
The College Admissions problem

with lower and common quotas

Péter Biró, Tamás Fleiner, Robert W. Irving and David F. Manlove

Department of Computing Science Technical Report

University of Glasgow TR-2009-303

Glasgow G12 8QQ July 2009

UK

The College Admissions problem

with lower and common quotas

Péter Biró1,∗,†, Tamás Fleiner2,†, Robert W. Irving1,∗ and David F. Manlove1,∗

1 Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.

Email: {pbiro,rwi,davidm}@dcs.gla.ac.uk.

2 Department of Computer Science and Information Theory,

Budapest University of Technology and Economics, H-1117, Magyar tudósok körútja 2,

Budapest, Hungary. Email: fleiner@cs.bme.hu.

Abstract

We study two generalised stable matching problems motivated by the current
matching scheme used in the higher education sector in Hungary. The first prob-
lem is an extension of the College Admissions problem in which the colleges have
lower quotas as well as the normal upper quotas. Here, we show that a stable match-
ing may not exist and we prove that the problem of determining whether one does
is NP-complete in general. The second problem is a different extension in which, as
usual, individual colleges have upper quotas, but in addition, certain bounded sub-
sets of colleges have common quotas smaller than the sum of their individual quotas.
Again, we show that a stable matching may not exist and the related decision prob-
lem is NP-complete. On the other hand we prove that, when the bounded sets form a
nested set system, a stable matching can be found by generalising, in non-trivial ways,
both the applicant-oriented and college-oriented versions of the classical Gale-Shapley
algorithm. Finally, we present an alternative view of this nested case using the concept
of choice functions, and with the aid of a matroid model we establish some interesting
structural results for this case.

1 Introduction

The College Admissions (or Hospitals / Residents) problem was introduced by Gale and
Shapley [11]. They gave a linear time algorithm that always finds a stable matching. Roth
[21] discovered that the very same method had already been implemented in 1952 in the
National Resident Matching Program, the centralised matching scheme that coordinates
junior doctor recruitment in the US. Since then, similar matching schemes have been
organised in many countries to allocate graduating medical students to hospital posts
(hence the alternative name for the problem), and these matching schemes are widely
used for other professions as well. Gusfield and Irving [14] and Roth and Sotomayor [24]
provide the classical results and background material for this problem.

Regarding the original context, the Gale-Shapley algorithm is also used in handling
higher education admissions in a number of countries, including Spain [20], Turkey [4]
and Hungary [5] (whilst a different method is used for medicine and related subjects in

∗Supported by EPSRC grant EP/E011993/1.
†Supported by OTKA grant K69027.

1

Germany [6]). Moreover, the same kind of admission systems have been introduced for
secondary schools in, amongst others, Boston [2], New York [1] and again Hungary [5].

We define the College Admissions problem (ca) as follows. We are given a bipar-
tite graph G(A ∪ C,E), where A = {a1, a2, . . . , an} is the set of applicants and C =
{c1, c2, . . . , cm} is the set of colleges. If an applicant ai applies to a college cj and cj finds
ai acceptable then (ai, cj) ∈ E. Every applicant has a strict order of preference over the
colleges she applies to, and every college also has a strict order of preference over its ac-
ceptable applicants, so each applicant ai and each college cj has a preference list, denoted
by P (ai) and P (cj), respectively. Furthermore, each college cj has a positive integer quota
q(cj), this being the maximum number of applicants that it can accept.

A matching is a set of edges in the graph, such that every applicant is matched to at
most one college and no college has more assignees than its quota. For a matching M , if
an applicant ai is matched in M then let M(ai) denote the college to which ai is assigned,
and let M(cj) denote the set of applicants assigned to college cj . A matching is stable if,
for every acceptable applicant-college pair (ai, cj) that is not in the matching, either ai is
matched and she prefers M(ai) to cj , or cj has a full quota of applicants that it prefers
to ai. In this case, we say that the pair (ai, cj) is dominated by M . An applicant and a
college form a blocking pair if it is not dominated by the matching.

Admission to higher education establishments in Hungary has been organised by a
centralised matching scheme since 1985. The applicants submit a preference list over the
particular courses of study they are interested in. In addition to the name of the institution
and the field of study, they have to indicate whether they are applying for state financed
or privately financed study1, but here, we consider these entities simply as distinct colleges
for simplicity.

Basically, it is the Gale-Shapley algorithm that produces a kind of stable matching
every year by matching more than 100,000 students. However, there are at least three
special features in the scheme that are also interesting in a theoretical sense.

The first feature, which was studied in [5], is the presence of ties in the system. The
colleges rank their applicants according to their academic scores and/or their results in
the entrance exams; the solution is based on the concept of so-called stable score-limit.
This is equivalent to a stable matching if there are no ties, i.e., if two students cannot
have the same score at the same college.

The second feature, which is the subject of Section 2 of this paper, is the condition
of lower quotas. In addition to upper quotas, which are part of the classical College
Admissions problem, here, every college may have a lower quota as well, that is the
minimum number of students that must be admitted if the college is to be open. We
will show that a stable matching may not exist in this case; moreover, the problem of
deciding whether a stable matching exists is NP-complete in general. We also mention
some relaxed versions of this problem, and we describe the current heuristics used in the
Hungarian application. Here we note that in a recent paper [15], Hamada et al. studied a
related problem with similar motivations. The difference between their model and ours is
that they assume that each applicant has a complete preference list (i.e., the underlying
bipartite graph is complete) and they also require the matching to satisfy all lower quotas
(i.e., no college can be closed in their model). They proved that the problem of finding a
matching with the minimum number of blocking pairs under these conditions is NP-hard
(moreover it is not approximable within n1−ε for any positive constant ε).

1An applicant may rank first a state financed course of study in economics at university A, then secondly
another state financed course of study in economics at university B, and thirdly a privately financed course
of study in economics at the first university A. So the fee status is included in the preferences of the
applicants in this way.

2

The third feature, studied in Sections 3, 4 and 5, is the problem of common quotas.
In this case, in addition to the individual quotas of the colleges, particular sets of colleges
can have common quotas smaller than the sum of their individual quotas. This means
that the number of students assigned to colleges in a given set cannot exceed the common
quota for that set. A solution is said to be stable if, for every acceptable applicant-college
pair (ai, cj), if ai is not admitted to cj then either ai is admitted to a preferred college, or
cj has a full quota of better applicants, or there is a set of colleges Ck such that cj ∈ Ck

and the common quota of Ck is filled by better applicants than ai. (This implies that all of
the colleges in the set Ck judge the students on the same basis – i.e., have preference lists
that are consistent.) In Section 3, we show that a stable matching may not exist under
these conditions, and that it is NP-complete to determine whether one does. On the other
hand, we show in Section 4 that, for nested set systems, the problem becomes solvable in
polynomial time. We describe applicant-oriented and college-oriented Gale-Shapley type
algorithms that find stable matchings, which we prove to be optimal / pessimal for the
applicants and colleges, respectively. Finally, in Section 5, we study the problem from
the perspective of choice functions and present some results on the structure of stable
matchings that follow from an appropriate matroid model.

2 Lower quotas

In Hungary, higher education institutions can declare lower quotas for each of their par-
ticular areas of study. If the number of assigned students is less than this quota for a
particular area then the course has to be cancelled for that year. In general, this creates
an interval that ensures a reasonable number of students every year in order to make the
course viable. For some specialist areas of study this lower quota may be very small.
In this section we consider the complexity of the College Admissions problem with lower
quotas. We prove that for a given instance of this problem, a stable matching need not
exist and deciding whether one does exist is NP-complete.

2.1 Problem definition

Suppose we are given an instance of the College Admissions problem in which, in addition
to its (upper) quota, each college cj ∈ C has a lower quota l(cj). In the presence of lower
quotas, to avoid ambiguity we refer to q(cj) as defined previously as cj ’s upper quota, also
denoting q(cj) by u(cj). We assume that l(cj) ≤ u(cj) for all cj ∈ C.

A matching in this context requires that every college cj satisfies |M(cj)| = 0 or
l(cj) ≤ |M(cj)| ≤ u(cj). We say that cj is closed if |M(cj)| = 0, and open otherwise. If
|M(cj)| < u(cj) then we say that cj is undersubscribed, otherwise, if |M(cj)| = u(cj) then
we say that cj is full.

A matching is stable if the following two conditions are satisfied:

a) (no blocking pair) there is no open college cj and applicant ai such that (ai, cj) ∈ E, cj

is either undersubscribed or prefers ai to a member of M(cj), and ai is either unmatched
or prefers cj to M(ai);

b) (no blocking coalition) there is no closed college cj (blocking college) and a set of l(cj)
applicants, each of whom is either unmatched (and finds cj acceptable) or prefers cj to
her assigned college.

Let ca-lq denote the problem of deciding whether an instance of the College Admissions
problem with lower quotas admits a stable matching.

3

For a given instance of ca, each college admits the same number of applicants in all
stable matchings, by the so-called “Rural Hospitals” theorem, first proved by Gale and
Sotomayor [12]. Therefore, if every college achieves its lower quota for an instance of ca,
then the set of stable matchings remains the same in the corresponding ca-lq instance
as well. To show this, it is enough to see that a college that achieves its lower quota in a
stable matching for the ca instance would be a blocking college, if closed, in any matching
that has no blocking pair for the corresponding ca-lq instance. However, if some college
does not achieve its lower quota in the stable matchings for the ca instance then a stable
matching may not exist for the ca-lq instance, as we show by the following example.

2.2 An unsolvable instance

Example 1

We have two applicants a1, a2 and two colleges c1, c2, whose preference lists are given
below. In this example, and henceforth throughout this section of the paper, in the
preference list of a given college cj, the integers following the first and second colons are
l(cj) and u(cj) respectively.

P (a1) : c1 c2

P (a2) : c2 c1

P (c1) : 2 : 2 : a1 a2

P (c2) : 1 : 1 : a1 a2

Here, one college must be closed, since we have only two applicants and the sum of the
lower quotas is three. If c2 is closed and M(c1) = {a1, a2} then (a2, c2) is a blocking
coalition. Suppose now that c1 is closed. If M(c2) = {a2} then (a1, c2) is a blocking pair.
Otherwise, if M(c2) = {a1} then c1 is a blocking college with {a1, a2}.

2.3 Complexity results

We now prove that ca-lq is NP-complete. To do so, we reduce from the NP-complete
problem com smti [18]. This problem is defined as follows: we are given an instance I
of the stable marriage problem [11] with n men and n women, where preference lists may
include ties and may be incomplete (i.e., a given person may not find all members of the
opposite sex to be acceptable). In this context a matching is a set of mutually acceptable
(man,woman) pairs such that no person appears in more than one pair. A matching M is
stable if there is no mutually acceptable (man,woman) pair, each of whom is unmatched
or prefers the other to his/her partner in M . The question is whether I admits a complete
stable matching, i.e., a stable matching of size n. com smti is NP-complete, even if each
man’s list is strictly ordered, and each woman wj ’s list is either strictly ordered or is a tie
comprising two men, at least one of whom ranks wj in first place [18, Theorem 2].

Theorem 1. ca-lq is NP-complete, even if no upper quota exceeds 3.

Proof. The problem is clearly in NP. To show NP-hardness, we reduce from the NP-
complete restriction of com smti as described above. Let I be an instance of this problem,
in which U = {m1, . . . ,mn} is the set of men, and W = {w1, . . . , wn} is the set of women.
Let W0 ⊆ W be the set of women whose preference list in I is a tie of length 2. We create
an instance I ′ of ca-lq as follows. Every man in I corresponds to an applicant in I ′, and
every woman in W\W0 corresponds to a college with lower and upper quota 1 in I ′; the
preference lists of these entities in I ′ are initially identical to the corresponding preference
lists in I. Now let wj ∈ W0 and suppose that the two men mj,1 and mj,2 are tied in wj’s
list in I. In I ′ we create two colleges w1

j and w2
j , and two additional applicants a1

j and a2
j .

4

The preference lists of these applicants and colleges, and the lower and upper quotas of
these colleges, are as follows:

P (a1
j) : w2

j w1
j P (w1

j) : 3 : 3 : a1
j mj,1 a2

j

P (a2
j) : w1

j w2
j P (w2

j) : 3 : 3 : a2
j mj,2 a1

j

Finally, we replace wj by w1
j in mj,1’s list in I ′, and similarly we replace wj by w2

j in mj,2’s
list in I ′. We claim that I has a complete stable matching if and only if I ′ has a stable
matching.

For, suppose that I has a complete stable matching M . Create a matching M ′ in I ′

as follows. Initially let M ′ = M . Suppose (mi, wj) ∈ M ′ for some woman wj ∈ W0, where
mi = mj,r for some r ∈ {1, 2}. Replace (mi, wj) in M ′ by (a1

j , w
r
j), (a2

j , w
r
j) and (mj,r, w

r
j).

It may be verified that M ′ is a stable matching in I ′.
Conversely suppose that M ′ is a stable matching in I ′. Create a matching M in I as

follows. Initially let M = M ′. Suppose that (mj,r, w
r
j) ∈ M ′ for some r ∈ {1, 2}, where

mj,r = mi for some mi ∈ U . Then {(a1
j , w

r
j), (a2

j , w
r
j)} ⊆ M as l(wr

j) = 3. Replace (a1
j , w

r
j),

(a2
j , w

r
j), (mj,r, w

r
j) in M by (mi, wj). It is clear that M is a matching in I, since the lower

quotas imply that at most one of w1
j , w2

j can be open, for each wj ∈ W0. Moreover, the

stability of M ′ in I ′ implies that, for each wj ∈ W0, exactly one of w1
j , w2

j is open, since at
least one of mj,1, mj,2 ranks wj in first place in I. Hence it follows that M is a complete
stable matching in I.

2.4 Heuristics and relaxed problems

At the beginning of Section 2, we noted that lower quotas are specified by higher education
institutions in Hungary for the areas of study that they offer. However, the results of the
previous subsection indicate that the problem of finding a stable matching (if one exists)
in such a context is hard. In this subsection we briefly describe heuristics that are used
in Hungary to cope with the complexity of this problem. These heuristics themselves
motivate some variants of CA-LQ, whose complexity we also consider here.

In the heuristics currently in use in Hungary, a generalised version of the Gale-Shapley
algorithm is used several times. After each run, one college is closed and the Gale-Shapley
algorithm is called again for the reduced instance until all the remaining colleges achieve
their lower quotas. The college to be closed is selected from those colleges that have not
reached their lower quota. Moreover, the chosen college is one for which the ratio of the
number of assigned applicants to the lower quota is minimum.

Although this natural heuristic gives a matching that is stable for the remaining open
colleges, there may still be a blocking college. Moreover, there are some instances where
this heuristic might not lead to a stable solution, even when one exists, as the following
example shows:

Example 2

We have three applicants, a1, a2, a3, and two colleges, c1, c2. The preference lists of these
applicants and colleges, and the lower and upper quotas of these colleges, are as follows:

P (a1) : c1

P (a2) : c2 c1

P (a3) : c2

P (c1) : 2 : 2 : a1 a2

P (c2) : 3 : 3 : a2 a3

After running the Gale-Shapley algorithm for the first time in the heuristic, the resulting
matching is M1 = {(a1, c1), (a2, c2), (a3, c2)}. Neither c1 nor c2 has as many applicants as

5

its lower quota. Now, the program closes c1, because its ratio, 1

2
is less than the ratio of

c2, which is 2

3
. So c1 is removed from the instance. In the second round the program finds

the matching M2 = {(a2, c2), (a3, c2)}, in which c2 still does not achieve its lower quota,
so the program closes c2 also, and returns an empty matching. However, it is obvious that
the matching {(a1, c1), (a2, c1)} is stable.

Pairwise stable matching with lower quotas

In a relaxed variant of the problem, we may omit the second stability condition and forget
about blocking colleges. We refer to the resulting (weaker) stability criterion as pairwise
stability. A pairwise stable solution always exists; a natural question is to maximise
the number of assigned applicants. Let max-ps-ca-lq denote the problem of finding a
maximum size pairwise stable matching for an instance of ca-lq.

This concept has at least two weak points. The first is that max-ps-ca-lq is also
NP-hard. The second is that this solution can be unfair. To deal with the first point,
we define max-ps-ca-lq-d to be the decision version of max-ps-ca-lq. We will show
that max-ps-ca-lq-d is NP-complete by reducing from the NP-complete problem Exact
Cover by 3-sets (x3c) [13]. This latter problem is defined as follows: we are given a set
X = {x1, . . . , xn} of elements, and a set C = {c1, . . . , cm} of clauses, where ci ⊆ X and
|ci| = 3 for each ci ∈ C, and n = 3q for some q ∈ Z

+. The question is whether C has an
exact cover for X, i.e., whether there is a set C ′ ⊆ C such that C ′ is a partition of X.
This problem is NP-complete even if each element belongs to either two or three clauses
[8], therefore we will show that max-ps-ca-lq-d is NP-complete even if all the vertices
have degree two or three.

Theorem 2. max-ps-ca-lq-d is NP-complete, even if each lower and upper quota is
equal to 3.

Proof. We reduce from x3c, as defined above. In fact our transformation is similar to that
described in Cornuéjols [7, page 186]. We repeat the construction for completeness, as it
will be extended in a subsequent proof. Hence let 〈X,C〉 be an instance I of x3c, where
X and C are as defined above. We construct an instance I ′ of max-ps-ca-lq-d as follows.
The sets of applicants and colleges in I ′ are X and C respectively. The preference list of
each applicant xi ∈ X in I ′ is an arbitrary linear ordering of the clauses in C containing
xi. Similarly the preference list of each college cj ∈ C in I ′ is an arbitrary linear ordering
of the elements in the clause cj . Each college has lower and upper quotas equal to 3. We
show that I has an exact cover if and only if I ′ has a pairwise stable matching of size at
least n. This is not difficult since, as Cornuéjols [7] showed, I has an exact cover if and
only if I ′ has a matching (w.r.t. the quotas) of size at least n, and every such matching
in I ′ must be pairwise stable (no open college can form a blocking pair with any of its
applicants since all three of them are admitted in a matching that satisfies the quota
restrictions).

The following example shows that, on the one hand, a pairwise stable solution can be
arbitrarily larger than a stable solution, but still, the former solution can be regarded as
unfair.

Example 3

We have ten applicants, a1, a2, . . . , a10, and two colleges, c1, c2. The preference lists of
these applicants and colleges, and the lower and upper quotas of these colleges, are as
follows:

6

P (a1) : c1 c2

P (ai) : c2 (2 ≤ i ≤ 10)
P (c1) : 1 : 1 : a1

P (c2) : 10 : 10 : a1 a2 . . . a10

Here, the only stable matching is {(a1, c1)} of size 1. However, if we require pairwise
stability only, then matching {(ai, c2) : i = {1, . . . , 10}} has size 10. However, this latter
solution may not be considered fair, since a college (c1) is closed that would have enough
applicants in all stable matchings for the corresponding ca instance.

Stable matching with lower quotas for popular colleges

Let I be an instance of ca-lq. Define a college ci in I to be popular if |M0(ci)| ≥ l(ci),
where M0 is a stable matching2 in the instance I ′ of ca obtained from I by disregarding
the lower quotas. College ci is unpopular otherwise.

As a third variant of ca, in a given instance I of ca-lq we can try to find a pairwise
stable matching M in I, such that no popular college is closed in M . Such a matching M
in I is called a popular pairwise stable matching.

A popular pairwise stable matching always exists in I, and in fact the heuristic de-
scribed at the beginning of Section 2.4 will find such a matching. So here, again we can
consider the problem of finding a maximum popular pairwise stable matching in I, denoted
by max-pop-ca-lq. This problem is a restricted version of max-ps-ca-lq, since we have
the extra requirement that no popular college can be closed. Also max-pop-ca-lq is a
more general variant of ca-lq, because in the latter problem, unpopular colleges can be
blocking.

In Example 1, a maximum popular pairwise stable matching is {(a1, c2)}, since c2

is popular whilst c1 is unpopular. In Example 2, both colleges are unpopular. Here, a
maximum popular pairwise stable matching is {(a1, c1), (a2, c1)}, however the heuristic
described at the beginning of Section 2.4 is not able to find it. In Example 3, c1 is popular
whilst c2 is unpopular, so the solution is the matching {(a1, c1)}.

Let max-pop-ca-lq-d be the decision version of max-pop-ca-lq. We now show that
max-pop-ca-lq is NP-hard.

Theorem 3. max-pop-ca-lq-d is NP-complete, even if each lower and upper quota is
equal to 3.

Proof. We give a modification of the reduction shown in the proof of Theorem 2 (we hence-
forth assume the notation introduced in that proof). The applicants and their preference
lists are initially as constructed in that proof. Corresponding to each clause cj ∈ C, we
now create two colleges c1

j and c2
j . Suppose that cj = {ar, as, at}, where r < s < t. Each

of c1
j and c2

j prefers ar to as to at in I ′. We now modify the applicants’ preference lists

in I ′ as follows: replace cj by c1
j and c2

j (in that order) in each of the preference lists of

ar and as, and replace cj by c2
j and c1

j (in that order) in the preference list of at. Let

u(ck
j) = l(ck

j) = 3 for k ∈ {1, 2}. The construction ensures that no college in I ′ can have
3 applicants in a (Gale-Shapley) stable matching in the ca instance obtained by ignoring
the lower quotas, so no college is popular. By this fact, we can use an argument similar
to the one in the proof of Theorem 2 to show that I has an exact cover if and only if I ′

has a popular pairwise stable matching of size at least n.

2.5 Further questions

We remark that all of the above three problems, namely ca-lq, max-ps-ca-lq and max-

pop-ca-lq, remain open for lower quotas at most 2.

2By the Rural Hospitals Theorem [12], each college has the same number of assignees in the stable
matchings of a given ca instance.

7

3 Common quotas: hardness results

Until 2007, in the Hungarian matching scheme, there were separate quotas for state fi-
nanced and privately financed courses of study in each field at each university, and the
common quotas of fields applied to state financed places only. As from 2007, there has
been a common quota for each field at each university, and still a common national quota
for state financed places for each field of study.3 This latter case may cause difficulties,
because a stable matching may not exist in this setting, as is shown in Example 4 below.
The main result in this section is that the problem of deciding whether a stable match-
ing exists, given an instance of the College Admissions problem with common quotas, is
NP-complete.

3.1 Problem definition

For an instance of ca, we return to using the symbol q to represent (upper) quotas, so
we have q : C −→ N. For C ⊆ C ⊆ 2C , let C be a set system of colleges, comprising the
so-called bounded sets of colleges. We extend the domain of q to include every Ck ∈ C; let
q(Ck) be the common quota of Ck.

A matching with respect to common quotas is a matching of the ca instance in which
no bounded set of colleges has more assignees than its common quota. A matching M is
stable, if for every acceptable applicant-college pair (ai, cj) /∈ M , either ai is matched and
she prefers M(ai) to cj , or cj fills its quota with better applicants than ai, or there is a
bounded set of colleges Ck such that cj ∈ Ck and the common quota of Ck is filled by
better applicants than ai. To make the definition meaningful, there has to be a preference
list for every bounded set of colleges, which we consider as a master list. That is, we
suppose that the following two conditions hold (where P (Ck) denotes the preference list
of bounded set Ck):

• if ci ∈ Ck and aj ∈ P (ci) then aj ∈ P (Ck), and conversely, if aj ∈ P (Ck) then there
must be a college ci ∈ Ck such that aj ∈ P (ci).

• if ci ∈ Ck then ci prefers aj to another applicant ar if and only if Ck prefers aj to
ar.

We note that it is a consequence of the second bullet point that there is some consistency
regarding the preferences of bounded sets with common colleges, namely, if Ck ∩ Cl 6= ∅
then an applicant aj precedes another applicant ar in the master list of Ck if and only if
aj precedes ar in Cl’s master list.

We denote the decision problem of determining whether a stable matching exists for
an instance of ca with common quotas by ca-cq.

3.2 An unsolvable instance and complexity results

First we give an example to show that a stable matching may not exist, and another
example for which the sets of admitted applicants differ in two stable matchings. By using
these examples as gadgets, we will prove that ca-cq is NP-complete.

3For example, for CS studies at Budapest University of Technology and Economics (BME) there were
450 places for state-financed study and 50 places for privately financed study, whilst there was a common
quota of, say, 3000 places for state financed CS studies in Hungary. Since 2007, there is only a common
quota of 500 for CS studies at BME and still the same national quota for state financed CS studies.

8

Example 4.

We are given three applicants a1, a2, a3, four colleges c1, c2, c3, c4 and two sets of colleges
{c1, c2}, {c2, c3} with common quotas. In this example, and from this point onwards, the
integer after the first colon in the preference list of each college (and each set of colleges)
denotes the (common) quota. The preference lists and the quotas are as follows :

P (a1) : c1 c4

P (a2) : c2

P (a3) : c4 c3

P (c1) : 1 : a1

P (c2) : 1 : a2

P (c3) : 1 : a3

P ({c1, c2}) : 1 : a2 a1

P ({c2, c3}) : 1 : a3 a2

P (c4) : 1 : a1 a3

Here, no stable matching exists. To see this, suppose for a contradiction that M is a
stable matching. If a1 is unmatched then (a1, c4) is blocking. Otherwise, if M(a1) = c1

then it must be the case that (a3, c4) ∈ M , but then (a2, c2) /∈ M because of the quota of
{c1, c2}, so (a2, c2) is blocking. Finally, if M(a1) = c4 then (a3, c3) ∈ M , otherwise this pair
would be blocking. But this implies (a2, c2) /∈ M , so (a1, c1) is blocking, a contradiction.4

Finally we remark that if we remove a2 from the instance, then it becomes solvable,
since {(a1, c1), (a3, c4)} is a stable matching. We will use this fact in the proof of Theorem
4 below.

Example 5.

We are given four applicants a1, a2, a3, a4, six colleges c1, c2, c3, c4, c5, c6 and four sets of
colleges {c1, c2}, {c2, c3}, {c4, c5}, {c5, c6} with common quotas. The preference lists and
the quotas are as follows.

P (a1) : c1

P (a2) : c5 c2

P (a3) : c3 c6

P (a4) : c4

P (c1) : 1 : a1

P (c2) : 1 : a2

P (c3) : 1 : a3

P ({c1, c2}) : 1 : a2 a1

P ({c2, c3}) : 1 : a2 a3

P (c4) : 1 : a4

P (c5) : 1 : a2

P (c6) : 1 : a3

P ({c4, c5}) : 1 : a2 a4

P ({c5, c6}) : 1 : a3 a2

Here, there are precisely two distinct stable matchings, {(a1, c1), (a2, c5), (a3, c3)} and
{(a2, c2), (a3, c6), (a4, c4)}. To see this, it is enough to observe that both a2 and a3 must be
matched in a stable matching, since either (a2, c2) or (a3, c6) would be blocking otherwise.
Under this restriction, only the above two maximal matchings are possible, and it is easy
to check that both of them are stable. This example shows that the sets of admitted
applicants may differ for two stable matchings.

Theorem 4. ca-cq is NP-complete, even if every quota is 1 and no college is included
in more than 2 bounded sets.

Proof. The problem is clearly in NP. To show NP-hardness, we reduce from the NP-
complete restriction of com smti as described in Section 2.3. Let I be an instance of this
problem, in which U = {m1, . . . ,mn} is the set of men, and W = {w1, . . . , wn} is the set

4We note that this situation can be realised in the Hungarian application. Colleges c1 and c2 can
correspond to privately financed and state financed versions of a particular field of study at some faculty
with a common quota, whilst c3 can correspond to state financed study in the same area (e.g. Swahili
language) at another faculty, with a common national quota for c2 and c3 respectively. Finally, c4 can be
any other field of study in some different faculty.

9

of women. Let W0 ⊆ W be the set of women whose preference list in I is a tie of length
2. We create an instance I ′ of ca-cq, with applicant set A and college set C, as follows.

First we create the so-called proper part of I ′. Every man mi ∈ U in I gives rise to an
applicant ai ∈ A, and every woman wj in W\W0 gives rise to a college cj in C with quota
1; the preference lists of these agents in I ′ are derived directly from the corresponding
preference lists in I, except that a woman in W0 appearing in the preference list of a
man mi gives rise to a college in the preference list of applicant ai as described below.
Now let wj ∈ W0 and suppose that the two men mj,1 and mj,2 are tied in wj’s list in
I. In I ′ we create a gadget corresponding to the instance of Example 5. We create two
additional applicants b1

j , b2
j , six colleges c1

j , c2
j , c3

j , c4
j , c5

j , c6
j where four sets of colleges

{c1
j , c

2
j}, {c

2
j , c

3
j}, {c

4
j , c

5
j}, {c

5
j , c

6
j} have common quotas with the following preferences:

P (b1
j) : c5

j c2
j

P (b2
j) : c3

j c6
j

P (c1
j) : 1 : aj,1

P (c2
j) : 1 : b1

j

P (c3
j) : 1 : b2

j

P ({c1
j , c

2
j}) : 1 : b1

j aj,1

P ({c2
j , c

3
j}) : 1 : b1

j b2
j

P (c4
j) : 1 : aj,2

P (c5
j) : 1 : b1

j

P (c6
j) : 1 : b2

j

P ({c4
j , c

5
j}) : 1 : b1

j aj,2

P ({c5
j , c

6
j}) : 1 : b2

j b1
j

Let A1 = {ai : 1 ≤ i ≤ n}, A2 = {b1
j , b

2
j : wj ∈ W0}. Finally, in the position where

wj appears in the list of mj,1 we put c1
j in aj,1’s list, and similarly the occurrence of wj in

the list of mj,2 leads to c4
j in aj,2’s list. We show that I has a complete stable matching

M if and only if the proper part of I ′ has a stable matching M ′ in which every applicant
ai ∈ A1 is matched to some college. This natural correspondence is the following. When-
ever (mi, wj) ∈ M , with wj ∈ W \ W0, let (ai, cj) ∈ M ′, and for every wj ∈ W0 let

(mj,1, wj) ∈ M ⇐⇒ {(aj,1, c
1
j), (b

2
j , c

3
j), (b

1
j , c

5
j)} ∈ M ′

and

(mj,2, wj) ∈ M ⇐⇒ {(aj,2, c
4
j), (b

2
j , c

6
j), (b

1
j , c

2
j)} ∈ M ′.

It is straightforward to verify that the completeness and stability of M implies the stability
of M ′ and ensures that M ′ covers every applicant ai ∈ A1.

In the other direction, if M ′ is a stable matching that covers every applicant ai ∈
A1 then it must be the case that either {(aj,1, c

1
j), (b2

j , c
3
j), (b

1
j , c

5
j)} ⊆ M ′, or {(aj,2, c

4
j),

(b2
j , c

6
j), (b

1
j , c

2
j) ⊆ M ′ for every pair of applicants aj,1 and aj,2 such that mj,1 and mj,2 are

tied in the list of wj for some wj ∈ W0. This is because exactly one of the pairs (aj,1, c
1
j),

(aj,2, c
4
j) must belong to M ′. They cannot both belong to M ′ for stability reasons, and if

neither of them were to belong to M ′ then, because both (aj′,1, c
1
j′) and (aj′,2, c

4
j′) cannot

belong to M ′ for any other wj′ ∈ W0, M ′ could not cover every ai ∈ A1, a contradiction.
Therefore we can create M from M ′ in the opposite direction from that described, so
the correspondence (between the matchings of I and I ′ with the required properties) is
one-to-one, the stability of M ′ implies the stability of M and the assumption that M ′

covers every ai ∈ A1 implies the completeness of M .
To complete the reduction, we construct the additional part of I ′ as follows. For every

ai ∈ A1 we add a gadget which is equivalent to the instance defined in Example 4. To
be precise, for every ai ∈ A1, we create two applicants z1

i , z2
i and four colleges d1

i , d2
i , d3

i ,
d4

i with common quotas for the sets of colleges {d1
i , d

2
i } and {d2

i , d
3
i }. The preference lists

and the quotas are as follows.

10

P (z1
i) : d1

i d4
i

P (z2
i) : d4

i d3
i

P (d1
i) : 1 : z1

i

P (d2
i) : 1 : ai

P (d3
i) : 1 : z2

i

P ({d1
i , d

2
i }) : 1 : ai z1

i

P ({d2
i , d

3
i }) : 1 : z2

i ai

P (d4
i) : 1 : z1

i z2
i

Finally, we attach d2
i to the end of ai’s preference list. We claim that I has a complete

stable matching if and only if I ′ has a stable matching. To prove this we observe that on
the one hand, in any stable matching for I ′, every ai ∈ A1 must be matched to a college in
the proper part of I ′, since otherwise the corresponding additional gadget would contain a
blocking pair as described in Example 4. On the other hand, if every ai ∈ A1 is matched
to a college in the proper part of I ′ then this matching can be extended to the additional
part, ensuring stability, by adding {(z1

i , d1
i), (z

2
i , d4

i)} to the matching in each gadget, as
we remarked in Example 2.

4 Common quotas: nested set systems

We say that the set system C is nested if, for every pair S, S′ of sets in C such that
S ∩ S′ 6= ∅, we have either S ⊆ S′ or S′ ⊆ S. In this section we consider a special case of
ca-cq in which the bounded sets form a nested set system.

The Student-Project Allocation problem (SPA), studied by Abraham et al. [3], is such
a special case of ca-cq. In SPA, students seek to be matched to projects, and each project
is proposed by a single supervisor. In addition to a quota for each project (typically 1),
each supervisor has a quota, so the projects proposed by a given supervisor form a bounded
set. It is immediate that the bounded sets form a nested set system in this case.

We note that the bounded sets formed a nested set system in the Hungarian application
until 2007, because each faculty had separate quotas for state financed and privately
financed studies and the common quota of any particular field of study applied to state
financed places only. In this section we give two polynomial-time algorithms for ca-cq

with nested set systems. The first algorithm is applicant-oriented and the second is college-
oriented ; these produce stable matchings that are, in the first case, unequivocally optimal
for the applicants, and in the second case, in a more limited sense that will be explained
in Section 4.3, optimal for the colleges.

4.1 Definitions

We suppose that each set consisting of a single college is bounded (by its quota), and we
assume that each bounded set S of colleges of cardinality greater than 1 has a quota that
is less than the sum of the quotas of any sets in C that form a partition of S (otherwise
S would be redundant as a bounded set.) A group is a maximal bounded set, i.e., a
bounded set that is contained in no other. So the assumption that bounded sets are
nested implies that the groups form a partition of the set of colleges. We denote by G(c)
the group containing the college c. If S ⊂ S′ and there exists no bounded set S∗ satisfying
S ⊂ S∗ ⊂ S′ then S is a child of S′ and S′ is the parent of S, the terminology reflecting
the tree-structured hierarchies of bounded sets.

Let S ∈ C. For a given matching M , M(S) denotes the set of assignees of the colleges
in S. Recall that M(a) denotes the assigned college of applicant a (M(a) is null if a is
unassigned). Relative to M , a bounded set S is full if the number of applicants assigned
to colleges in that set, |M(S)|, is equal to the quota of the set, q(S), otherwise it is

11

undersubscribed. A college is free if no set containing it is full, and is constrained otherwise.
So a free college can admit at least one additional applicant without violating any quota
restrictions. For a constrained college c let the critical set of c relative to M , denoted by
csM (c), be the innermost, i.e., minimal with respect to ⊆, full bounded set that contains
c. A constrained college can admit an additional applicant only if another applicant is
rejected by some college in its critical set. The concepts free, constrained and critical set
are defined also, in the obvious way, for any bounded set.

As observed in Section 3.1, it is implicit in the definition of stability that colleges in a
given group have consistent preferences over applicants. Hence we assume that associated
with each group is a strictly ordered master preference list containing all the applicants
who are acceptable to at least one college of that group. The preference list of a college c
is inherited from the master preference list of G(c).

4.2 Applicant-oriented algorithm

In the applicant-oriented algorithm each applicant applies to the colleges on her preference
list, in turn, as in the classical Gale-Shapley algorithm. In a step of the algorithm, when
applicant a applies to college c, the outcome depends initially on whether c is free. If so, c
(provisionally) accepts a. Otherwise, a must compete for a place at c. The applicant who
may be displaced by a is not necessarily currently assigned to c. Let S be the critical set
of c in M . If a is preferred, on the master list of G(c), to the least preferred assignee b of
some college d in S then b is rejected by d, enabling a to be accepted by c. Otherwise c
rejects a. As usual, this process continues until every applicant is either assigned, or has
been rejected by every acceptable college.

A pseudocode version of the algorithm appears in Figure 1.

while (there is an applicant a who is unmatched
and who has not applied to all of her acceptable colleges) {

c = the first college on a’s preference list to which she has not applied;
if (c is free)

assign a to c;
else {

let S be the critical set of c;
if (a is preferred, on the master list of G(c), to the

worst applicant b who is assigned to a college in S) {
let d be the college to which b is currently assigned;
remove (b, d) from the matching; // i.e. b is rejected by d
add (a, c) to the matching;

}
else

a is rejected by c;
}

}

Figure 1: Applicant-oriented algorithm

Lemma 5. (i) If a college c becomes constrained at some point during execution of the
applicant-oriented algorithm, then it is never again free.
(ii) If M is a matching in which c is constrained, and M ′ is the matching obtained after
the subsequent step of the applicant-oriented algorithm, then the least preferred assignee
of csM ′(c) cannot be worse than the least preferred assignee of csM(c).

12

Proof. (i) At any point when c has a critical set S, the only way that S can become
undersubscribed is as a result of the rejection by some college in S of an existing assignee
a. If this leaves S undersubscribed, it must be because some superset S′ of S is full, and
the rejection of a was because a college in S′ \S gained a new more highly ranked assignee.
So c remains constrained (by S′).
(ii) We first observe that if S ⊂ S′ then it is immediate that the worst assignee of S is at
least as highly ranked as the worst assignee of S′ (in the appropriate master list).

Suppose that, in the relevant step of the algorithm, applicant b applies to college d. If
b is rejected then the matching remains the same, so that the result holds trivially. On
the other hand, if d accepts the application of b, let S be the critical set of c in matching
M , i.e. csM (c) = S, and let S′ = csM ′(c). We denote csM (d) by T , when d is constrained,
and consider four cases.
Case (a) d was free or T ∩ S = ∅. In this case it is easy to see that S = S′ and M(S) =
M(S′), so the result follows at once.
Case (b) T ⊂ S. Then c 6∈ T , otherwise the fact that T is full would contradict the
assumption that S = csM(c). Hence csM ′(c) = S. The transformation from M to M ′

affects only colleges in T , so M(S) \ M(T) = M ′(S) \ M ′(T). Furthermore the lowest-
ranked applicant in M ′(T) must be ranked more highly than the lowest ranked applicant
in M(T). It follows that the lowest-ranked applicant in M ′(S) must be ranked at least as
high as the lowest ranked applicant in M(S).
Case (c) T = S. Here, we have |M(S)| = |M ′(S)| = q(S) and the worst applicant in
M ′(S) is ranked more highly than the worst applicant in M(S). In this case, it is possible
that S′ ⊂ S, but then, by our first observation, the worst applicant in M ′(S′) is ranked at
least as highly as the worst applicant in M ′(S), and therefore, is ranked more highly than
the worst applicant in M(S).
Case (d) S ⊂ T . If the rejected applicant was not in M(S) then it is immediate that
S = S′ and M(S) = M(S′). Otherwise, it must be the case that |M ′(S)| < |M(S)| and
also |M ′(S∗)| < |M(S∗)| for every S∗ where S ⊂ S∗ ⊂ T and d /∈ S∗. Furthermore, for
every S∗ such that S ⊂ S∗ ⊂ T and d ∈ S∗, |M ′(S∗)| = |M(S∗)| < q(S∗) implying S′ = T .
Since S′ was the critical set of d, and its worst assignee, who was also the worst assignee of
S, was rejected, it follows that the worst applicant in M ′(S′) is ranked more highly than
the worst applicant in M(S).

It is straightforward to verify that both parts of Lemma 5 are true, not only for a
single college c, but for any bounded set S of colleges.

Theorem 6. (i) The matching M found by the applicant-oriented algorithm is stable.
(ii) In M , each applicant has the best assignment possible in any stable matching.

Proof. (i) Suppose that M is not stable, and that (a, c) is a blocking pair. Then a must
have been rejected by c during the execution of the algorithm. So at that point, c was
constrained and the worst assignee b of its critical set must be ranked higher than a on
the master list of G(c). By Lemma 5, c remains constrained in the subsequent steps of
the algorithm and the worst assignee of its critical set can never be ranked lower than b,
and hence not lower than a, a contradiction.
(ii) Now suppose that (a, c) ∈ M , and that there is another stable matching M ′ with
(a, c′) ∈ M ′, where a prefers c′ to c. So (a, c′) is a stable pair, i.e., a pair that is matched in
some stable matching, and c′ must have rejected a during the execution of the algorithm.
Assume, without loss of generality, that this was the first rejection involving a stable pair.

Let X be the matching at the point in the algorithm just before a college c∗ received
an application from an applicant a∗ that resulted in the rejection of applicant a by college

13

c′. Let S = csX(c∗) and let X∗ = X ∪ (a∗, c∗), i.e. X∗ is the matching X augmented with
the additional pair (a∗, c∗). We will show that there exists an applicant b and a college d
such that

• d = X∗(b), and

• b 6∈ M ′(d), and

• either d is free in M ′ or S ⊆ csM ′(d).

To see this, first we note that |M ′(S)| ≤ q(S) = |X(S)|. Moreover, |X∗(S)| = q(S)+1,
since the quota of S is exceeded after adding the new pair, and |X∗(Si)| ≤ q(Si) for each
Si ⊂ S, since S = csX(c∗), so that S is the innermost set for which the quota is exceeded.
This implies that one of the children of S, say S2, satisfies |M ′(S2)| < |X∗(S2)| ≤ q(S2).
By the same reasoning, we can construct a sequence of sets S = S1 ⊃ S2 ⊃ · · · ⊃ Sk = {d}
such that for every i, Si+1 is a child of Si and Si satisfies |M ′(Si)| < |X∗(Si)| ≤ q(Si).
Finally, let b be any applicant from X∗(d)\M ′(d). By the construction, it is straightforward
to verify that b and d satisfy the required conditions.

Now, we are in a position to complete the proof. We first note that b must be more
highly ranked than a, for otherwise d would have rejected b instead of c′ rejecting a. Hence,
if b is unmatched in M ′ or prefers d to M ′(b) then, since S ⊆ csM ′(d), it follows that (b, d)
is a blocking pair for M ′. On the other hand, if b prefers M ′(b) to d then b must have
been rejected by M ′(b) earlier than a was rejected by c′, a contradiction.

Corollary 7. All executions of the applicant-oriented algorithm yield the same stable
matching.

Complexity analysis

We now establish that the complexity of the applicant-oriented algorithm is O(kL + pn)
where L is the number of acceptable (applicant, college) pairs, k is the maximum level of
nesting of bounded sets, n is the number of applicants and p is the number of bounded
sets. The first term comes from the fact that the main loop of the algorithm is executed
O(L) times, and, as we establish below, with the exception of updating worst assignees,
every step within the loop can be implemented to run in O(k) time. The second term
represents the total amount of time for updating worst assignees.

We represent the bounded sets by a forest structure F in which each node corresponds
to a bounded set. Each individual college is a leaf node, and the parent of a node repre-
senting the bounded set C is the node representing the parent of C. For each individual
college c and bounded set C create a boolean value, accessible in constant time, that
records whether c belongs to C. We assume that the number of colleges is O(n), and that
the data is provided in a form that allows these structures to be set up in O(pn) time.

For each college, maintain a pointer to the leaf node representing it. In each node of
F , representing, say, the bounded set C, we store

• a pointer to its parent, to allow us to move up the tree;

• the (common) quota of C;

• the number of applicants currently assigned to colleges in C;

• a pointer to the preference list of the group containing C, and a worst assignee
pointer, which references the last entry in that list representing an applicant who is
currently assigned to a college in C.

14

For efficiency reasons we adopt a ‘lazy’ approach to updating the worst assignee pointer.
We ensure that it is accurate whenever the bounded set in question is full, since it is only
in these circumstances that the pointer is needed. It is initialised to point to a dummy
entry at the end of the relevant master list.

To determine whether a college c is constrained, and if so to find its critical set, it is
enough to follow the path of parent pointers from the leaf node representing c until a node
is reached for which the number of assignees is equal to the quota, or until the root of the
tree is reached without this condition being satisfied. This can be done in O(k) time.

When a pair (a, c) is added to, or deleted from, the matching, follow the path from
the leaf representing c to the root, incrementing or decrementing the number of assignees
at each node, as appropriate. This can be achieved in O(k) time.

If the bounded set C represented by a node becomes full as a result of incrementing the
number of assignees, the worst assignee pointer is updated. By the analogue of Lemma
5(ii) for an arbitrary bounded set, the worst assignee of C must be at least as good as
the last time C was full, so this update can be accomplished by scanning backwards in
the appropriate master preference list, from that former worst assignee, until we reach an
applicant assigned to a college in C. Because of the initalisation of the worst assignee
pointer, this works also in the case where C becomes full for the first time. For each node
in the forest, each entry in the appropriate master list is visited at most once during such
scans, so the total time for all such updates is the sum, taken over all trees in the forest,
of the number of nodes times the length of the master list, which is O(pn).

4.3 College-oriented algorithm

The college-oriented algorithm is a little more subtle. As we would expect, the basis is a
sequence of offers from colleges to applicants. Each college c makes offers to applicants in
the order in which they appear in the master list of G(c), and never makes an offer to the
same applicant twice. As always, when an applicant receives an offer, she (provisionally)
accepts it if she is unmatched at that point, otherwise she accepts it if and only if it is a
better offer than the one she currently holds.

At each step of the algorithm an offer is initiated by an undersubscribed group G that
contains a free college with an untried applicant (i.e., an applicant to whom it has not yet
offered a place). Let a be the highest ranking applicant in the master list of G who is an
untried applicant for some free college in G. Among these free colleges, let c be the one
most preferred by a; then c offers a place to a at that point. We say that the pair (c, a)
constitutes the leading offer at that point.

A pseudocode version of the algorithm appears in Figure 2.
To establish the correctness of this algorithm, we again refer to the hierarchical forest

of bounded sets, identifying each bounded set with the node representing it.
The following technical lemma is used in the proof of Theorem 9.

Lemma 8. If, at some step during the execution of the algorithm, a college d in group G
offers a post to an applicant b, and (a) some other superior applicant a is not offered a
post by a college c in G where a is not marked as a ‘tried’ applicant for c, or (b) b is not
offered a post by a preferred college c where b is not marked as a ‘tried’ applicant for c,
then c must be constrained, and its critical set at that point is not on the path from d to
the root of the tree.

Proof. The fact that c must be constrained is straightforward from the definition of the
leading offer. Furthermore, since d is a free college, there cannot be any full bounded set
on the path from d to the root of the tree (so no critical set either).

15

while (some group G of colleges is undersubscribed,
and contains a free college with an untried applicant) {

let (c, a) constitute the leading offer at this point;
mark a as a ‘tried’ applicant for c;

if (a is unassigned)
add (a, c) to the matching;

else if (a prefers c to her current assigned college d) {
remove (a, d) from the matching; // d is rejected by a
add (a, c) to the matching;

}
else

a rejects c;
}

Figure 2: College-oriented algorithm

Now we can establish the key properties of the college-oriented algorithm.

Theorem 9. (i) The matching M produced by the college-oriented algorithm is stable.
(ii) If an applicant a is matched to a college c in M then there is no stable matching in
which a is unmatched, or matched to a college lower on her preference list, i.e., M is the
applicant-pessimal stable matching.
(iii) If a college c is matched to applicants a1, . . . , ak in M , then there is no applicant more
highly ranked than any of a1, . . . , ak who is matched to c in any stable matching.

Proof. (i) Suppose that M is not stable, and that it is blocked by an applicant a and college
c. Then c cannot have offered a place to a, because applicants can only improve as the
algorithm progresses, so this would contradict the assumption that (a, c) is a blocking pair
for M . It follows that c must have a critical set, say S, on termination of the algorithm.

If (a, c) is a blocking pair then there is some college d in S and some applicant b who
is assigned to d in M such that either b is inferior to a, or b is equal to a and a prefers c to
d. If b is inferior to a then it might be the case that d is equal to c. However, in this case
it is easy to see the contradiction, because when c offered a place to b, c must have offered
to the more preferred applicant a and hence a must be eventually matched to a college
at least as good as c. Suppose now that d is not equal to c and b is the worst assignee of
S (where b could be equal to a). Let P denote the path from the node representing d to
the root of the tree containing it. It is immediate that the node representing S lies on P.
Further let Q denote the path from the node representing c to the node representing S.

At the step when d offered a place to b, it follows from Lemma 8 that c’s critical set
must have been a descendant node of S not on P, say T . Let M∗ denote the matching
at the point just before d offered a place to b. Since d is free in M∗, it follows that
every node on P is undersubscribed, implying in particular that |M∗(S)| < q(S). On the
other hand, T is the critical set of c in M∗, which implies |M∗(T)| = q(T). Further let
M ′ = M \ {(b, d)}. The fact that S is the critical set of c in M implies that every node
below S on Q, including T , is undersubscribed in M and therefore also in M ′, namely
q(T) > |M ′(T)|.

From the above observations we have |M ′(S)| = q(S) − 1 ≥ |M∗(S)|. Let us consider
the children of S. It must be the case that either
a1) there exists a child T1 of S such that T ⊂ T1 ⊂ S and |M∗(T1)| ≤ |M ′(T1)|, or
b1) there exists a child S1 of S such that T 6⊆ S1 ⊂ S and |M∗(S1)| < |M ′(S1)|.
This is because if |M∗(T1)| > |M ′(T1)| holds for T1, where T1 is the child of S on the

16

path from S to T , then there must be some other child of S, say S1 (not on the path
from S to T), for which |M∗(S1)| < |M ′(S1)|. Note that T1 cannot be equal to T , since
|M∗(T)| = q(T) > |M ′(T)|.

In case b1) we can construct a sequence of sets S ⊃ S1 ⊃ S2 ⊃ · · · ⊃ Sk = d∗ such
that for every i, Si+1 is a child of Si and Si satisfies |M∗(Si)| < |M ′(Si)|. This means
that d∗ is a free college in M∗ and d∗ has an assignee b∗ in M ′(S) \ M∗(S) who must be
better than b (since b was the worst assignee of S in M), leading to a contradiction since
d∗ should have offered a place to b∗ at the point where d offered a place to b.

In case a1) we use the same argument for T1 as we did for S. It must be the case that
either
a2) there exists a child T2 of T1 such that T ⊂ T2 ⊂ T1 and |M∗(T2)| ≤ |M ′(T2)|, or
b2) there exists a child S1 of T1 such that T 6⊂ S1 ⊂ T1 and |M∗(S1)| < |M ′(S1)|.
As before, T2 cannot be equal to T .

Again, in case b2) we can construct a sequence of sets S ⊃ T1 ⊃ S1 ⊃ S2 ⊃ · · · ⊃ Sk =
d∗ leading to a similar contradiction. On the other hand, in case a2) we continue with the
same reasoning for T2 leading to subcases a3) and b3), and so on.

Continuing in this way, after at most j steps, where j is the length of the path Q, we
are led to an inevitable contradiction, since case a) cannot arise at the jth step.

(ii) Suppose that there is a stable matching M ′ in which a is unmatched, or is matched
to a college lower than c on her preference list. Suppose, without loss of generality, that,
when c offered a post to a, this was the first time that an applicant received an offer
that was superior to her status in some stable matching. Call such an offer a superior
offer. In order to avoid (a, c) being a blocking pair for M ′, the critical set of c in M ′,
say S = csM ′(c), must be full in M ′ with applicants ranked more highly than a. Suppose
that just before c offered a place to a we had a matching M∗. Since c was free at that
moment, we have |M∗(S)| < |M ′(S)| = q(S). This implies that one of the children of S,
say S2, satisfies |M∗(S2)| < |M ′(S2)| ≤ q(S2). By the same reasoning, we can construct
a sequence of sets S = S1 ⊃ S2 ⊃ · · · ⊃ Sk = d such that for every i, Si+1 is a child
of Si and Si satisfies |M∗(Si)| < |M ′(Si)| ≤ q(Si). Finally, let b be any applicant from
M ′(d) \ M∗(d). It follows from the construction that d is free in M∗ and that b is more
highly ranked than a. So when c offered a place to a, b must have been matched to a
college e in M∗ that she prefers to d. Therefore b had already received an offer from a
college (e) that is preferred to the college (d) she is matched to in the stable matching M ′,
which contradicts the assumption that c’s offer to a was the first superior offer.

(iii) Suppose that (a, c) is in M , and that (b, c) 6∈ M is in some stable matching M ′, with b
more highly ranked than a. Then, by part (ii), b must prefer c to M(b) or b is unmatched
in M , and it is immediate that (b, c) is a blocking pair for M , a contradiction.

The following is an immediate corollary of Theorem 9(ii).

Corollary 10. All executions of the college-oriented algorithm yield the same stable
matching.

Note that Theorem 9(iii) does not claim that, in matching M , each college has the
‘best’ set of assigned applicants that it can have in any stable matching. This need not
be true. For example, a college can be assigned a particular set A of applicants in the
matching found by the college-oriented algorithm, and a superset of A in some other
stable matching. This also indicates that, in contrast to the classical case, the number of
applicants assigned to a college may vary between one stable matching and another. These
points are illustrated in the following example. (Despite this fact, we will use the term

17

“college-optimal” for the matching obtained by a general kind of college-oriented algorithm
in Section 5, however the expression “applicant-pessimal” is probably more accurate in
this case.)

Example 6.

We have five colleges c1, . . . , c5 and ten applicants a1, . . . , a10. The bounded sets, in addi-
tion to the individual colleges, are {c1, c2}, {c1, c2, c3} and {c4, c5}, so that the latter two
are the groups, which we refer to as Group A and Group B respectively. The preferences
of the applicants, quotas of the bounded sets, and master lists of the groups are as shown:

P (a1) : c1 c5

P (a2) : c1 c4

P (a3) : c2 c1

P (a4) : c2 c4

P (a5) : c5 c3

P (a6) : c3 c4

P (a7) : c1 c4 c5

P (a8) : c2 c1

P (a9) : c4 c1

P (a10) : c2 c4 c5

q(c1) : 3
q(c2) : 3
q(c3) : 3
q(c4) : 2
q(c5) : 2
q(c1, c2) : 5
q(c1, c2, c3) : 7
q(c4, c5) : 3
P (c1, c2, c3) : a8 a9 a1 a2 a3 a4 a5 a6 a7 a10

P (c4, c5) : a4 a7 a9 a10 a5 a1 a2 a6

An execution of the Applicant-oriented algorithm is as follows. Here, we use the
notation a −→ c to stand for ‘applicant a applies to college c’.

a1 −→ c1; accepted.
a2 −→ c1; accepted.
a3 −→ c2; accepted.
a4 −→ c2; accepted.
a5 −→ c5; accepted.
a6 −→ c3; accepted.
a7 −→ c1; accepted.
a8 −→ c2; {c1, c2} is full; c1 rejects a7; c2 accepts a8.
a7 −→ c4; accepted.
a9 −→ c4; accepted.
a10 −→ c2; c2 is full; c2 rejects a10.
a10 −→ c4; c4 is full; c4 rejects a10.
a10 −→ c5; {c4, c5} is full; c5 rejects a5; c5 accepts a10.
a5 −→ c3; accepted.

The applicant-optimal stable matching results, namely

M1 = {(a1, c1), (a2, c1), (a3, c2), (a4, c2), (a5, c3), (a6, c3), (a7, c4), (a8, c2), (a9, c4), (a10, c5).

An execution of the College-oriented algorithm is as follows. Here, we use the notation
c −→ a to stand for ‘the leading offer is from college c to applicant a’.

18

Group A undersubscribed; c2 −→ a8; accepted.
Group A undersubscribed; c1 −→ a8; rejected.
Group A undersubscribed; c1 −→ a9; accepted.
Group A undersubscribed; c1 −→ a1; accepted.
Group A undersubscribed; c1 −→ a2; accepted.
Group A undersubscribed; c2 −→ a3; accepted.
Group A undersubscribed; c3 −→ a5; accepted.
Group A undersubscribed; c3 −→ a6; accepted.
Group B undersubscribed; c4 −→ a4; accepted.
Group B undersubscribed; c4 −→ a7; accepted.
Group B undersubscribed; c5 −→ a7; rejected.
Group B undersubscribed; c5 −→ a10; accepted.

The applicant-pessimal stable matching results, namely

M2 = {(a1, c1), (a2, c1), (a3, c2), (a4, c4), (a5, c3), (a6, c3), (a7, c4), (a8, c2), (a9, c1), (a10, c5)

Note that colleges c1 and c2 have different numbers of assigned applicants in the two
matchings. College c2, in particular, has more assignees in M1 than in M2, though the
additional assignee, a4, is lower ranked than the others, as must be the case according to
Theorem 9(iii).

Complexity analysis

The number of loop iterations is O(L), where L is the number of acceptable applicant-
college pairs, since no college makes more than one offer to the same applicant. At each
loop iteration, we have to decide which college makes an offer to which applicant. This
can be decided by a traversal of the forest F of bounded sets. During this traversal, when
we encounter a node representing a bounded set that is full, we need not enter any of its
subtrees, since no free college can thereby be reached. When we reach a leaf node that
represents a free college c, we can locate its next untried applicant a (if any), and determine
whether an offer from c to a is a better candidate for leading offer than any previously
seen, all in constant time, with suitable data structures. Also, as in the applicant-oriented
algorithm, whenever a pair (a, c) is added to or removed from the matching, we update
the count of assignees in each node that is an ancestor of the leaf node representing c.
Hence each loop iteration can be completed in O(m) time, the time for the forest traversal,
giving an overall time bound of O(mL) for the college-oriented algorithm.

We saw earlier that the complexity of the applicant-oriented algorithm is O(kL + pn),
where k is the maximum level of nesting of bounded sets, n is the number of applicants
and p is the number of bounded sets. Since k = O(m), p = O(m) and n = O(L), it follows
that the complexity bound that we have derived for the applicant-oriented algorithm is at
least as good as that for the college-oriented algorithm.

5 CA-CQ with nested set systems: choice functions and a

matroid model

From Example 6, it is clear that certain well-known properties of the classical College
Admissions problem do not carry over directly to the case of ca-cq with nested set
systems; for example, that each college should have the same number of assigned applicants
in all stable matchings. However, it turns out that there are analogues of many of the
structural aspects of the classical problem. To investigate these, we adopt in this section

19

a more general model based on choice functions and matroids. Recall that G = (A∪C,E)
denotes the bipartite graph with applicants and colleges as colour classes, and acceptable
pairs forming the set E of edges. In this section we work with the edges rather than the
vertices of G, so for this reason, for a set E′ of edges and set V ′ of vertices (and for vertex
v), E′(V ′) (and E′(v)) will denote the set of those edges of E′ that are incident with some
vertex of V ′ (and with vertex v, respectively). In particular, if M is a stable matching
and Ci is a bounded set, M(Ci) stands for all those edges with an end vertex that is a
college in Ci. (Hitherto, by M(Ci) we meant the corresponding set of applicants.)

5.1 Choice functions

We define two specific choice functions on the edge set E of G. A choice function on
ground set E is a mapping Q that assigns to each subset X of E a subset Q(X) of X.
(Note that in the Economics literature choice functions are often defined in a much more
restrictive way, that is, Q is a preference induced choice function on E if there is a (well-)
order ≺ on all subsets of E such that Q(X) is the ≺-minimal subset of X.) A subset X
of E is called Q-independent if Q(X) = X.

The choice function of the applicants is denoted by QA and for subset X of E, QA(X)
is the set of those edges in X that the applicants would choose if they could select freely
from X, ignoring all quotas on the college side. Formally, every applicant a that has at
least one edge (application) in X chooses her most preferred edge from X, and QA(X) is
the set of edges selected in this way. An applicant-independent set of edges is a set X of
edges for which QA(X) = X.

For the choice function QC of colleges, QC(X) denotes the set of edges that the col-
leges would accept if they could freely select from X and could accept several edges from
the same applicant. More precisely, subset QC(X) of X is determined by the following
algorithm. Order the bounded sets as C = {C1, C2, . . . , Cm} such that if Ci ⊆ Cj then
i ≤ j holds. (In other words, take a linear extension of the partial order on C given by set
inclusion.) Let X0 := X, and for i = 1, 2, . . . m let Xi denote the set obtained from Xi−1

after applying the quota of Ci. So Xi−1(Ci) is the set of edges of Xi−1 that are incident
with some college in Ci. Let X ′

i denote the set of those edges of Xi−1(Ci) that are not
amongst the best q(Ci) edges of this set. Now let Xi := Xi−1 \X ′

i and let QC(X) := Xm.
To construct X ′

i, in addition to the quota q(Ci), we also need the preference order on
Xi−1(Ci). Although we have a preference order for Ci on the applicants (that is, for the
vertices), here we need one on the edges. The difference is that Xi−1(Ci) may contain
several edges from the same applicant-vertex. We use the following preference order: if
two edges in Xi−1(Ci) correspond to different applicants then the original preference or-
der of Ci is used. To compare two edges from the same applicant, we use the applicant’s
preference order. Therefore we have the following partial order on the edges, denoted by
�E: an edge (a, c) ∈ E(G) is preferred to (b, d) ∈ E(G) if either applicant a is preferred to
applicant b by the bounded set containing both c and d or if a = b and college c is preferred
to college d by applicant a. We call subset X of E college-independent if QC(X) = X.
Note that in this case each bounded set Ci contains at most q(Ci) edges from X.

Clearly, if X is a set of edges then QA(X) = X if and only if each applicant has at
most one edge in X, and QC(X) = X holds if and only if X satisfies all quotas of C.
Consequently, subset M of E is a matching if and only if M is both applicant-independent
and college-independent. Let edge (a, c) = e of E be an edge from applicant a to college c.
We say that subset X of E dominates edge e from the applicant side if e 6∈ QA(X ∪ {e}).
This means that X contains an edge between some applicant-vertex a and college-vertex
c′ such that a prefers c′ to c. Subset X of E dominates edge e from the college side if
e 6∈ QC(X ∪ {e}). This means that there is a bounded set Ci such that c ∈ Ci and

20

QC(X ∪ {e}) contains q(Ci) different edges, each of which is better than e according to
the preference order of Ci. We say that subset X of E dominates subset Y of E from
the college (applicant) side and denote this fact by X �C Y (X �A Y) if each element of
Y \ X is dominated by X from the college (applicant) side. Subset X dominates e if X
dominates e from the applicant side or from the college side (or from both). If each edge
of Y is dominated by X then we say that X dominates Y . The above definitions are also
valid for any arbitrary choice function Q on E, in particular subset X of E Q-dominates
subset Y of E (in notation X �Q Y) if X Q-dominates each element y of Y \ X, that is,
if y 6∈ Q(X ∪ {y}).

From these definitions, it is not difficult to see that a matching M is stable if and only
if the set of those edges that M dominates is E \ M . That is, each edge outside M is
dominated by M , but M does not dominate any edge of M , hence M is both applicant
and college-independent. Edge e blocks matching M if e is not dominated by M . More
generally, if G is a bipartite graph with edge set E and colour classes C and A, and
we are given choice functions QC and QA on E, then subset M of E is a matching if
M = QC(M) = QA(M) holds, that is, if M is both QA-independent and QC-independent.
Matching M is stable if M dominates all edges of E \ M , that is, for any e 6∈ M we have
e 6∈ QC(M ∪ {e}) or e 6∈ QA(M ∪ {e}).

We show that our choice functions QA and QC have two important properties. A choice
function Q on E is comonotone if the mapping of unchosen elements X 7→ X \ Q(X) is
monotone, that is, if X ⊆ Y ⊆ E implies X \ Q(X) ⊆ Y \ Q(Y), or, in other words
Q(X) ⊆ Q(Y), where for choice function Q, Q(X) := X \ Q(X) denotes the unselected
elements. Roughly speaking, if some option x is ignored then it will still be ignored from a
greater choice set. Choice function Q is increasing if X ⊆ Y ⊆ E implies |Q(X)| ≤ |Q(Y)|.

To justify the above properties for QA and QC , we prove that choice function QC is
closely related to matroids. (The interested reader is referred to the second volume of the
book of Schrijver [25] that contains everything we need about matroids.) We recall that
subset E′ of edges is college-independent if each bounded set Ci contains at most q(Ci)
edges from E′. Let IC ⊆ 2E denote the system of college-independent sets of edges.

Theorem 11. Set system IC forms the independent set of a matroid on set E of edges,
that is MC = (E,IC) is a matroid.

Proof. We use induction on the number m of bounded sets. If m = 1 then we have only
one bounded set, and as each college is a bounded set by itself, (E,IC) is a uniform
matroid of rank q(C1).

For m > 1, let C1, C2, . . . , Ck be the groups, that is the inclusionwise maximal bounded
sets. Let ICi denote the system of those college-independent edge sets that only contain
edges with college vertices from Ci. If k > 1 then ICi forms the independent set of a
matroid by the induction hypothesis. This means that (E,IC) is the direct sum of these
matroids, hence it is a matroid, as we claimed.

On the other hand, if k = 1, that is, if C1 = Cm is the unique group, then let I ′ denote
the set of those edges that are college-independent for the set C1, C2, . . . , Cm−1 of bounded
sets. By the induction hypothesis, (E,I ′) is a matroid, hence its q(Cm)-truncation (E,IC)
is also a matroid.

Note that the proof of Theorem 11 also implies that “applicant-independent” subsets
of edges (i.e., those subsets of the edges that contain at most one application from each
applicant) form a matroid. The reason is that these subsets can be regarded as college
independent where the bounded sets are the singletons and each quota is 1.

Observe that choice function QC always selects a college-independent set of edges.
Moreover, for any set X of edges, QC(X) has the property that it is an inclusionwise

21

maximal college-independent subset of X: for each unselected element x of X \ QC(X)
subset {x} ∪ QC(X) is not college-independent, because there is some bounded Ci such
that QC(X) contains q(Ci) edges to Ci with the property that all of these q(Ci) elements
are preferred to x.

This observation has two consequences. On the one hand, |QC(X)| = rMC
(X) is the

MC-rank of X for any X. As MC is a matroid, rMC
(X) ≤ rMC

(Y) whenever X ⊆ Y .
This implies that QC (and hence QA) is increasing.

On the other hand, the above observation means that QC(X) can be constructed by
the greedy algorithm in the following way. Fix a linear order e1, e2, . . . of E in such a
way that if two edges, ei and ej belong to the same bounded set then i < j if and only
if edge ei is preferred to ej (according to the partial order �E). Let Ei := {ej : j ≤ i}
and Xi := X ∩ Ei. The greedy algorithm constructs each QC(Xi) in such a way that
QC(X0) := ∅ and

QC(Xi+1) :=

{

QC(Xi) ∪ {ei+1} if QC(Xi) ∪ {ei+1} is independent
QC(Xi) otherwise.

To prove comonotonicity of QC , we have to show that if for edge x of X we have x 6∈ QC(X)
then x 6∈ QC(Y) holds whenever X ⊆ Y . But this follows immediately from the greedy
algorithm: an edge x is thrown away by the greedy algorithm during the construction of
QC(Z) if and only if x is spanned in MC by those elements of Z that precede x. So if x
is not selected from X then x will not be selected from Y either, and this means that QC

(and hence QA also) is comonotone.
Below we give a direct proof of the comonotonicity and the increasing property of our

choice functions without using the matroid characterisation.
To prove that the choice functions QA of applicants and QC of colleges are comonotone

and increasing, we exhibit a special property of QC that implies this. To specify this
property, we say that subset Y of the partially ordered set (E,�) is better than subset X
of E if there is an injective map f : X → Y such that

f(x) � x for all x ∈ X, (1)

that is, for each element x of X there is a different element f(x) of Y that is at least as
preferred as x. (Here preference order � represents a ranking, so �-smaller is preferred
to �-greater.) The disjoint union of better sets remains better according to the following
lemma.

Lemma 12. If Y1, Y2, . . . , Yk are disjoint sets and Yi is better than Xi for i = 1, 2, . . . , k
then

⋃k
i=1

Yi is better than
⋃k

i=1
Xi.

Proof. We can congregate functions fi on Xi with property (1) into one injective function
f :

⋃k
i=1

Xi →
⋃k

i=1
Yi that also has property (1).

The next lemma shows how to decide whether one set is better than another.

Lemma 13. Let subsets X = {x1, x2, . . . , xk} and Y = {y1, y2, . . . , yl} of the linearly
ordered set E be listed in increasing order. Then Y is better than X if and only if f(xi) :=
yi defines a mapping with property (1).

Proof. Sufficiency is trivial. For the necessity, if Y is better than X then there is a mapping
f ′ with property (1) that maps the smallest i elements of X into i different elements of
Y such that none of them is greater than the ith element of X. So xi cannot be smaller
than yi, hence f has property (1).

22

At this point we can claim the promised property of QC . A choice function Q on
partially ordered set (E,�) is improving if Q(Y) is better than Q(X) whenever X ⊆ Y
holds.

Lemma 14. Choice function QC on E is improving for the partial order �E.

Note that it follows from Lemma 14 that function f must have the property that for
each edge x of X there is a bounded set Ci that contains the colleges of both edges x and
f(x).

Proof. We apply induction on |C|. For |C| = 1 the lemma is straightforward. Assume
now that QC is improving whenever |C| < n and suppose |C| = n and X ⊆ Y . Let
C1, C2, . . . , Ck denote the groups, i.e., the inclusionwise maximal elements of C. If k > 1
then the choice function QC |Ci restricted to Ci has fewer bounded sets, hence is improving
for all i = 1, 2, . . . , k. In particular, QC |Ci(Y ∩Ci) is better than QC |Ci(X ∩Ci). Observe
that QC(Z) =

⋃k
i=1

QC |Ci(Z ∩ Ci) holds for any set Z of edges, and the right hand side

is a disjoint union. Hence by Lemma 12 QC(Y) =
⋃k

i=1
QC |Ci(Y ∩ Ci) is better than

QC(X) =
⋃k

i=1
QC |Ci(X ∩ Ci).

If k = 1 that is, if C1 = C then let Q′
C be the choice function that we get from QC

by disregarding the quota of C. As Q′
C has n − 1 bounded sets, Q′

C is improving by
the induction hypothesis. Let Q′

C(X) = {x1, x2, . . . , xk} and Q′
C(Y) = {y1, y2, . . . , yl} be

listed in increasing order. By Lemma 13, Q′
C(xi) cannot precede Q′

C(yi) in the preference
order of bounded set C, so after applying the quota of C we get that QC(Y) is better than
QC(X).

Lemma 15. Choice functions QA of applicants and QC of colleges are comonotone and
increasing.

Proof. Choice function QA can be regarded as a special college-type choice function where
C consists of singleton elements and q({c}) = 1 for each element {c} ∈ C. So it is enough to
prove that any college-type choice function QC is increasing and comonotone. Let X ⊆ Y .
By Lemma 14, QC is improving, hence there is an injection f : QC(X) → QC(Y). It
follows that QC is increasing. To prove comonotonicity, we have to show that whenever
element x of X is not in QC(X) then x 6∈ QC(Y) holds.

So assume that QC does not select x from X because x ∈ X ′
i, that is, x is thrown away

when we check the quota of Ci. But the restricted choice function QC |Ci
is improving by

Lemma 14, hence x cannot fit with q(Ci) either in the construction of QC(Y).

Comonotone and increasing choice functions have some interesting properties. The
following three statements, namely Lemmas 16, 17 and Theorem 18 are well-known in
lattice theory. We include their proofs for the sake of completeness.

Lemma 16. If choice function Q on E is comonotone and increasing then

Q(X) ⊆ Y ⊆ X ⇒ Q(X) = Q(Y) holds. (2)

Proof. If Q(X) ⊆ Y ⊆ X then Y \ Q(Y) ⊆ X \ Q(X) by comonotonicity, hence Q(X) ⊆
Q(Y). The increasing property of Q implies |Q(Y)| ≤ |Q(X)|, and with the previous
relation this implies that Q(X) = Q(Y).

An important consequence of Property (2) is that for any comonotone and path-
independent choice function Q on E, relation �Q is a partial order on Q-independent
subsets of E. We need the following useful lemma to prove this.

23

Lemma 17. If Q is a comonotone choice function with Property (2) on E and X and
Y are subsets of E then X �Q Y (that is, X dominates subset Y of E) if and only if
Q(X ∪ Y) = Q(X).

Proof. Assume first that X �Q Y . For any y ∈ Y \X we have that y ∈ Q(X ∪{y}), hence
by monotonicity of Q it follows that (Y \X ⊆ Q(X ∪Y), that is, Q(X ∪Y) ⊆ X ⊆ X ∪Y .
Now property (2) implies that Q(X) = Q(X ∪ Y).

Suppose now that Q(X) = Q(X ∪ Y) holds and let y ∈ Y \ X. Property (2) and
Q(X) ⊆ X ∪ {y} ⊆ X ∪ Y yields that Q(X ∪ {y}) = Q(X ∪ Y) = Q(X), hence each
element of Y \ X is dominated by X, that is, X �Q Y .

This observation allows us to prove that �Q is a partial order on Q-independent sets.

Theorem 18. If Q is a comonotone choice function with Property (2) on E then �Q is
a partial order on Q-independent subsets of E.

Proof. For any subset X of E we have Q(X) = Q(X ∪ X). This means X �Q X by
Lemma 17, hence �Q is reflexive. Assume that X and Y are Q-independent E such that
X �Q Y and Y �Q X holds. Lemma 17 shows that X = Q(X∪Y) = Y . This justifies the
antisymmetry of �Q. For transitivity, assume that X,Y and Z are Q-independent and
X �Q Y �Q Z. This means that Q(X∪Y) = X and Q(Y ∪Z) = Y by Lemma 17 and the
Q-independence. Monotonicity of Q implies that Z\Y ⊆ Q(Y ∪Z) and Y \X ⊆ Q(X∪Y),
hence (Z \ Y) ∪ (Y \X) ⊆ Q(X ∪ Y ∪Z), that is, Q(X ∪ Y ∪Z) ⊆ X ⊆ X ∪ Y ∪Z. Now
property (2) of Q yields that Q(X ∪Y ∪Z) = Q(X) = X, and from Q(X ∪Y ∪Z) = X ⊆
X ∪Z ⊆ X ∪ Y ∪Z it follows again by property (2) that Q(X ∪Z) = Q(X ∪ Y ∪Z) = X,
that is, X �Q Z. So �Q is indeed a partial order on Q-independent sets.

So far in this section we have proved that the ca-cq problem with nested bounded
sets can be formulated as a stable matching problem with increasing comonotone choice
functions. It is not difficult to see that if Q is an increasing comonotone choice func-
tion then Q is path-independent, that is, for any X and Y in the domain of Q we have
Q(X ∪ Y) = Q(Q(X)∪Q(Y)). Roth proved the following theorem for preference induced
comonotone choice functions that are clearly path-independent [22, 23].

Theorem 19. Assume that G = (A∪C,E) is a bipartite graph between sets A of applicants
and C of colleges and edges of E represent applications. If choice functions QC of colleges
and QA of applicants are both comonotone with property (2) then there is a stable matching,
that is, a subset S of E such that QA(S) = QC(S) = S and each edge e ∈ E\S is dominated
by S.

A possible proof of Theorem 19 is contained in [10], where a generalisation of the
deferred acceptance algorithm is also described. It is slightly different from the one we
need later, so here we describe a proof and an algorithm.

Proof. If choice function Q is comonotone then Q is monotone by the definition of comono-
tonicity. Let us define function F on subsets of E by F (X) := E \QA(E \QC(X)). First
we prove a connection between stable matchings and fixed points of F .

Assume that S is a stable matching. Let SC := {e ∈ E : e ∈ QC(S ∪ {e}) denote
the set of edges that S dominates from the college side. By the stability of S, each edge
in E \ (S ∪ SC) is dominated by S from the applicant side. The monotonicity of QC

implies for S′ = S ∪ SC that SC ⊆ QC(S′), hence QC(S′) ⊆ S ⊆ S′ holds. By the
property (2) of QC this means that QC(S′) = QC(S) = S, where the latter equation
comes from the fact that S is a stable matching hence college-independent. In particular,

24

QC(S′) = SC holds. The above argument for choice function QA shows that QA(S′′) = S,
where S′′ = S ∪ SA and SA is the set of edges that S dominates from the applicant
side. As S is a stable matching, each element outside S′ is dominated from the applicant
side, hence Q(S′′) = S ⊆ E \ SC ⊆ S ∪ SA = S′′, and property (2) of QA implies that
QA(E \ SC) = QA(S′′) = S thus QA(E \ SC) = (E \ SC) \ S = E \ (SC ∪ S) = E \ S′. So

F (S′) = F (S ∪ SC) = E \ QA(E \ QC(S′)) = E \ QA(E \ SC) = E \ (E \ S′) = S′

So each stable matching S determines a fixed point of F .
Now assume that F (S′) = S′ is a fixed point. By denoting QC(S′) by S we have

QC(S′) = S′ \S. We show that S is a stable matching. By property (2) of QC , QC(S′) =
S ⊆ S′ implies that QC(S) = QC(S′) = S and for x ∈ S′\S we have Q(S′) ⊆ S∪{x} ⊆ S′,
so QC(S ∪ {x}) = QC(S′) = S, that is S dominates each edge of S′ \ S from the college
side.

From F (S′) = S′ we get that

F (S′) = S′ = E \ QA(E \ QC(S′)) = E \ QA((E \ S′) ∪ S) ,

hence E \ S′ = QA((E \ S′) ∪ S), or, in other words S = QA((E \ S′) ∪ S). This means
that for any element x of E \S′ we have QA((E \S′)∪S) = S ⊆ S ∪{x} ⊆ (E \S′)∪S so
property (2) implies that S = QA(S ∪{x}). The conclusion is that S is a stable matching.

In what follows we prove that F is monotone. If X ⊆ Y then QC(X) ⊆ QC(Y) follows
by the monotonicity of QC , thus E \ QC(X) ⊇ E \ QC(Y). The monotonicity of QA

implies that QA(E \ QC(X)) ⊇ QA(E \ QC(Y)), hence F (X) = E \ QA(E \ QC(X)) ⊇
E \ QA(E \ QC(Y)) = F (Y) holds, proving that F is indeed monotone.

This follows that ∅ ⊆ F (∅) ⊆ F (F (∅)) ⊆ . . . is a chain of increasing sets. As ground-set
E is finite, after some iterations we find a fixed point S0 = F (F (. . . (F (∅)) . . .)) of F , such
that S0 := QC(S0) is a stable matching.

Actually, the set S0 we constructed at the end of the above proof is an inclusionwise
minimal fixed point of F because if F (S∗) = S∗ is another fixed point then ∅ ⊆ S∗,
hence F (∅) ⊆ F (S∗) = S∗, so F (F (∅)) ⊆ F (S∗) = S∗, and so on. In other words, stable
matching S0 dominates all those edges from the student side that some stable matching
may dominate from the student side, that is, each applicant receives the best assignment
that she can have in a stable matching. In other words, QC(S) is the so-called applicant-
optimal stable matching in general. This is the solution that we constructed also with
the applicant-oriented algorithm in Section 4.2 for the particular choice functions of our
model ca-cq with nested set systems.

Note that there is a college-optimal stable matching, as well. To construct it, we
start the iteration of F with E, rather than with ∅. So we get a decreasing chain
F (E) ⊇ F (F (E)) ⊇ F (F (F (E))) . . . of subsets of E that stabilises at a fixed point
S1 = F (F (. . . F (E) . . .)) = F (F (. . . F (F (S1)) . . .)) = F (S1). This S1 is the inclusion-
wise maximal fixed point of F because if F (S∗) = S∗ is another fixed point of F then from
S∗ ⊆ E by monotonicity it follows that S∗ = F (F (. . . F (S∗) . . .)) ⊆ F (F (. . . F (E) . . .)) =
S1. That is, if a stable matching dominates some edge e from the college side then e
is certainly dominated by stable matching S1 := QC(S1) from the college side. We call
S1 the college-optimal stable matching. In particular, for the special choice functions of
our model ca-cq with nested set systems, this solution is the applicant-pessimal stable
matching that the college-oriented algorithm finds in Section 4.3.

How do we construct the above applicant- and college-optimal stable matchings? It is
simple: we iterate function F starting from E or from ∅. Let E0 := E and for i = 0, 1, 2, . . .
let Ei+1 := F (Ei). As soon as Ei+1 = Ei we can determine college-optimal stable matching

25

S1 = QC(Ei). We know that E0 ⊇ E1 ⊇ . . . is a decreasing chain, so to construct Ei+1

from Ei we have to find elements of Ei \ Ei+1 that we have to delete from Ei. From the
formula Ei+1 := F (Ei) = E \QA(E \QC(Ei)) it follows that Ei+1 = Ei \QA(E \QC(Ei)),
so at the (i + 1)st iteration we delete QA(E \QC(Ei)) = QA(QC(Ei)∪ (E \Ei)) from Ei.

Note that the iteration of F is not exactly the Gale-Shapley algorithm. The Gale-
Shapley algorithm corresponds to the recursive definition E′

i+1 := E′
i \QA(QC(E′

i)). How-
ever, from property (2) of QA and QC it is not difficult to prove that Ei = E′

i holds for
all i.

In what follows we give a matroid-free proof showing that the function we calculate
by the greedy algorithm is indeed QC .

5.2 The greedy algorithm for the college choice function

To apply the generalised Gale-Shapley algorithm for the ca-cq problem, we have to calcu-
late choice function QC on several arguments. Though the definition of QC is algorithmic,
using it for its calculation is not a best choice: there is a more efficient greedy algorithm
that works as follows. Order set E of edges as E = {e1, e2, . . . , em} such that if ei is
preceding ej in the preference order of some quota set Ck (either because the applicant is
more preferred or because the two edges belong to the same applicant who prefers ei) then
we require that i < j holds. There exists such a linear order, as the groups partition the
set C of colleges (for this we need the nested property of C and that each individual college
is a member of C) and if we merge the preference orders (on the edges) of the groups then
we get the property. The alternative algorithm to construct QC(X) is a greedy one. Let
Xi := {x1, x2, . . . , xi} denote the first i elements of X according to the above linear order.
For i = 1, 2, . . ., in the ith step of the algorithm we find Qg

C(Xi) and for each bounded set
Ck ∈ C, we calculate all numbers f(Xi, Ck) := |Qg

C(Xi)∩E(Ck)| of edges that are accepted
from Xi to some college of Ck. (Recall that here E(Ck) := {e = (a, c) ∈ E : c ∈ Ck}
denotes the set of edges to colleges of Ck.) The ith step of the algorithm is the following.

If the ith element xi = (a, c) of X together with the elements of Xi−1 chosen so far
would violate some quota, i.e. if f(Xi−1, Ck) = q(Ck) for some c ∈ Ck ∈ C then Qg

C(Xi) =
Qg

C(Xi−1) and hence f(Xi, Ck) = f(Xi−1, Ck) for all k. Otherwise, if no quota is violated,
that is, if f(Xi−1, Ck) < q(Ck) for all c ∈ Ck ∈ C then Qg

C(Xi) = Qg
C(Xi−1) ∪ {xi}.

Saturations are f(Xi, Ck) = f(Xi−1, Ck) + 1 if c ∈ Ck and f(Xi, Ct) = f(Xi−1, Ct) if
c 6∈ Ct . The greedy algorithm outputs Qg

C(X) = Qg
C(X l) where l is the size of X, hence

X = X l.

Lemma 20. If QC is the choice function of a college then the above greedy algorithm
calculates the correct value: QC(X) = Qg

C(X) for any subset X of E.

Proof. To this end, it is enough to show that QC(Xi) = Qg
C(Xi) for i = 1, 2, . . . l. Clearly,

for i = 1, we chose x1 in both algorithms if x1 itself does not violate any of the quotas,
so Qg

C(X1) = QC(X1). For the induction proof, assume that Qg
C(Xi) = QC(Xi), and

consider Xi+1 = Xi ∪ {xi+1}. From the description of the algorithms, it follows easily
that QC(Xi) = QC(Xi+1) ∩ Xi and Qg

C(Xi) = Qg
C(Xi+1) ∩ Xi, so we only have to prove

that xi+1 ∈ QC(Xi+1) if and only if xi+1 ∈ Qg
C(Xi+1).

Clearly, if xi+1 ∈ QC(Xi+1) then (Xi+1)′k = ∅ for all sets Ck ∈ C with xi+1 ∈ E(Ck).
Hence QC(Xi) = QC(Xi+1) \ {xi+1} = Qg

C(Xi+1) \ {xi+1} does not fill up any quota
q(Ck) for xi+1 ∈ E(Ck). But this implies that xi+1 ∈ Qg

C(Xi+1). On the other hand,
if xi+1 6∈ QC(Xi+1) then there is a member Ck of C such that xi+1 ∈ (Xi+1)′k, i.e. xi+1

does not fit in with quota q(Ck). So either QC(Xi) = Qg
C(Xi) fills up the bounded set Ck,

hence xi+1 6∈ Qg
C(Xi+1), or, if |QC(Xi)∩E(Ck)| < q(Ck) then this is because there is some

26

other bounded set Ct ∈ C with Ck ⊂ Ct such that Ct is full: |QC(Xi) ∩ E(Ct)| = q(Ct).
As xi+1 ∈ E(Ct) holds again, xi+1 6∈ Qg

C(Xi+1) follows.

5.3 Structural results

Several interesting properties about the structure of stable matchings are known. Knuth
[17] attributes to Conway the observation that stable marriages have a lattice structure:
if each man picks the better assignment out of two stable matchings then another stable
matching is created in which each woman gets the worse husband from the two. Using
linear programming tools, Teo and Sethuraman [26] proved a generalisation of this, namely,
that if k stable matchings are given and each man selects the lth best partner then a stable
matching is created in which each woman receives her (k + 1 − l)th husband. Later this
result was further generalised by Fleiner [9] for the many-to-many model and the proof
was based on the lattice property. Even later, Klaus and Klijn [16] found the same proof
for the many-to-one case.

Another interesting consequence of the lattice structure is the “Rural hospitals theo-
rem” of Gale and Sotomayor [12] stating that if in the college admissions problem some
college c does not fill up its quota in a stable matching then college c receives the same
set of applicants in each stable matching. Our goal in this section is to extend the above
properties to the ca-cq problem. Note that the “natural” ca-cq extension of the “Rural
hospitals theorem” does not hold as we saw in Example 6. (There, college c1 is assigned
a number of students equal to its quota in one stable matching but a smaller number in
another one. The example also shows that in contrast to the case of ca, in the ca-cq

problem it is not true that in the college-optimal stable matching each college gets the
best set of students.)

Fleiner studied stable matching problems with comonotone set functions in [10]. Corol-
laries 26 and 27 of [10] yield the following result.

Theorem 21. Assume that G = (A∪C,E) is a bipartite graph with colour classes C and
A and that MC and MA are two matroids on E. Let QC and QAbe increasing comonotone
choice functions on E that are defined by the greedy algorithm on matroids MC and MA

respectively, for some linear orders.
(i) If M1,M2, . . . ,Mk are stable matchings then QC(

⋃k
i=1

Mi) and QA(
⋃k

i=1
Mi) are

also stable matchings.
(ii) For any two stable matchings M and M ′, spanMC

(M) = spanMC
(M ′) and

spanMA
(M) = spanMA

(M ′) holds.

Obviously, Theorem 21 holds for the ca-cq problem. But observe that it is more
general than that. Theorem 21 is also true if (say) applicants can be assigned to several
colleges up to certain personal quotas, and there can be nested bounded sets on the
applicant side as well, just as for colleges. Theorem 19 implies for this case, too, that
there exists a stable matching, and Theorem 21 concerns the structure of these stable
matchings.

The first part of Theorem 21 implies our earlier observation on the applicant-optimal
and college-optimal stable matchings, namely, if X is the union of all stable matchings
then MC := QC(X) and MA := QA(X) are stable matchings. As MC and MA dominate
any other stable matching from the college side and from the applicant side, respectively,
it follows that MC is the college optimal stable matching and MA is the applicant-optimal
one. This observation implies Theorem 6 (ii) and Theorem 9 (ii) and (iii).

But the first part of Theorem 21 has an even more interesting consequence, as this
generalises the lattice property of stable marriages. If the colleges freely choose from the
union of the edge sets of two stable matchings M1 and M2, then by Theorem 21 another

27

stable matching is created that we denote by M1 ∨M2. Clearly, M1 ∨M2 dominates both
M1 and M2 from the college side. Moreover, if a stable matching M dominates both M1

and M2 from the college side then M dominates M1 ∪M2 from the college side, hence M
also dominates M1 ∨ M2 from the college side. From this fact it follows that M1 ∨ M2

is the least upper bound of M1 and M2 as �C is a partial order on stable matchings by
Theorem 18.

A similar proof shows that for stable matchings M1 and M2 stable matching M1∧M2 :=
QA(M1 ∪M2) is the least upper bound of M1 and M2 for partial order �A. The following
lemma gives a relation the above two partial orders.

Lemma 22. Assume that G = (A ∪ C,E) is a bipartite graph with colour classes A and
C and that MA and MC are two matroids on E. Let QA and QC be comonotone choice
functions with property (2) on E that are defined by the greedy algorithm on MA and
MC respectively, for some linear orders. Then for any two stable matchings M1 and M2

relation M1 �A M2 is equivalent to M2 �C M1, or, in other words partial orders �A and
�C are opposite on stable matchings.

Proof. If M1 and M2 are stable matchings then each of them must dominate the other one.
If M1 dominates each element of M2 \M1 from the applicant side then M2 must dominate
each element of M1 \M2 from the college side, and vice verse. The lemma directly follows
from this observation.

Lemma 22 implies that partial order �C forms a lattice on stable matchings with
lattice operations ∨ and ∧: we have seen that M1 ∨ M2 is the �C-least upper bound and
M1 ∧ M2 is the �A-least upper bound, hence by Lemma 22 M1 ∧ M2 is the �C-greatest
lower bound of M1 and M2.

The lattice structure of stable matchings allows us to prove an extension of the result
of Teo and Sethuraman [26]. Our proof is essentially the same as the one in [9] that has
also been found by Klaus and Klijn [16] for the many-to-one case.

Theorem 23. Assume that the ca-cq problem is given by bipartite graph G = (A∪C,E)
with colour classes A and C, a nested system C of bounded sets and quotas q : C → N.
Let M1,M2, . . . ,Mn be arbitrary stable matchings and 1 ≤ k ≤ n an arbitrary integer.
If each applicant chooses her k-th best assignment out of the n assignments provided by
stable matchings Mi then the set M of these edges is a stable matching.

Proof. Let each applicant a order the n stable matchings according to her preference as
M1

a ,M2
a , . . . ,Mn

a such that a prefers M1
a the best and Mn

a the least. Let

M :=
∧

a∈A

Ma = QA(
⋃

a∈A

Ma) where Ma :=

k
∨

i=1

M i
a = QC(

k
⋃

i=1

M i
a) .

Clearly, each of M and the Ma’s are a stable matchings by Theorem 21 (i). Observe that
Ma dominates each of M1

a ,M2
a , . . . ,Mk

a from the college side, hence Ma is dominated by
these matchings from the applicant side. This means that in Ma each applicant a′ of A
receives her worst assignment out of her assignments in M1

a ,M2
a , . . . ,Mk

a . In particular,
applicant a receives her kth best assignment out of the ones given by M1,M2, . . . ,Mn.
Any other applicant a′ gets the kth best out of k assignments which is an assignment
that is not better than the one represented by Mk

a′ . As M is constructed by letting the
applicants to choose from

⋃

a∈A Ma, each applicant a will choose her kth best assignment
represented by Mk

a . That is, M is the stable matching described in the theorem.

28

The second part of Theorem 21 talks about the span on a subset of a matroid. Recall
that an element e of some matroid M is spanned by subset E′ of M if either e ∈ E′

or there is an independent subset E∗ of E′ such that any proper subset of E∗ ∪ {e} is
independent. This is equivalent to saying that the rank rM(E′) of E′ equals the rank
rM(E′∪{e}), that is, in case of (say) MC , we have |QC(E′)| = |QC(E′∪{e})|. This latter
formulation implies that if some stable matching M dominates e from the college side then
e ∈ spanMC

(M). Recall that E′(a), E′(c) and E′(Ci) denote the set of edges of E′ that
belong to applicant a, to college c and to some bounded set of colleges Ci, respectively.

What does it mean that some set E′ of edges spans a certain edge e in the ca-cq

problem? Clearly, for matroid MA it happens if and only if applicant-vertex a of edge e is
incident with an edge (e or some other) of E′, i.e., if |E′(a)| ≥ 1. For MC this means that
either e ∈ E′ or there is a bounded set Ci containing c such that |E′(Ci)| ≥ q(Ci). Recall
that bounded set Ci is full relative to matching M if |M(Ci)| = q(Ci), and otherwise
Ci is undersubscribed. Recall that a bounded set is free if it is not contained in a full
bounded set. We call bounded set Ci weakly free relative to E′ if no bounded set that
properly contains Ci is full relative to E′. (In particular, a weakly free set relative to E′

can be full relative to E′.) Bounded set Ci is essential relative to E′ if Ci is weakly free
and no bounded subset of Ci is full relative to E′. (In particular an essential bounded set
cannot be full relative to E′.) We have the following generalisation of the “Rural hospitals
theorem”.

Theorem 24. Let M be a stable matching in an instance of ca-cq. If bounded set Ci is
weakly free relative to M then for each stable matching M ′ we have |M(Ci)| = |M ′(Ci)|.
Moreover, if Ci is essential relative to M then M(Ci) = M ′(Ci).

In other words, if a bounded set is not properly contained in a full bounded set then
it is incident with the same number of edges in each stable matching. Moreover, if this
bounded set does not contain a full bounded set then it is incident with the same set of
edges in each stable matching.

Note that Theorem 24 remains true if applicants also have a college-type choice function
as the proof only uses Theorem 21 and the structure of matroid MC .

Proof. We prove Theorem 24 by induction on i. (Recall that we fixed an order C1, C2, . . .
of bounded sets such that a superset always has a greater index.) If C1 is not weakly
free relative to M then we have nothing to prove. If C1 is free (that is weakly free and
undersubscribed) relative to M then C1 is essential relative to M as C1 does not contain
any other bounded sets. This means that spanMC

(M) ∩ E(C1) = M(C1). So if M ′ is
another stable matching then by Theorem 21,

M(C1) = spanMC
(M) ∩ E(C1) = spanMC

(M ′) ∩ E(C1) = M ′(C1)

just as we claimed. Now suppose that C1 is full relative to M and assume for a con-
tradiction that |M(C1)| 6= |M ′(C1)|. From |M(C1)| = q(C1) ≥ |M ′(C1)|, it follows that
|M ′(C1)| < q(C1), hence C1 is undersubscribed in stable matching M ′. But we just have
proved that in this case C1 cannot be full in any stable matching, a contradiction.

Now assume that Theorem 24 is true for each Cj with j < i and we prove it for Ci.
If Ci is an inclusionwise minimal bounded set then the proof is exactly the same as for
C1 above. Otherwise Ci = C1 ∪C2 ∪ . . . ∪Ck, where C1, C2, . . . , Ck are the inclusionwise
maximal bounded subsets of Ci that are disjoint by the nested property. We may assume
that Ci is weakly free relative to M as otherwise we have nothing to prove.

Suppose first that Ci is undersubscribed relative M . Clearly, each of C1, C2, . . . , Ck

is weakly free relative to M , so Theorem 24 holds for them: |M(Ct)| = |M ′(Ct)| for any

29

stable matching M ′. But this means that

|M(Ci)| =
k

∑

t=1

|M(Ct)| =
k

∑

t=1

|M ′(Ct)| = |M ′(Ci)| .

If Ci is essential relative to M then all of C1, C2, . . . Ck are also essential relative to M ,
hence

M(Ci) =
k

⋃

t=1

M(Ct) =
k

⋃

t=1

M ′(Ct) = M ′(Ci)

holds. This finishes the case when Ci is undersubscribed in M .
It remains to settle the case when Ci is full relative to M . If, indirectly Ci is un-

dersubscribed in some other stable matching M ′ then the above argument also holds for
M ′ instead of M . This yields in particular that Ci cannot be full relative to any stable
matching, contradicting the existence of M .

Theorem 24 is a genuine generalisation of the “Rural hospitals theorem” as in the
absence of common quotas, each college c is a weakly free bounded set by itself, so each
stable matching assigns the same number of applicants to c. Moreover, if college c does
not fill up its quota in some stable matching then bounded set {c} is essential hence c gets
the same set of applicants in each stable matching.

Actually, in the college admissions problem each college is a group by itself. Interest-
ingly, in the ca-cq problem groups behave somewhat similarly to colleges in the College
Admissions problem.

Corollary 25. If Ci is a group in the ca-cq problem then any stable matching assigns
the same number of edges to Ci.

Proof. A group is weakly free by definition, so the corollary follows from Theorem 24.

5.4 Comparison between the direct and the matroid approaches

In Section 4, we constructed and studied two direct algorithms for solving the College
Admissions problem with common quotas in the case of nested set systems, whilst in
Section 5, we solved the same problem by a more general approach using choice functions
and matroids. The reader might wonder why both descriptions are necessary. Here, we
would like to answer this hypothetical question.

We proved the existence of a stable matching by each method, and we also showed that
the two main variants of each method produce the applicant-optimal and the applicant-
pessimal solutions, respectively. This latter fact ensures that the corresponding variants
lead to the very same results. The reason for studying both methods, beside the obvious
interest in having both a direct and a general argument, is the following. On the one hand,
the direct algorithms have complexities which are not achievable by the general method.
On the other hand, the structural results which are straightforward by the matroid model
would be difficult to prove directly. A further advantage of the general approach is that,
as we noted, similar results can be verified for such more general settings where the choice
function on the the applicants’ side is more complicated than the one in our model.

We note that the original algorithm of Gale and Shapley [11] and its variant studied
by McVitie and Wilson [19] have a similar relation to each other as our general and direct
method. Both produce the same results, but the O(L) running time is achievable only with
the latter variant, where the proposals are made one by one rather than simultaneously.

30

Acknowledgments

We would like to thank the Hungarian Higher Education National Institute and one of its
representatives in particular, Gábor Varjasy, for providing us information about the higher
education matching scheme, including a detailed description of their current algorithm and
the real data of the 2008 matching run. Also, we would like to thank an anonymous referee
for helpful comments.

References

[1] A. Abdulkadiroğlu, P. A. Pathak, and A. E. Roth. The New York City high school
match. American Economic Review, Papers and Proceedings, 95(2):364–367, 2005.

[2] A. Abdulkadiroğlu, P. A. Pathak, A. E. Roth, and T. Sönmez. The Boston public
school match. American Economic Review, Papers and Proceedings, 95(2):368–371,
2005.

[3] D.J. Abraham, R.W. Irving, and D.F. Manlove. Two algorithms for the student-
project allocation problem. Journal of Discrete Algorithms, 5(1):79–91, 2007.

[4] M. Balinski and T. Sönmez. A tale of two mechanisms: student placement. J.
Econom. Theory, 84(1):73–94, 1999.

[5] P. Biró. Student admissions in Hungary as Gale and Shapley envisaged. Technical
report, no. TR-2008-291, University of Glasgow, Department of Computing Science,
2008.

[6] S. Braun, N. Dwenger, and D. Kübler. Telling the truth may not pay off: An empirical
study of centralised university admissions in Germany. SFB 649 Discussion Papers,
Humboldt University, Berlin, Germany, 2007.

[7] G. Cornuéjols. General factors of graphs. J. Combin. Theory Ser. B, 45(2):185–198,
1988.

[8] M. E. Dyer and A. M. Frieze. Planar 3DM is NP-complete. J. Algorithms, 7(2):174–
184, 1986.

[9] T. Fleiner. Some results on stable matchings and fixed points. Tech-
nical report, EGRES report TR-2002-8, ISSN 1587-4451, December 2002.
http://www.cs.elte.hu/egres.

[10] T. Fleiner. A fixed-point approach to stable matchings and some applications. Math.
Oper. Res., 28(1):103–126, 2003.

[11] D. Gale and L. S. Shapley. College admissions and the stability of marriage. Amer.
Math. Monthly, 69(1):9–15, 1962.

[12] D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discrete
Applied Mathematics, 11:223–232, 1985.

[13] M. R. Garey and D. S. Johnson. Computers and intractability. W. H. Freeman and
Co., San Francisco, Calif., 1979.

[14] D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, 1989.

31

[15] K. Hamada, K. Iwama, and S. Miyazaki. The Hospitals/Residents problem with quota
lower bounds. In Proceedings of MATCH-UP 2008: Matching Under Preferences,
satellite workshop of ICALP 2008, pages 55–66. 2008.

[16] B. Klaus and F. Klijn. Median stable matching for college admissions. Internat. J.
Game Theory, 34(1):1–11, 2006.

[17] D.E. Knuth. Mariages Stables. Les Presses de L’Université de Montréal, 1976.

[18] D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants of
stable marriage. Theoretical Computer Science, 276(1-2):261–279, 2002.

[19] D. G. McVitie and L. B. Wilson. Stable marriage assignment for unequal sets. BIT,
10:295–309, 1970.

[20] A. Romero-Medina. Implementation of stable solutions in a restricted matching mar-
ket. Review of Economic Design, 3(2):137–147, 1998.

[21] A. E. Roth. The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy, 6(4):991–1016, 1984.

[22] A. E. Roth. Stability and polarization of interests in job matching. Econometrica,
52(6):47–57, 1984.

[23] A. E. Roth. Conflict and coincidence of interest in job matching: some new results
and open questions. Math. Oper. Res., 10(3):379–389, 1985.

[24] A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in game-theoretic
modeling and analysis, volume 18 of Econometric Society Monographs. Cambridge
University Press, 1990.

[25] A. Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. B, volume 24
of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003. Matroids, trees,
stable sets, Chapters 39–69.

[26] C.-P. Teo and J. Sethuraman. The geometry of fractional stable matchings and its
applications. Math. Oper. Res., 23(4):874–891, 1998.

32

