n1 +n2)
B-approximation algorithm for max size min bp smi

implies a polynomial-time algorithm for exact-mm in subdivision graphs of cubic graphs,
a contradiction unless P=NP. We claim that (n1 + n2)

B ≥ n1−ε. For, we firstly observe
that n = 3n1 + 2mC + 4n2−K. Now G is the subdivision graph of a cubic graph G′, and
n1 is the number of edges in G′, so 2n1 = 3n2. Also m = 2n1. It follows that

n = 7n1 + 4n2 + 4n1(n1 + n2)
B+1 − 4n1(n1 + n2)−K. (1)

From Equation 1, we may deduce that n ≤ 3(n1 + n2)
B+2, and hence

(n1 + n2)
B ≥ 3−

B
B+2 n

B
B+2 . (2)

By hypothesis K ≤ min{n1, n2}, and without loss of generality we may assume that

n1 ≥ 3; hence Equation 1 also implies that n ≥ 3B , and hence 3−
B

B+2 ≥ n− 1

B+2 . But
B + 2 ≥ 3

ε , and hence Inequality 2 implies that (n1 + n2)
B ≥ n1−ε as required.

Let max size exact bp smi denote the problem of finding, given an smi instance I
and an integer K ′, a matching M ∈M+ such that |bpI(M)| = K ′.

Corollary 2. max size exact bp smi is NP-complete.

Proof. We use the same reduction as in the proof of Theorem 1 and set K ′ = n1 + n2 and
ε =∞ (i.e. B = 0 and C = 1). As before G has a maximal matching of size K if and only
if I admits a perfect matching M ′ such that |bp(M ′)| ≤ K ′. However it is straightforward
to verify that any perfect matching M ′ in I satisfies |bp(M ′)| ≥ K ′, and hence the result
follows.

Given that smi is a special case of sr, we may reuse results from [2] to obtain the
following theorem.

Theorem 3 ([2]). max size exact bp smi is solvable in polynomial time when K ′ is
fixed.

We now consider max size min ba smi. It turns out that a small modification to
the proof of Theorem 1 is sufficient to establish the same inapproximability result for this
problem.

Theorem 4. max size min ba smi is not approximable within n1−ε, where n is the
number of men in a given instance, for any ε > 0, unless P=NP.

Proof. We use the same reduction as in the proof of Theorem 1, with the single modifica-
tion that we now set C = 2(n1 + n2)

B+1 − 2(n1 + n2) + 1. Using a similar argument to
that in the proof of Theorem 1, it follows that if G admits a maximal matching of size K
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then I admits a perfect matching M ′ such that |ba(M ′)| = 2(n1 + n2). Conversely if G
does not admit a maximal matching of size K then any perfect matching M ′ in I satisfies
|ba(M ′)| ≥ 2(n1 + n2) + C > 2(n1 + n2)

B+1.
Hence the existence of a (n1 + n2)

B-approximation algorithm for max size min ba

smi implies a polynomial-time algorithm for exact-mm in subdivision graphs of cubic
graphs, a contradiction unless P=NP. We claim that (n1 + n2)

B ≥ n1−ε. As in the proof
of Theorem 1, we firstly observe that

n = 7n1 + 4n2 + 8n1(n1 + n2)
B+1 − 8n1(n1 + n2)−K. (3)

From Equation 3, we may deduce that n ≤ 5(n1 + n2)
B+2, and hence

(n1 + n2)
B ≥ 5−

B
B+2 n

B
B+2 . (4)

By hypothesis K ≤ min{n1, n2}, and without loss of generality we may assume that
n1 ≥ 3, and hence n1 + n2 ≥ 5 since 2n1 = 3n2. Thus Equation 3 also implies that

n ≥ 5B , and hence 5−
B

B+2 ≥ n− 1

B+2 . But B + 2 ≥ 3

ε , and hence Inequality 4 implies that
(n1 + n2)

B ≥ n1−ε as required.

Let max size exact ba smi denote the problem of finding, given an smi instance I
and an integer K ′, a matching M ∈M+ such that |baI(M)| = K ′.

Corollary 5. max size exact ba smi is NP-complete.

Proof. We use the same reduction as in the proof of Theorem 1 and set K ′ = 2(n1 + n2)
and ε = ∞ (i.e. B = 0 and C = 1). As before G has a maximal matching of size K
if and only if I admits a perfect matching M ′ such that |ba(M ′)| ≤ K ′. However it is
straightforward to verify that any perfect matching M ′ in I satisfies |ba(M ′)| ≥ K ′, and
hence the result follows.

We now turn to the case that K ′ is fixed in the definition of max size exact ba smi.
In the following theorem, and in Section 4, we use the following terminology. Let I be an
smi instance in which U is the set of men and W is the set of women. The underlying
graph of I is a bipartite graph G = (V,E), where V = U ∪W and E is the set of mutually
acceptable pairs.

Theorem 6. max size exact ba smi is solvable in polynomial time when K ′ is fixed.

Proof. Let I be an instance of smi with n men and n women, and let m be the total length
of the men’s preference lists in I. Let G be the underlying graph of I. We generate the
O(nK ′

) subsets of size K ′ of the agents in I. For each such subset S, we then generate the
edge covers of the subgraph of G induced by S; there are at most O(2K ′2

) such subsets.
For each such edge cover B we determine whether I admits a matching M satisfying
bp(M) = B; this can be accomplished in O(m) time [2]. Such a set of blocking pairs
involves precisely the agents in S by construction. Overall this algorithm has O(mnK ′

)
complexity.

3 Preference lists of length at most 3

In this section we consider the case where preference lists in a given instance I of smi are of
bounded length. Given two integers p and q, let max size min bp (p, q)-smi (respectively
max size min ba (p, q)-smi) denote the restriction of max size min bp smi (respectively
max size min ba smi) in which each man’s preference list is of length at most p, and each
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x6i : y6i c(x6i) y6i+1 (0 ≤ i ≤ n− 1)
x6i+1 : y6i+1 c(x6i+1) y6i+2 (0 ≤ i ≤ n− 1)
x6i+2 : y6i+3 c(x6i+2) y6i+2 (0 ≤ i ≤ n− 1)
x6i+3 : y6i+4 c(x6i+3) y6i+3 (0 ≤ i ≤ n− 1)
x6i+4 : y6i+4 y6i+5 (0 ≤ i ≤ n− 1)
x6i+5 : y6i y6i+5 (0 ≤ i ≤ n− 1)

pr
j : wr

j cr
j (1 ≤ j ≤ m ∧ 1 ≤ r ≤ 3)

vr
j : wr

j zj (1 ≤ j ≤ m ∧ 1 ≤ r ≤ 3)

qj : c1
j c2

j c3
j (1 ≤ j ≤ m)

y6i : x6i+5 x6i (0 ≤ i ≤ n− 1)
y6i+1 : x6i x6i+1 (0 ≤ i ≤ n− 1)
y6i+2 : x6i+2 x6i+1 (0 ≤ i ≤ n− 1)
y6i+3 : x6i+3 x6i+2 (0 ≤ i ≤ n− 1)
y6i+4 : x6i+4 x6i+3 (0 ≤ i ≤ n− 1)
y6i+5 : x6i+4 x6i+5 (0 ≤ i ≤ n− 1)

cr
j : pr

j x(cr
j) qj (1 ≤ j ≤ m ∧ 1 ≤ r ≤ 3)

wr
j : vr

j pr
j (1 ≤ j ≤ m ∧ 1 ≤ r ≤ 3)

zj : v1
j v2

j v3
j (1 ≤ j ≤ m)

Figure 3: Preference lists in the constructed instance of max size min bp (3, 3)-smi.

woman’s list is of length at most q. We use p =∞ or q =∞ to denote the possibility that
the men’s lists or women’s lists are of unbounded length, respectively.

We begin by showing that max size min bp (3, 3)-smi is NP-hard and not approximable
within some δ > 1 unless P=NP. To prove this, we give a reduction from a restricted version
of sat. Given a Boolean formula B in CNF and a truth assignment f , let t(f) denote the
number of clauses of B satisfied simultaneously by f , and let t(B) denote the maximum
value of t(f), taken over all truth assignments f of B. Let max (2,2)-e3-sat [4] denote
the problem of finding, given a Boolean formula B in CNF in which each clause contains
exactly 3 literals and each variable occurs exactly twice as an unnegated literal in B and
exactly twice as a negated literal in B, a truth assignment f such that t(f) = t(B).

Theorem 7. Given any ε (0 < ε < 1

2032
), max size min bp (3, 3)-smi is not approximable

within 3557

3556+2032ε unless P=NP.

Proof. Let ε (0 < ε < 1

2032
) be given. Let B be an instance of max (2,2)-e3-sat. Let

V = {v0, v1, . . . , vn−1} and C = {c1, c2, . . . , cm} be the set of variables and clauses in B
respectively. Then for each vi ∈ V , each of literals vi and v̄i appears exactly twice in B.
Also |cj | = 3 for each cj ∈ C.

We form an instance I of max size min bp smi as follows. The set of men in I is
X ∪ P ∪ Q ∪ V and the set of women in I is Y ∪ C ′ ∪ W ∪ Z, where X = ∪n−1

i=0
Xi,

Xi = {x6i+r : 0 ≤ r ≤ 5} (0 ≤ i ≤ n − 1), P = ∪m
j=1

Pj, Pj = {p1
j , p

2
j , p

3
j} (1 ≤ j ≤ m),

Q = {qj : cj ∈ C}, V = ∪m
j=1

Vj, Vj = {v1
j , v

2
j , v3

j } (1 ≤ j ≤ m), Y = ∪n−1

i=0
Yi, Yi =

{y6i+r : 0 ≤ r ≤ 5} (0 ≤ i ≤ n − 1), C ′ = {cr
j : cj ∈ C ∧ 1 ≤ r ≤ 3}, W = ∪m

j=1
Wj,

Wj = {w1
j , w

2
j , w

3
j } (1 ≤ j ≤ m), and Z = {zj : cj ∈ C}.

The preference lists of the men and women in I are shown in Figure 3. In the preference
list of an agent x6i+r ∈ X (0 ≤ i ≤ n − 1 and r ∈ {0, 1}), the symbol c(x6i+r) denotes
the woman cs

j ∈ C ′ such that the (r + 1)th occurrence of vi appears at position s of cj .
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Similarly if r ∈ {2, 3} then the symbol c(x6i+r) denotes the woman cs
j ∈ C ′ such that the

(r − 1)th occurrence of v̄i appears at position s of cj . Also in the preference list of an
agent cs

j ∈ C ′, if literal vi appears at position s of clause cj ∈ C, the symbol x(cs
j) denotes

the man x6i+r−1 where r = 1, 2 according as this is the first or second occurrence of literal
vi in B, otherwise if literal v̄i appears at position s of clause cj ∈ C, the symbol x(cs

j)
denotes the man x6i+r+1 where r = 1, 2 according as this is the first or second occurrence
of literal v̄i in B. Clearly each preference list is of length at most 3.

For each i (0 ≤ i ≤ n − 1), let Ti = {(x6i+r, y6i+r) : 0 ≤ r ≤ 5} and Fi =
{(x6i+r, y6i+r+1)} : 0 ≤ r ≤ 5}, where addition is taken module 6i. We firstly note
that M is a perfect matching of the men and women in I, where

M =

n−1
⋃

i=0

Ti ∪ {(p
1
j , c

1
j ), (v

1
j , w1

j ), (p
2
j , c

2
j ), (v

2
j , w2

j ), (qj , c
3
j ), (p

3
j , w

3
j ), (v

3
j , zj) : 1 ≤ j ≤ m}.

We now give some intuition behind this construction. The agents in Xi∪Yi correspond
to variable vi ∈ V , whilst the agents in Pj∪Vj∪Wj∪{qj , c

1
j , c

2
j , c

3
j , zj} correspond to clause

cj ∈ C. The pairs in Ti are added to a matching M in I if vi ∈ V is true under a truth
assignment f of B, otherwise the pairs in Fi are added to M . Crucially, if vi is false under
f then each of x6i and x6i+1 (corresponding to the first and second occurrences of literal
vi) has his third choice in M . Similarly if vi is true under f then each of x6i+2 and x6i+3

(corresponding to the first and second occurrences of literal v̄i) has his third choice in M .
Hence if any clause cj is false under f , then since (qj, c

s
j) ∈ M for some s ∈ {1, 2, 3}, it

follows that (x(cs
j), c

s
j) ∈ bp(M). Additionally, regardless of the truth values of V under f ,

the members of Xi × Yi contribute one blocking pair for each vi ∈ V , as do the members
of Vj ×Wj for each cj ∈ C.

For the formal argument showing the correctness of the reduction, we claim that t(B)+
bp+(I) = n + 2m.

For, let f be a truth assignment of B such that t(f) = t(B). We create a perfect
matching M in I as follows. For each variable vi ∈ V , if vi is true under f , add the pairs
in Ti to M , otherwise add the pairs in Fi to M . In the former case, bp(M) ∩ (Xi × Yi) =
{(x6i+5, y6i)}, whilst in the latter case, bp(M) ∩ (Xi × Yi) = {(x6i+4, y6i+4)}.

Now let cj ∈ C. If cj contains a literal that is true under f , let s ∈ {1, 2, 3} denote
the position of cj in which this literal occurs, otherwise set s = 1. Add the pairs (pt

j , c
t
j),

(vt
j , w

t
j) (1 ≤ t 6= s ≤ 3), (qj, c

s
j), (ps

j , w
s
j ) and (vs

j , zj) to M . Then bp(M) ∩ (Vj ×Wj) =

{(vs
j , w

s
j )}. Now if cj is not satisfied under f then man x(c1

j ) has his last-choice partner, by

construction of M . Hence (x(c1
j ), c

1
j ) ∈ bp(M). Moreover these, together with the n + m

blocking pairs in X × Y and V ×W identified already, are all the blocking pairs of M in
I. Hence |bp(M)| = n + m + (m− t(f)), i.e. bp+(I) + t(B) ≤ n + 2m.

Conversely suppose that I admits a perfect matching M such that |bp(M)| = bp+(I).
We form a truth assignment f in B as follows. For each i (0 ≤ i ≤ n−1), if M∩(Xi×Yi) =
Ti, set vi to be true under f . Otherwise M ∩ (Xi× Yi) = Fi, in which case we set vi to be
false under f .

We next observe that if M ∩ (Xi × Yi) = Ti, then bp(M) ∩ (Xi × Yi) = {(x6i+5, y6i)},
whilst if M ∩ (Xi × Yi) = Fi, then bp(M) ∩ (Xi × Yi) = {(x6i+4, y6i+4)}. For each j
(1 ≤ j ≤ m), (qj , c

s
j) ∈M for some s (1 ≤ s ≤ 3), so that {(pt

j , c
t
j), (v

t
j , w

t
j)} ⊆M for each

t (1 ≤ t 6= s ≤ 3), whilst {(ps
j , w

s
j ), (v

s
j , zj)} ⊆ M , since M is a perfect matching. Hence

bp(M)∩ (Vj ×Wj) = {(vs
j , w

s
j )}. Since M is perfect, no agent in P ∪Q∪Z can be involved

in a blocking pair of M .
Now let cj be a clause in C (1 ≤ j ≤ m). Exactly one woman cs

j ∈ {c
1
j , c

2
j , c

3
j} has her

last-choice partner in M . If (x(cs
j), c

s
j) ∈ bp(M) then the literal occurring at position s of

cj is false. In such a case we claim that the same is true for every literal in cj . For, suppose

10



not. Then there exists a true literal appearing at position s′ of cj . By construction of f ,
x(cs′

j ) has his first-choice partner in M . Let

M ′ = (M\((Pj ∪ Vj ∪ {qj})× (C ′ ∪W ∪ Z)))

∪{(qj , c
s′
j ), (ps′

j , ws′
j ), (vs′

j , zj)} ∪ {(p
t
j , c

t
j), (v

t
j , w

t
j) : 1 ≤ t 6= s′ ≤ 3}.

Then M ′ is a perfect matching in I and |bp(M ′)| < |bp(M)|, contradicting the choice of
M . Hence the claim is established, so that clause cj is false under f . It follows that
|bp(M)| = n + m + (m − t(f)), and therefore t(B) + bp+(I) ≥ n + 2m. From our earlier
inequality it follows that t(B) + bp+(I) = n + 2m = 11

4
m, since 3m = 4n.

Berman et al. [4] show that it is NP-hard to distinguish between instances B of
max (2,2)-e3-sat for which (i) t(B) ≥ (1 − ε)m and (ii) t(B) ≤

(

1015

1016
+ ε

)

m. By
our construction, it follows that in case (i), bp+(I) ≤

(

3556

2032
+ ε

)

m, whilst in case (ii),
bp+(I) ≥

(

3558

2032
− ε

)

m. Hence an approximation algorithm for max size min bp (3, 3)-smi

with performance guarantee r, for any r ≤ 3557

3556+2032ε , could be used to decide between
cases (i) and (ii) for max (2,2)-e3-sat in polynomial time, which is a contradiction unless
P=NP.

We remark that it is possible to prove Theorem 7 without requiring the agents in the
set Vj ∪Wj ∪{x6i+4, x6i+5, y6i+4, y6i+5 : 0 ≤ i ≤ n− 1}, however these agents are included
in order to provide a single reduction that is also valid for max size min ba smi. We now
consider the approximability of this problem.

Theorem 8. Given any ε (0 < ε < 1

2032
), max size min ba (3, 3)-smi is not approximable

within 3557

3556+2032ε unless P=NP.

Proof. Let ε (0 < ε < 1

2032
) be given. We use exactly the same reduction as in the proof

of Theorem 7 and observe that each blocking pair considered in that proof corresponds to
two unique agents. It follows that 2t(B) + ba+(I) = 2(n + 2m) = 11m

2
, since 3m = 4n.

Berman et al. [4] show that it is NP-hard to distinguish between instances B of
max (2,2)-e3-sat for which (i) t(B) ≥ (1 − ε)m and (ii) t(B) ≤

(

1015

1016
+ ε

)

m. By
our construction, it follows that in case (i), ba+(I) ≤

(

3556

1016
+ 2ε

)

m, whilst in case (ii),
ba+(I) ≥

(

3558

1016
− 2ε

)

m. Hence an approximation algorithm for max size min ba (3, 3)-

smi with performance guarantee r, for any r ≤ 3557

3556+2032ε , could be used to decide between
cases (i) and (ii) for max (2,2)-e3-sat in polynomial time, which is a contradiction unless
P=NP.

4 Preference lists on one side of length at most 2

We now consider instances of smi in which all preference lists on one side are of length at
most 2. Let I be an smi instance in which U is the set of men and W is the set of women.
Assume without loss of generality that every man has a list of length at most 2. Let G be
the underlying graph of I. Let n = |V (G)| and m = |E(G)|. Note that m ≤ 2 · |U| < 2n.

Define perfect min bp (p, q)-smi as follows. An instance of this problem is an smi

instance I in which each man’s preference list is of length at most p and each woman’s
preference list is of length at most q (p =∞ or q =∞ denotes unbounded length preference
lists as before). A solution is a perfect matching with the minimum number of blocking
pairs in I if I admits a perfect matching, or “no” otherwise.

Lemma 9. perfect min bp (2,∞)-smi is solvable in O(n) time, where n is the number
of men in I.
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Proof. If |U| 6= |W| then the answer is no. Let I1 = I the initial instance. If there is
a woman in I1 with an empty lists, then we output “no”. If there is a woman w1 with
preference list that contains only one man, say m1 then w1 can be matched only to m1 in
a perfect matching. Therefore we add {w1,m1} to M , we remove w1 and m1 from I1 and
obtain an instance I2. We continue this process, if we find a woman in Ii with empty list
then we stop the algorithm with output “no” and if we find a woman wi with preference list
of length 1 then we extend M with the pair (wi,mi) and reduce the instance as described
above. If for an instance Ik there is no woman with preference list of length at most one
then every man and woman must have a preference list of length 2 in Ik, obviously. So
the underlying graph of Ik consists of a set of disjoint even cycles. Therefore, to achieve a
perfect matching we can choose one from the two possible sets of edges for each of these
even cycles. We make these decisions for each even cycle separately after counting the
blocking pairs that contain some women in the cycle, for both cases, by considering all
the edges of I. This last step can be done also in O(n) time since we have to go through
the women’s preference lists only once.

We continue with the related problem men cover min bp (2,∞)-smi. Here, we
suppose that the preference lists of the men are of length at most 2, and the problem is
to minimize the number of blocking pairs over all matchings that cover the men.

Lemma 10. men cover min bp (2,∞)-smi is solvable in O(n2) time, where n is the
number of men in I.

Proof. Suppose that the graph of the instance, G = (U ∪ W, E) is connected, otherwise,
we can solve the problem separately for each component. If the number of men |U| is
greater than the number of women |W| then we output “no”. If |U| = |W| then we get an
instance of perfect min bp (2,∞)-smi. The connectivity of G implies |W| ≤ |U|+ 1, so
the last possible case is |W| = |U|+ 1. Here, for every wj ∈ W we solve an instance Ij of
perfect min bp (2,∞)-smi after removing wj from the graph. Note that if a matching
Mj is a minimum solution for Ij then Mj is also a minimum for I between the matchings
that does not cover wj , since in those matchings in I, where wj is not covered, every man
in wj ’s list has only one possible partner. Therefore, we can get the optimal solution for
I by solving |W| instances of perfect min bp (2,∞)-smi and choosing the minimum of
these solutions.

The problem women cover min bp (2,∞)-smi can be defined similarly. Here, we
suppose that the preference lists of the men are of length at most 2, and the problem is
to minimize the number of blocking pairs over all matchings that cover the women.

Lemma 11. women cover min bp (2,∞)-smi is solvable in O(n3) time, where n is the
number of men in I.

Proof. Let G = (U ∪ W, E) be the graph of the instance I and let bp(M) denote the set
of blocking pairs for a matching M in I. If there is no such matching that covers W
then we output “no”. Otherwise, we deal only with such matchings in this proof that
covers W, so we assume this property hereby. Let bpint(M) denote the set of internal
blocking pairs for M , those blocking pairs that are covered by M . Furthermore, let
bpext(M) denote the external blocking pairs, where the men are uncovered by M . Note
that bp(M) = bpint(M) ∪ bpext(M).

Our algorithm consists of two cycles. In the first one, we eliminate the external blocking
pairs without creating any new internal blocking pair. In the second one, we try to reduce
the number of internal blocking edges by switching pairs along augmenting paths and
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cycles. Finally, we prove that if neither of these steps is possible then the solution is
optimal.

Eliminating the external blocking pairs. Claim 1: Suppose that for a matching
M , bpext(M) 6= ∅. We can construct a matching M∗ such that bpint(M) ⊇ bpint(M

∗) =
bp(M∗).

Suppose that (ui, wj) ∈ bpext(M), and if (ui, wk) is also in bpext(M) then ui prefers wj

to wk. Let M ′ = (M \ {(M(wj), wj)}) ∪ {(ui, wj)}. We get bpint(M
′) ⊆ bpint(M) since

only ui and wj could be part of a new internal blocking pair. This is because (ui, wk)
cannot be blocking since either ui prefers wj if (ui, wk) is blocking for M or (ui, wk) is
not blocking for M , and wj received a better partner so she cannot be part of any new
blocking pair. Therefore, the set of internal blocking pairs can only reduce. We keep doing
this elimination process until obtaining a matching M∗ such that bpint(M

∗) = bp(M∗).
This process must terminate, since the women get better and better partners after each
elimination, so no pair can be eliminated twice. The final matching M∗ satisfies the
required condition.

In order to obtain the O(n) running time for the elimination process we have to ensure
that we can find the external blocking pairs efficiently. Here, we use the fact that if an
uncovered men ul is not involved in any blocking pair for a matching M then he cannot be
part of a blocking pair for M ′ either, where M ′ is obtained after eliminating an external
blocking pair as described earlier. So we create a set N to collect such men that are
uncovered by Mk ∪ bpext(M

k), where Mk is the actual matching in the process. Let N
be empty for the initial matching. Whenever we consider an uncovered man ui /∈ N and
we find that ui does not involved in a blocking pair then we add ui to N . So in each
step we either eliminate an external blocking pair or we extend N until N contains every
uncovered men. Therefore, the process terminates in O(n) time.

Reducing the number of internal blocking pairs. Let the alternating path
P and alternating cycle C be defined as follows. For a matching M , a path P =
{(u0, w1), (w1, u1), (u1, w2), . . . , (uk−1, wk), (wk, uk)} is an alternating path if (wi, ui) ∈M
and (ui−1, wi) /∈ M for every 1 ≤ i ≤ k. If u0 = uk then we get an alternating cycle.
Let M ⊕ P denote the matching obtained by switching the edges along the alternating
path, i.e. by removing the edges (ui, wi) from M and adding (ui−1, wi) to M for every
1 ≤ i ≤ k. Furthermore, let PW and CW be the women covered by P and C, respectively,
and let PU = {u1, u2, . . . , uk} = M(PW ) and P 0

U = {u0, u1, . . . , uk−1} = (M ⊕ P )(PW ).
Finally, let D(S) denote the set of edges incident with the set of vertices S.

Claim 2: Suppose that for a matching M , bpext(M) = ∅. If there is an alternating path
P such that |bpint(M⊕P )∩D(PW)| < |bpint(M)∩D(PW)| then |bpint(M⊕P )| < |bpint(M)|.
Similarly, if there is an alternating cycle C such that |bpint(M⊕C)∩D(CW)| < |bpint(M)∩
D(CW)| then |bpint(M ⊕ C)| < |bpint(M)|.

It is enough to show that if wj /∈ PW then wj cannot be involved in any new internal
blocking pair for M⊕P . Suppose indirectly that (ui, wj) is a new internal blocking pair. If
ui /∈ P 0

U then ui is either uncovered by M ⊕P or has the same partner as in M , so (ui, wj)
cannot be a new internal blocking pair. If ui ∈ P 0

U ∩PU then (ui, wj) 6= E(G) since ui has
only two women in his list and both of them are in PW . Finally, if ui = u0 = P 0

U \ PU

then (u0, wj) cannot be blocking since u0 was uncovered by M and we supposed that no
external blocking pair exists for M , a contradiction.

We show that the construction of all possible alternating paths and cycles together with
counting the number of new blocking pairs can be organised in O(n2) time. Considering the
alternating paths, we build up these paths from every uncovered man as follows. Let u be
an uncovered men and w1

1 be the first woman in his lists. We generate the first set of alter-
nating paths starting from u as P 1

k (u) = {(u,w1
1), (w

1
1 , u

1
1), (u

1
1, w

1
2), . . . , (u

1
k−1

, w1
k), (w1

k, u
1
k)}
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for every k while no repetition occur in the sequence, by supposing that u1
i = M(w1

i ) and
w1

i is the other woman in u1
i−1

’s list beside M(u1
i−1

) for every i ≤ k. We can generate P 2
k ,

the second set of alternating paths starting from u, similarly. When we count the number
of internal blocking pairs that are incident with the women of P 1

k (u) for the new matching
M ⊕ P 1

k (u) we can use the fact that for a woman w1
i , the set of internal blocking pairs

remains the same in the matchings M ⊕ P 1
k (u) for every k > i and can differ only by the

pair (w1
i ,m

1
i ) for k = 1 since m1

i is not covered in M ⊕ P 1
i (u). Therefore, to count the

number of blocking edges for every alternating paths P 1
k (u), we have to go through the

preference lists of the women involved in the longest such path only once. Considering
the alternating cycles, we try to construct an alternating cycle from every covered vertex
u by building up the only alternating path starting from u as described above. If this
alternating path returns to M(u) then we find the only alternating cycle in which u may
be involved, denoted by C(u). Then we simply count the number of internal blocking
pairs incident with the women involved in C(u) for M ⊕ C(u).

The optimality. The next claim indicates that if neither of the above improvements
is possible then the solution is optimal.

Claim 3: Suppose that bpint(M) = bp(M) and there is a matching Mopt such that
|bp(Mopt)| < |bp(M)|. Then there must be either an alternating path P such that |bpint(M⊕
P ) ∩D(PW)| < |bpint(M) ∩D(PW)| or an alternating cycle C such that |bpint(M ⊕ C) ∩
D(CW)| < |bpint(M) ∩D(CW)|.

By Claim 1 we can suppose that bpint(M
opt) = bp(Mopt). Considering the symmetric

difference of M and Mopt we get some alternating paths, some alternating cycles and
some pairs that remain matched in Mopt too. Let PW and CW denote the set of women
that are involved in an alternating path and an alternating cycle, respectively, and let
RW denote the set of women who get the same partner in M and Mopt. Furthermore,
let PU = M(PW), P0

U = Mopt(PW ), CU = M(CW) and RU = M(RW). Finally, let
DIF = CU ∪ (PU ∩P

0
U ) denote the set of men who are matched with different partners in

M and Mopt.
First we show that every women wj in RW must be involved in the same internal

blocking pairs for M and Mopt. Let us consider a pair (ui, wj). If ui ∈ RU then (ui, wj)
is blocking for M if and only if it is blocking for Mopt too, obviously. If ui ∈ DIF then
(ui, wj) /∈ E(G) since ui has only two women in his list: M(ui) and Mopt(ui), who are
in PW ∪ CW . Finally, if ui ∈ P

0
U \ PU then ui is uncovered by M , so (ui, wj) cannot be

blocking since there is no external blocking pair for M . Similarly, if ui ∈ PU \ P
0
U then ui

is uncovered by Mopt, so (ui, wj) cannot be blocking since there is no external blocking
pair for Mopt.

Therefore, if we sum up the internal blocking pairs according the sets of women involved
in the same alternating path or in the same alternating cycle for M and Mopt, then we
get either an alternating path P or an alternating cycle C such that either |bp(Mopt) ∩
D(PW)| < |bp(M) ∩D(PW)| or |bp(Mopt) ∩D(CW)| < |bp(M) ∩D(CW)|.

If for an alternating path P , |bp(Mopt) ∩ D(PW )| < |bp(M) ∩ D(PW)| then we can
prove that {bpint(M ⊕P )∩D(PW)} ⊆ {bp(Mopt)∩D(PW)} which implies |bpint(M ⊕P )∩
D(PW)| < |bpint(M) ∩ D(PW)|. To verify this it is enough to show that if for a woman
wj ∈ PW , (ui, wj) is an internal blocking pair for M ⊕ P then (ui, wj) is an internal
blocking pair for Mopt too. Note that M ⊕ P (wj) = Mopt(wj), and ui is from the set of
men covered by M⊕P that is M⊕P (W) = RU∪CU∪(PU \PU )∪P 0

U ⊆ RU∪P 0
U∪CU∪PU =

(RU ∪P 0
U )∪ (DIF \P 0

U )∪ (PU \P
0
U ). If ui ∈ RU or ui ∈ P 0

U then M⊕P (ui) = Mopt(ui), so
the statement is obvious. If ui ∈ DIF \ P 0

U then (ui, wj) /∈ E(G) since wj can be neither
M ⊕ P (ui) = M(ui) nor Mopt(ui). Finally, if ui ∈ PU \ P

0
U then ui is uncovered by Mopt,

so again, (ui, wj) cannot be blocking for M ⊕ P since there is no external blocking pair
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for Mopt.
Similarly, if for an alternating cycle C, |bp(Mopt) ∩D(CW)| < |bp(M) ∩D(CW)| then

we can prove in the same way that {bpint(M⊕C)∩D(CW)} ⊆ {bp(Mopt)∩D(CW)} which
implies |bpint(M ⊕ C) ∩D(CW)| < |bpint(M) ∩D(CW)|.

Conclusion of the proof. If a matching M is not optimal and there is no external
blocking pair then Claim 3 implies that we can find an alternating path or cycle that
satisfies the condition described in Claim 2, so by switching the edges along this path or
the cycle the number of internal blocking pairs reduces.

The O(n3) time implementation of the complete algorithm can be obtained as follows.
In the first phase of the algorithm we eliminate the external blocking pairs in O(n) time
as described in the proof of Claim 1. If their is no more external blocking pair then we
try to reduce the number of internal blocking pairs by switching pairs along augmenting
paths and cycles as described in Claim 2. This second phase can be done in O(n2) time,
and after each run, either the number of internal blocking edges reduces or we stop, since
the solution was optimal. After the second phase we run the first phase again, since
new external blocking edges may have been created, and so on. We repeat the first and
second phases at most |W| times, since the number of internal blocking pairs for the
initial matching is at most |W|. Therefore, we get O(n3) for the overall running time of
the algorithm.

Theorem 12. max size min bp (2,∞)-smi is solvable in O(n3) time, where n is the
number of men in I.

Proof. Let the bipartite graph be G = (U ∪W, E), where every man in U has a preference
list of length at most 2. First, we decompose G by using König’s theorem. Let X ⊆ U
and Y ⊆ W be such that X ∪Y is a minimum vertex cover, whose size is equal to the size
of a maximum matching of G. Let M be a maximum matching that covers X ∪ Y . Note
that there cannot be an edge (x, y) in M with (x, y) ∈ (X × Y ).

Let U2 be a subset of X such that for every ui ∈ U2 there is an alternating path from
some y ∈ Y to ui, and let W2 = M(U2). Furthermore, let U3 = X \ U2, U1 = U \ X,
W1 = Y and W3 = W \ (W1 ∪ W2). We claim that W1 ∪ W2 ∪ U3 is also a minimum
vertex cover, moreover, the component restricted to the set of vertices U1 ∪U2 ∪W1 ∪W2

is independent from the component restricted to the set of vertices U3∪W3. The fact that
(W1 ∪W2)× U3 does not contain any edge is obvious by the definition of U2. There is no
edge between U1 and W3 since X ∪ Y is a vertex cover. Finally, for every man ui in U2,
both women in u′

is list must be in W1 ∪W2 by the definition of U2, so no woman in ui’s
list can be from W3.

Therefore, we can obtain the solution for instance I of max size min bp (2,∞)-smi

by separately solving a problem of men cover min bp (2,∞)-smi for the subinstance re-
stricted to U3∪W3 and a problem of women cover min bp (2,∞)-smi for the subinstance
restricted to U1 ∪ U2 ∪W1 ∪W2.

Adapting the algorithm for different models

In the case where the preference lists may include ties, we can use the same algorithm with
the following minor modification. When eliminating the external blocking pairs (Claim
1) we supposed that for an unmatched man ui, if both (ui, wj) and (ui, wk) are external
blocking pairs then ui prefers wj to wk. However in the case of ties, we require that ui

either prefers wj to wk or is indifferent between them.
Regarding the problem of minimising the number of agents involved in blocking pairs,

we need a little more care. In this case too, we can eliminate every external blocking pair
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without creating any new internal blocking pair (Claim 1), therefore we can focus on the
number of agents involved in internal blocking pairs.

In the second phase of the algorithm, i.e., when we improve the solution by switching
edges along augmenting paths and cycles, we need to make the following changes. Instead
of counting the internal blocking pairs, we now have to count the agents involved in such
pairs. Whenever we counted the internal blocking pairs that were incident with a set of
women X in the proof, here instead, we count the women in X who are involved in internal
blocking pairs together with those men with whom they form these internal blocking pairs.
To be more precise, for a set of women X and a matching M , let bmint(X,M) := {u ∈
U : ∃w ∈ X, (u,w) ∈ bpint(M)} (i.e., the set of men that form internal blocking pairs with
some woman from X). If baint(M) denotes the set of agents involved in internal blocking
pairs for a matching M then Claim 2 should be modified as follows.

Claim 2′: Suppose that for a matching M , bpext(M) = ∅. If there is an alternating path
P such that |baint(M⊕P )∩(PW∪bmint(PW , (M⊕P )))| < |baint(M)∩(PW∪bmint(PW ,M))|
then |baint(M ⊕ P )| < |baint(M)|. Similarly, if there is an alternating cycle C such that
|baint(M ⊕ C) ∩ (CW ∪ bmint(CW , (M ⊕ C)))| < |baint(M) ∩ (CW ∪ bmint(CW ,M))| then
|baint(M ⊕C)| < |baint(M)|.

Moreover, in the same way that we could obtain the number of internal blocking
pairs by counting them according to some partition of women, we can also obtain the
number of agents involved in internal blocking pairs by counting them according to the
same partition, since each man can be involved in at most one internal blocking pair.
Therefore, the following modified version of Claim 3 can be proved in a similar way.

Claim 3′: Suppose that bpint(M) = bp(M) and there is a matching Mopt such that
|ba(Mopt)| < |ba(M)|. Then there must be either an alternating path P such that |baint(M⊕
P ) ∩ (PW ∪ bmint(PW , (M ⊕ P )))| < |baint(M) ∩ (PW ∪ bmint(PW ,M))| or an alternating
cycle C such that |baint(M ⊕ C) ∩ (CW ∪ bmint(CW , (M ⊕ C)))| < |baint(M) ∩ (CW ∪
bmint(CW ,M))|.

Using a similar modification as described in the first paragraph of this subsection, we
can find a maximum matching with the smallest number of blocking agents in the case
that preference lists include ties. The running time of these modified algorithms remains
O(n3), since having ties in the lists does not require any significant modification, and
counting the agents involved in blocking pairs is not harder than counting the blocking
pairs themselves.

Let max size min ba (2,∞)-smi be the problem of finding a maximum matching with
the smallest number of blocking agents for the case where the lists on one side are of
length at most 2, and let max size min bp (2,∞)-smti (respectively max size min ba

(2,∞)-smti) be the problem of finding a maximum matching with the smallest number of
blocking pairs (respectively blocking agents) for the case where the preference lists on one
side are of length at most 2 and ties may occur in the lists on either side. We summarise
our results in the following theorem.

Theorem 13. max size min bp (2,∞)-smti, max size min ba (2,∞)-smi and max size

min ba (2,∞)-smti are solvable in O(n3) time, where n is the number of men in I.

5 Concluding remarks

In Table 1 we summarise complexity results for problems involving finding stable matchings
and finding matchings with the minimum number of blocking pairs or blocking agents, in
the context of instances of smi and sr. The table is split into columns according to these
problems, and further according to whether the preference lists are strictly ordered or
include ties.
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The problem is to where smi instances sr instances
find a matching M M is strict with ties strict with ties

such that M arbitrary P[6] P [6, 8] P [9] N [18, 12]

is stable maximum P[6, 7] N [15] P[9, 8] N [18, 12]

such that M has min arbitrary P (=0) [6] P (=0) [6, 8] N [2]1 N (←)

no. blocking pairs maximum N (*) N (←) N (↑) N (տ)

such that M has min arbitrary P (=0) [6] P (=0) [6, 8] N [2]2 N (←)

no. blocking agents maximum N (*) N (←) N (↑) N (տ)

Table 1: Complexity results for problems involving finding stable matchings and matchings
with the minimum number of blocking pairs / agents.

The rows of the table refer to the case that we seek either a stable matching, or a
matching with the minimum number of blocking pairs, or a matching with the minimum
number of blocking agents; these rows are further split into the cases that the matching
should be of arbitrary or maximum size.

In a given table entry, ‘P’ denotes that the problem in question is polynomial-time
solvable, whilst ‘N’ denotes NP-hardness. Furthermore, ‘=0’ denotes the fact that an
optimal solution admits 0 blocking pairs, whilst ‘(*)’ indicates that the complexity result
is established in this paper. The arrows indicate that NP-hardness holds by restriction,
given the result in the cell above / to the left / above-left as appropriate.

We conclude with some open problems. The hardness results of Sections 2 and 3 also
apply in the cases of hr and its generalisation hrt, where preference lists may include
ties. However it remains to extend the algorithms of Section 4 to either of these settings,
or to show that the corresponding optimisation problems are NP-hard.

We finally remark that the inapproximability results established by Theorems 7 and
8 leave open the question as to whether there is a c-approximation algorithm for either
max size min bp (3, 3)-smi or max size min ba (3, 3)-smi, for some constant c > 1.
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