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Abstract

We study a number of variants of the Stable Marriage problem. Such problems have a long

history, but there has been an upsurge in interest in recent years as the various possibilities

that arise when ties are allowed in preference lists have been studied. The inclusion of ties

in preference lists gives rise to three different versions of stability, so-called super-stability,

strong stability and weak stability. The study of these three versions has thrown up a

number of challenging problems, and this thesis contributes a range of new results in some

of these areas.

The first variant that we study is the Hospitals/Residents problem with ties, a many-

to-one variant of the Stable Marriage problem. We present two different polynomial-time

algorithms for finding a strongly stable matching, one favouring the residents and the other

the hospitals. We also study the Stable Roommates problem with Ties, a non-bipartite

variant of the Stable Marriage problem, and we again present a polynomial-time algorithm

for finding a strongly stable matching.

We then introduce the Stable Fixtures problem, a many-to-many variant of the Stable

Roommates problem, initially focusing on the version in which preferences are strict. We

present an algorithm, which runs in time linear in the input size, to find a stable matching.

We then consider the problem when ties are allowed in the preference lists, and we present

an algorithm, again linear in the input size, to find a super-stable matching.

We also study the structure underlying the set of super-stable matchings for the Stable

Marriage problem with ties (SMT). We extend the concept of a rotation, essentially the

minimum difference between stable matchings, to super-stability, and show that we can

construct a directed acyclic graph to represent precedence amongst these meta-rotations.

We then use this structure to show that we can find an egalitarian super-stable matching,

a minimum regret super-stable matching and all the super-stable pairs in polynomial-

time, and generate all the super-stable matchings with polynomial-time between successive

matchings.

We then explore some of the issues arising in weak stability, where a number of the key

problems are known to be NP-hard. We show a relationship between the sizes of weakly

stable matchings and the size of a strongly stable matching in an instance of SMT, and

also in a number of the other variants. We give an improved approximation algorithm
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for finding a maximum cardinality weakly stable matching when ties are sparse. Efficient

generation of weakly stable matchings remains an open problem. As a first step in this

direction we show how to determine whether an instance of SMT admits a unique weakly

stable matching. However, we also show that the problem of determining whether there

is a weakly stable matching for an instance of SMT in which some pairs are forbidden is

NP-complete. By contrast we present a linear-time algorithm for finding a super-stable

matching in such an instance.

Finally we consider the special case of SMT in which one or both sets of participants have

preference lists which are sublists of a master list. We show that many weak stability

problems remain NP-hard even with this remarkably strong restriction, though there are

a limited number of exceptions. We show that we can find an egalitarian weakly stable

matching, a minimum regret weakly stable matching, and a man minimum regret weakly

stable matching in time linear in the number of men in the instance, if all preference lists

are complete and both sets have lists that are sublists of a master list. Under the same

restrictions we show that we can find all the stable pairs in time linear in the number of

stable pairs, and generate all the weakly stable matchings with time linear in the number

of men between successive generations. We also show that we can find a minimum regret

weakly stable matching in time sublinear in the input size if only one of the sets has lists

inherited from a master list, as long as that master list is strict.
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Glossary

Here we include a number of terms which are defined in Chapter 1 and are used throughout.

Others terms are defined locally so we do not include them here.

acceptable pair 4 rotation 6
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derived instance 10 poset 7

full 18 to precede 7

head 9 size 2

indifferent 9 stable set 6
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matching in HRT 21

derived from a stable set 6 in SMTI 12

egalitarian 8 in SRTI 23

in HRT 18 super-stability

in SMTI 4 in HRT 21

in SRTI 22 in SMTI 11

man-optimal 2 in SRTI 23

minimum regret 9 tail 9

weight 8 tie 9

woman-optimal 3 weak stability

partner 2 in HRT 20

quota 17 in SMTI 10

regret 9 in SRTI 23

woman-oriented 3



Chapter 1

A selective review of Stable

Marriage literature

1.1 Introduction

In 1962, David Gale and Lloyd Shapley published a paper entitled “College Admissions

and the Stability of Marriage” [8] in which, in the course of presenting an algorithm for

matching applicants to college places, they introduced and solved the Stable Marriage

problem. This problem involves a set of men and a set of women, each of whom have

ranked all the members of the other set in strict order of preference. The aim is to find

a one-to-one matching between the men and the women such that there is no unmatched

couple each of whom prefers the other to their partner in the matching. The authors used

their solution to this problem as a basis for solving the extended problem where one of

the sets consists of college applicants, and the other consists of colleges, each of which

has a quota of places to fill. Since the publication of this paper many additional variants

of the Stable Marriage problem have been discussed in the literature. The problem has

engendered interest from a number of communities, most notably from game theorists,

economists and algorithmists. Additionally, there are a number of matching schemes in

operation around the world which make use of some form of the algorithm presented by

Gale and Shapley. The best known of these is the NRMP (National Residents Matching

Program) in the United States of America [44], which has used a form of the Gale-Shapley

algorithm since 1952, predating the publication of the paper by some ten years. The

1
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Canadian Resident Matching Service [2] and the recent Scottish Pre-Registration House

Officer Allocations (SPA) scheme [50], which was implemented by Low [32] as a result of

work conducted at the University of Glasgow by Irving [23], are both also of interest in

this context. Here we are interested in the Stable Marriage problem from an algorithmic

point of view. In this chapter we study how the field has evolved from the publication of

“College Admissions and the Stability of Marriage” through to the present day.

1.2 The classical Stable Marriage problem

An instance of the classical Stable Marriage problem (SM) involves two disjoint sets of

size n, the men and the women. In line with the terminology of [15], we say that such an

instance is of size n. Note, however, that the total amount of data for an instance of size

n is actually O(n2). Each person has a strictly ordered preference list containing all the

members of the other set, such that a person p prefers a person q to a person r if and only

if q precedes r on p’s preference list.

For such an instance, a matching M is a one-to-one mapping between the men and the

women. For a pair (m,w) ∈ M , we say that m is the partner of w in M , or m = pM (w),

and similarly for w. A blocking pair for a matching M is a man-woman pair (m,w) 6∈ M ,

each of whom prefers the other to their partner in M . A matching is unstable if it admits

one or more blocking pairs, and is otherwise stable. A pair (m,w) which appears in some

stable matching is a stable pair. Given a matching M we can verify, in time linear in

the input size, if M is stable, with suitable data structures to represent the preference

information (see, for example, [8]). The method is simple. For each man m we check, for

every woman whom he prefers to his partner in M , whether that woman prefers m to her

partner in M . If so we have a blocking pair, but if there are no blocking pairs then M is

stable.

Gale and Shapley [8] proved that, for any instance of the classical Stable Marriage problem,

there is at least one solution, and they presented an algorithm, now widely known as the

Gale/Shapley (GS) algorithm, to find a solution. The algorithm runs in O(n2) time for an

instance of size n [31], and thus is linear in the input size. Gale and Shapley also noted

that this algorithm, which involves a sequence of proposals from the men to the women,

produces a matching which is man-optimal , in the sense that every man has the best



CHAPTER 1. REVIEW OF STABLE MARRIAGE LITERATURE 3

partner he can have in any stable matching. We say that the algorithm is man-oriented ,

and if the roles of the men and women are reversed then the woman-oriented algorithm will

produce the woman-optimal matching. Returning to the man-optimal stable matching,

McVitie and Wilson later observed that this man-optimality was at the expense of the

women as each woman has the worst partner she can have in any stable matching [42].

Hence the man-optimal stable matching is also woman-pessimal. There is an element of

non-determinism inherent in the algorithm, in that the order in which the men propose is

not given, but Gusfield and Irving [15] noted that, whatever the order of the proposals, the

resulting matching is always the same. This result was implicit in [8]. An extended version

of this algorithm simplifies the proposal process by deleting from a woman w’s list every

man m who succeeds a man from whom she has received a proposal, and correspondingly

deleting w from m’s list. It can be shown that each such pair (m,w) cannot be stable.

Such deletions are now standard practice in stable marriage algorithms. This version of

the algorithm, the extended Gale-Shapley algorithm, has the additional property that

all the stable matchings are contained in the GS-lists, the lists obtained from taking the

intersection of the preference lists after applying separately the man-oriented and woman-

oriented versions of the algorithm [15].

1.3 Simple extensions of the classical problem

There are two simple extensions to the classical Stable Marriage problem - sets of unequal

size and incomplete preference lists.

1.3.1 Sets of unequal size

If sets of unequal size are allowed, then it is clear that some person(s) must end up

unmatched in any matching. The definition of a blocking pair must be extended to cover

this. To this end a pair (m,w) 6∈ M blocks M if

• m is either unmatched, or prefers w to his partner in M , and

• w is either unmatched, or prefers m to her partner in M .
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It is known that, for an instance of SM in which the sets of men and women are of unequal

size, there is at least one stable matching in which all the members of the smaller set

are matched. Furthermore, all the members of the smaller set are matched in all stable

matchings, and the larger set is partitioned into two subsets, the members of one subset

being matched in all stable matchings and the members of the other in none [41]. It can

be shown that an instance of SM with sets of unequal size has exactly the same set of

stable matchings as the same instance with the unmatched people deleted, so the results

detailed above for the classical case carry over.

Henceforth we assume, unless stated otherwise, that all instances of SM may have sets of

unequal size.

1.3.2 Incomplete lists

We now consider SM when incomplete preference lists are allowed. We denote this problem

SMI (Stable Marriage with Incomplete lists). If a person wishes to declare one or more

members of the other set unacceptable as a partner then they are omitted from that

person’s preference list. A preference list is consistent if a man m appears on a woman w’s

list if and only if w appears on m’s list. Consistency of preference lists will be assumed

throughout, as it can be simply enforced in time linear in the input size without changing

the set of stable matchings. A man m and a woman w are mutually acceptable, or just

acceptable in view of the consistency of the preference lists, if they each appear on the

other’s preference list. The most obvious effect of this extension is that some matchings

may not be complete, i.e., there may be people who are unmatched in any given matching.

Thus we must redefine the concepts of a matching and a blocking pair. Let A be the set of

acceptable pairs in an instance I of SMI, and denote |A| by a. A matching M is a subset

of A such that |{m : (m,w) ∈ M}| ≤ 1 for all m and |{w : (m,w) ∈ M}| ≤ 1 for all w. A

pair (m,w) ∈ A \ M , blocks M if

• m is either unmatched, or prefers w to his partner in M , and

• w is either unmatched, or prefers m to her partner in M .

It is known that, in an instance of SMI, the men and the women are each partitioned into

two sets - those that have partners in all stable matchings and those that have partners in
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none [9]. It is also known that, as in the case of sets of unequal size, an instance of SMI has

the same set of matchings as the SM instance obtained by deleting the unmatched pairs

and then, for each remaining person p, appending all remaining people of the opposite sex

not already appearing on p’s list, so again all the results detailed above carry over. We

often use a as a measure for time complexity, where a is the number of acceptable pairs

in a problem instance.

Finally we mention in brief SMIF (Stable Marriage with Incomplete Lists and Forbidden

pairs). This problem involves an instance of SMI and a set F of forbidden pairs. We look

for a stable matching which does not include a pair in F . Note that a pair from F , while it

cannot appear in a matching, can block a matching, thus differentiating a forbidden pair

from an unacceptable pair. Dias et al. [5] give an algorithm, linear in the input size, to

determine whether an instance of SMF (Stable Marriage with Forbidden pairs) admits a

stable matching, and if so the algorithm outputs one.

1.4 The structure of Stable Marriage

Now we consider the structure of the set of all stable matchings for an instance of SMI.

Thus far we have only encountered the man- and woman-optimal stable matchings, but

there may be other stable matchings (or indeed the man-optimal and woman-optimal sta-

ble matchings may coincide, in which case there is clearly only one stable matching). In

fact, the set of all stable matchings for a given instance of the classical stable marriage

problem forms a distributive lattice with the man- and woman-optimal stable matchings

representing the two extreme elements of the lattice [31]. It is known that for each n > 0,

n a power of 2, there is an instance of SM of size n with at least 2n−1 stable matchings [24].

Thus the maximum number of stable matchings for a given instance grows exponentially as

the size of the instance increases. It follows that, for efficient algorithms to exploit this lat-

tice structure, a compact representation of the structure is required. Such a representation

was discovered by Irving and Leather [24], and we describe it below.

For an instance I of SMI, the shortlists are the non-empty preference lists after the ap-

plication of the man-oriented extended Gale-Shapley algorithm to I. A reduced set of

preference lists is a set obtainable from the shortlists by zero or more deletions such that:
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1. no list is empty;

2. woman w is absent from man m’s list if and only if m is absent from w’s list.

For a given set L of reduced preferences we denote the first, second and last people on x’s

list by fL(x), sL(x) and lL(x) respectively, dropping the subscript if it is obvious which

set of lists applies. Note that if x has a list of length 1 then f(x) and l(x) will coincide,

while s(x) will be undefined.

For ease of exposition, we say that a person prefers every person who appears on their

initial preference list to any person who does not. A set S of reduced preference lists is

stable if, for each man m and woman w,

1. w = fS(m) if and only if m = lS(w);

2. w is absent from m’s list if and only if w prefers lS(w) to m.

The shortlists are a stable set [24].

It is known that, if each man is matched with the first woman on his list in a stable set

S, then the result is a stable matching [24]. We call the matching so derived the matching

derived from S, and we denote it by MS . In fact, for a given SMI instance, there is

a one-to-one correspondence between the stable sets and the stable matchings for that

instance [24].

A rotation ρ is an ordered sequence of pairs {(m0, w0), (m1, w1), ..., (mr−1, wr−1)} in a

stable set S where each mi is a man and each wi a woman, r ≥ 2, wi+1 = f(mi+1) = s(mi)

(0 ≤ i ≤ r − 1), and the subscripts are taken modulo r. Such a rotation is said to be

exposed in S. We also say that a rotation is exposed in a stable matching M if it is

exposed in the stable set from which M is derived. To eliminate a rotation we delete

from S the pairs (m,wi+1) for each i, and for all successors m of mi on wi+1’s list. The

resulting set of lists is denoted by S \ρ. It is known that, if a rotation is eliminated from a

stable set S in which it is exposed, then the resulting set of reduced preference lists is also

stable [24]. Further, for a stable set S, and a stable matching M in which man m has a

poorer partner than pMS
(m), there is a rotation exposed in S all of whose male members

have worse partners in M than in MS [24]. It follows that there is a rotation exposed
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in any stable set unless the matching derived from the stable set is the woman-optimal

stable matching for the original SMI instance. As noted above, for a given SMI instance,

there is a one-to-one correspondence between the stable sets and the stable matchings,

and further, each stable set can be obtained from the shortlists by a sequence of zero or

more rotation eliminations [24].

A rotation ρ1 is said to precede a rotation ρ2 if ρ1 must be eliminated before any stable set

in which ρ2 is exposed can be obtained. It is possible to find the rotations for an instance

of SM in O(n2) time [13]. We say that a pair is deleted by a rotation if it is deleted when

that rotation is eliminated from a stable set in which it is exposed. It is known that no

pair is deleted by more than one rotation [24]. When finding the rotations it is an easy

matter to note which rotation any given pair is deleted by, and whether that pair is in the

rotation it is deleted by. We denote by ρ(m,w) the rotation that deletes the pair (m,w).

Clearly a given rotation may have more than one such designation. We can then construct

a representation of the rotation poset , where the partial order is that of precedence defined

above, in O(a) time, using the algorithm in Figure 1.1 [15].

for each man m

{ % := null;

set all women on m’s list to be unmarked;

while there is some unmarked woman on m’s list

let w be the first unmarked woman on m’s list;

if (m, w) ∈ ρ(m,w)

{ make % precede ρ(m,w);

% := ρ(m,w);}

else

make ρ(m,w) precede %;}

Figure 1.1: Algorithm POSET: constructing a representation of the rotation poset for an

instance of SMI

A closed subset of a poset P is a subset S of the elements in P , such that, for each element

e ∈ S, every predecessor f of e in P is in S. It is known that the stable matchings for an

instance of SMI are in one-to-one correspondence with the closed subsets of the rotation

poset for that instance [24].
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1.5 Exploiting the lattice

There are a number of problems which can be solved by exploiting the rotation poset, or

by making use, directly or indirectly, of rotations. These problems include generating all

the stable matchings for an instance of SM, and determining whether a given pair is stable.

As was noted previously, the number of stable matchings for a given instance of SM may

be exponential in the size of the instance. However, Gusfield [13] showed that, given the

rotation poset, the set of stable matchings for an instance I of SM can be generated in

O(nk) time, for a problem of size n with k matchings. Additionally Gusfield showed that

all the stable pairs for I can be found in O(n2) time. Indeed, it can be shown that every

stable pair must either appear in some rotation, or in the woman-optimal stable matching.

Furthermore, the algorithms for finding stable matchings discussed previously all find

matchings that are optimal for one of the two sets involved in the matching process, and

we have also seen that this optimality forces the matching to be pessimal for the second set.

This raises the question: Can we find a matching that treats the two sets more equally?

Below we describe two possible “equitable” matchings.

1.5.1 An egalitarian stable matching

If mr(m,w) is the position of woman w in man m’s list, and wr(m,w) is the position of

m in w’s list, then the man-optimal stable matching minimises

Σ(m,w)∈Mmr(m,w)

and maximises

Σ(m,w)∈Mwr(m,w)

over all stable matchings for a given instance of SM. To obtain a matching which treats the

two sets more fairly, the egalitarian matching minimises the total weight of the matching

over all stable matchings, where the weight, w(M) is the total of the two summations

above, i.e.,
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w(M) = Σ(m,w)∈M (mr(m,w) + wr(m,w)).

Clearly this treats the men and women equally, as the formula being minimised involves a

term for each person regardless of their gender. Irving et al. [25] showed that an egalitarian

stable matching can be found in O(n4) time, by first finding all the rotations for the given

instance of SM and then exploiting the structure of the rotation poset. Later Feder [6]

improved on this bound, with an O(n2.5 log n) time algorithm.

1.5.2 A minimum regret stable matching

For a stable matching M the regret of person x is the position in x’s preference list of

pM (x). The regret of M is the maximum regret of any person in M . In other words the

regret of M is a measure of how badly off the worst-off person in the matching is. The

problem of finding a minimum regret stable matching over all the stable matchings for a

given instance of SM was first proposed by Knuth [31], with a solution presented in [31]

attributed to Selkow. Gusfield [13] gave an alternative algorithm that runs in O(n2) time

as opposed to the O(n4) complexity of Selkow’s solution.

1.6 Indifference

A natural extension to the classical problem, which leads to a variety of interesting prob-

lems and results, is to allow indifference in the lists. This is highly relevant in practice,

as one can easily envisage a matching scheme in which some participant is particularly

popular, and is therefore unable or unwilling to produce a strict ranking over all those

participants it is required to rank.

The most natural form of indifference involves ties. A set W of k women forms a tie of

length k in the preference list of man m if m does not prefer wi to wj for any wi, wj ∈ W

(i.e., m is indifferent between wi and wj), while for any other woman w who is acceptable

to m, either m prefers w to all of the women in W , or m prefers all of the women in

W to w. A tie on a woman’s list is defined analogously. For convenience we consider an

untied entry in a preference list as a tie of length 1 throughout. By the head and tail of a
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preference list we mean the first and last ties respectively on that list. We consider both

Stable Marriage with Ties and complete lists (SMT) and Stable Marriage with Ties and

Incomplete lists (SMTI).

Given an instance I of SMT(I), we often wish to work with one or more instances of SM(I)

which are obtainable from I by breaking the ties. Such an instance of SM(I) is called a

derived instance.

The inclusion of indifference forces a re-evaluation of the concept of stability, via blocking

pairs. We could view a pair, not in a matching, as blocking that matching if, by coming

together,

• both parties would be better off, or

• neither party would be worse off, or

• one party would be better off and the other no worse off.

These three possibilities give rise to the notions of weak stability, super-stability, and

strong stability, respectively, first considered by Irving [22]. We now formally define these

three forms of stability, by defining a blocking pair for each case, and we discuss the

properties they exhibit in both SMT and SMTI.

1.6.1 Stable Marriage with ties

Weak Stability

The first notion of stability that we consider is the weakest of the three. Let I be an

instance of SMT. A pair which does not appear in M blocks M if each member of the pair

prefers the other to their partner in M . If there is no blocking pair for M , M is said to be

weakly stable. Alternatively M is weakly stable in I if it is stable in at least one instance

I ′ of SM which can be derived from I, a result which is implicit in [10] and was explicitly

noted in [15].

A weakly stable matching exists for every instance of SMT, and can be found by forming a

derived instance of SM, and applying the GS algorithm [10]. However, beyond this, weak
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stability has proven to be a difficult concept. For example, it is known that the problems of

finding an egalitarian weakly stable matching and finding a minimum regret weakly stable

matching are both NP-hard, even if the ties are on one side only, there is at most one tie

per list and each tie has length 2 [40]. It has since been shown that both problems are

also not approximable within Ω(n) unless P=NP [16]. Additionally, determining whether

a given man-woman pair is weakly stable is NP-complete, even if the ties are at the tails

of lists and on one side only, and each tie has length 2 [40]. In fact, there is an instance of

SMT which admits neither a man-optimal weakly stable matching nor a woman-optimal

weakly stable matching [47], thus apparently precluding the existence of a lattice structure

similar to that discussed for SM.

Super-stability

The second notion of stability we consider is the strongest of the three. Let I be an instance

of SMT. In this case, a pair which does not appear in M blocks M if each member of the

pair prefers the other to their partner in M , or is indifferent between them. If there is

no such blocking pair for M , M is said to be super-stable. Alternatively a matching is

super-stable if it is stable in every instance I ′ of SM which can be derived from I [35].

It can be shown that an instance of SMT may admit no super-stable matching (trivially,

if each preference list for a given instance is a complete tie, so no strict preferences are

stated, then there can be no super-stable matching), but for an instance with n men and

n women, there is an O(n2) algorithm which determines if such a matching does exist, and

if so finds one [22].

Additionally the set of super-stable matchings for a given instance of SMT forms a finite

distributive lattice. This was first proved by Spieker [51], but an alternative and more

accessible proof was given by Manlove [38], in which he also showed that if a person

has different partners in two super-stable matchings then he or she cannot be indifferent

between them.

Note that indifference can also represent incomplete information. For example, suppose we

do not know whether a man m prefers a woman w1 to a woman w2, or vice versa. Then, if

we place w1 and w2 in a tie on m’s list and find a super-stable matching for the instance, we

can conclude that it does not matter what m’s preference is, as this matching will be stable
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in every instance of SM which can be derived from the original instance of SMT. Thus

super-stable matchings are the matchings of choice when indifference represents incomplete

information.

Strong Stability

The third and final notion of stability we consider falls between the two versions of stability

already described. Let I be an instance of SMT. In this intermediate case, a pair which

does not appear in M blocks M if one member of the pair prefers the other to their partner

in M while the other is at least indifferent. If there is no such blocking pair for M , M

is said to be strongly stable. Alternatively, the following is shown to be an equivalent

definition of a strongly stable matching in [35]: a matching M is strongly stable in an

instance I of SMT if and only if

1. there is some instance I ′ of SMT obtainable from I by breaking the ties on the men’s

side, such that for every instance of SM obtainable from I ′ by breaking the ties (on

the women’s side), M is stable, and

2. there is some instance I ′ of SMT obtainable from I by breaking the ties on the

women’s side, such that for every instance of SM obtainable from I ′ by breaking the

ties (on the men’s side), M is stable.

It is clear that a super-stable matching is strongly stable, and a strongly stable matching

is weakly stable.

It is known that, for a given instance of SMT, a strongly stable matching may not exist [10].

For example, in the instance of SMT in Figure 1.2, in which parentheses enclose people tied

in a preference list (this notation is used throughout), the matching {(m1, w1), (m2, w2)}

is blocked by (m2, w1) while the matching {(m1, w2), (m2, w1)} is blocked by (m2, w2).

However, for an instance of SMT with n men and n women, there is an O(n4) algorithm

which determines if such a matching does exist, and if so finds one [22] 1.

As with the set of super-stable matchings for a given instance of SMT, the set of strongly

stable matchings forms a finite distributive lattice [38], though in this case the strongly

1Kavitha et al. [30] have recently published an algorithm that finds a strongly stable matching in SMTI

in O(ka) time, if one exists, where k is the total number of men and women in the instance.
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m1 : w1 w2 w1 : m2 m1

m2 : (w1 w2) w2 : m2 m1

Figure 1.2: An instance admitting no strongly stable matching

stable matchings must first be grouped into equivalence classes. To this end, two matchings

M and M ′ are in the same equivalence class if and only if every man is indifferent between

M and M ′.

1.6.2 Stable Marriage with ties and incomplete lists

Each of the three versions of stability displays different properties when the preference

lists are incomplete.

1.6.3 Weak stability with incomplete lists

A matching M in an instance I of SMTI is weakly stable if and only if M is stable in

some instance I ′ of SMI which can be derived from I. The definition of a blocking pair

is a straightforward extension of that for SMT, taking into account the possibility that a

person may be unmatched in a given matching. Again, a weakly stable matching exists

for every instance of SMTI, and can be found by forming a derived instance of SMI, and

applying the GS algorithm [10].

Weak stability has proven to be an even more difficult concept with incomplete lists.

Most intriguingly, in an instance of SMTI it is known that weakly stable matchings may

have different cardinality. Furthermore, finding the maximum (or minimum) cardinality

weakly stable matching for a given instance of SMTI is NP-hard. This holds even if the

ties are at the tails of lists and on one side only, and each tie has length 2 [40], though the

largest matching is at most twice the size of the smallest [40]. More recently, it has been

established that these problems are not approximable within δ, unless P=NP, for some

δ > 1, even if the preference lists are of constant length, there is at most one tie per list, and

the ties occur on one side only [16]. We denote the problem of finding a maximum (resp.

minimum) cardinality weakly stable matching by Maximum (resp. Minimum) Cardinality
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SMTI.

Above we noted that a maximum cardinality weakly stable matching is at most twice the

size of a minimum cardinality weakly stable matching. Hence if we break all ties in an

arbitrary way and apply the GS algorithm to the resulting instance of SMI we get what

is simultaneously an approximation algorithm for both Maximum Cardinality and Mini-

mum Cardinality SMTI with a performance ratio of 2. In Section 7.3 we demonstrate an

improved performance bound for instances of SMTI with sparse ties. This work appeared

in [16]. Recently three other pieces of work relating to approximating maximum cardi-

nality weakly stable matchings have appeared in the literature. In [18], Halldórsson et al.

present a randomised approximation algorithm with expected performance guarantee 10
7

for instances of SMTI in which ties occur on one side only, there is at most one tie per list,

and each tie has length 2. In [17], the same authors present an approximation algorithm

with performance guarantee 2
(1+ 1

L2 )
for instances of SMTI in which ties occur on one side

only, and each tie has length at most L. Additionally they show a ratio of 13
7 where ties

are allowed on both sides, and are of length 2. Finally, in [29] Iwama et al. present an

approximation algorithm for a general instance of SMTI with guarantee 2− c log(n)
n , for an

instance of size n, where c is an arbitrary positive constant.

Additionally, for a given instance I of SMTI, the following problems are all known to be

NP-complete [39]:

• determining whether a given person is matched in some weakly stable matching,

even if the ties are at the tails of lists, on one side only, and each tie has length 2;

• given a complete weakly stable matching S, determining whether I admits a complete

weakly stable matching T 6= S, even if the ties occur on one side only, there is at

most one tie per list, and each tie has length 2;

• given a weakly stable matching S, determining whether I admits a weakly stable

matching T such that |T | < |S|, even if the ties occur on one side only, there is at

most one tie per list, and each tie has length 2;

• given a weakly stable matching S, determining whether I admits a weakly stable

matching of size |S| + 1.
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One of the rare positive results to have been proven with regard to SMTI under weak

stability is that weak stability is an interpolating invariant, i.e., for an instance I of SMTI,

there is a matching of size k, weakly stable with respect to I, for each p ≤ k ≤ q, where

p is the size of a minimum cardinality weakly stable matching in I and q is the size of a

maximum cardinality weakly stable matching in I [40].

In Chapters 7 and 8 we present a number of results relating to weak stability in SMT and

SMTI, and relating to some restrictions of these problems which are of interest.

1.6.4 Super-stability with incomplete lists

A matching M in an instance I of SMTI is super-stable if and only if it is stable in every

instance I ′ of SMI which can be derived from I. The definition of a blocking pair is again

a straightforward extension of that for SMT, taking into account the possibility that a

person may be unmatched in a given matching.

It can be shown that an instance of SMTI may admit no super-stable matching (for the

same reason as with complete lists), but, for an instance with a acceptable pairs, there is

an O(a) algorithm which determines if such a matching does exist, and if so finds one [34].

This algorithm, Algorithm SUPER2, is heavily used in later chapters, so we include it in

Section 1.7 below for completeness. It is also known that the existence of a super-stable

matching M for a given instance of SMTI forces all weakly stable matchings for that

instance to have the same size, namely |M | [27].

For a given instance of SMTI, if M and M ′ are two super-stable matchings, then, for any

person p in the instance, p is matched in M if and only if p is matched in M ′ [34]. The

main consequence of this is that, for a given instance of SMTI, the set of people can be

partitioned into two disjoint sets, those matched in all super-stable matchings, and those

matched in none. In view of this and the fact that the set of super-stable matchings for a

given instance of SMT forms a finite distributive lattice, it can be shown that the set of

super-stable matchings for a given instance of SMTI forms a finite distributive lattice [34].

Further, since a super-stable matching M for an instance I of SMTI is stable in every

instance I ′ of SMI which can be derived from I, and we can partition the people in each I ′

into those who are matched in every stable matching and those who are matched in none,

it follows that a person p is matched in M if and only if p is matched in every weakly
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stable matching for I.

We show in Chapter 6 that there is a non-trivial extension of the concept of a rotation

which allows us to exploit the lattice structure for the set of super-stable matchings in an

instance of SMTI in an efficient manner. We make use of this to find all the super-stable

pairs and generate all the super-stable matchings for an instance of SMTI, and to find

egalitarian and minimum regret super-stable matchings for an instance of SMT.

1.6.5 Strong stability with incomplete lists

The definition of a strongly stable matching in an instance of SMTI, in terms of tie-break

instances, is analogous to the definition for SMT, but with each reference to SMT replaced

by SMTI. The definition of a blocking pair is again a straightforward extension of that

for SMT, taking into account the possibility that a person may be unmatched in a given

matching.

It can be shown that, for a given instance of SMTI, a strongly stable matching may not

exist (see example 1.2 above), but, for an instance with a acceptable pairs, there is an

O(a2) algorithm which determines if such a matching does exist, and if so finds one [34] 2.

For a given instance of SMTI, if M and M ′ are two strongly stable matchings, then, for

any person p in the instance, p is matched in M if and only if p is matched in M ′ [34]. The

main consequence of this is that, for a given instance of SMTI, the set of people can be

partitioned into two disjoint sets, those matched in all strongly stable matchings, and those

matched in none. In view of this and the fact that the set of strongly stable matchings

for a given instance of SMT forms a finite distributive lattice, it can be shown that the

set of strongly stable matchings for a given instance of SMTI forms a finite distributive

lattice [34].

Finally we note that Stable Marriage with Ties, Incomplete lists and Forbidden pairs

(SMTIF) extends SMIF in a completely straightforward manner. We omit the details.

2Kavitha et al. [30] have recently published an algorithm that finds a strongly stable matching in SMTI

in O(ka) time, if one exists, where k is the total number of men and women in the instance.
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1.7 Algorithm SUPER2

As noted above, the algorithm for finding a super-stable matching in an instance of SMTI,

Algorithm SUPER2 [34], is heavily used in later chapters. We therefore present it here.

The algorithm involves a sequence of proposals from the men to the women. If a man m

has proposed to a woman w then, as long as w has not been deleted from m’s preference

list, we say that m and w are engaged. To delete a pair (m,w) is to break any engagement

between m and w, and remove m from w’s preference list, and w from m’s.

Algorithm SUPER2 begins by assigning each person to be free, and recording that every

woman has yet to receive a proposal. Then, so long as some man m is free and has a

non-empty list, m proposes to each woman w at the head of his preference list, and in so

doing becomes engaged to each of them. Additionally it is noted that w has received a

proposal. If w is multiply engaged then she cannot be matched in a super-stable matching

with any of the men in the tail of her list, and so the pairs (m′, w) for each man m′ in

w’s tail, are deleted, and hence any engagements involving any of these pairs are broken.

Otherwise, the pairs (m′, w) for each man m′ to whom w prefers m, are deleted, as w

cannot have a partner from amongst these men in any super-stable matching. Once the

while loop has terminated, if some woman is not engaged but received a proposal during

the execution of the algorithm, or if some man is multiply engaged, then no super-stable

matching exists. Otherwise the engagement relation specifies a super-stable matching.

Note that this algorithm outputs the man-optimal super-stable matching, and, if the roles

of the men and women are reversed, it will output the woman-optimal matching.

1.8 The Hospitals/Residents problem

We now consider the many-to-one extension of SMI which Gale and Shapley [8] called

the College Admissions problem, and which is now referred to as the Hospitals/Residents

problem (HR). An instance of HR involves two sets, a set R of residents and a set H

of hospitals. Each resident in R seeks to be assigned to exactly one hospital, and each

hospital h ∈ H has a specified number ph of posts, referred to as its quota. Each resident

ranks a subset of H in strict order of preference, and each hospital ranks, again in strict

order, those residents who have ranked it, so clearly preference lists may be incomplete.
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assign each person to be free;

for each woman w

proposed(w) := false;

while some man m is free and has a nonempty list

for each woman w at the head of m’s list{

m proposes, and becomes engaged, to w;

proposed(w) := true;

if w is multiply engaged and

w is indifferent between her two fiancés

for each man m′ at the tail of w’s list

delete the pair (m′, w)

else

for each strict successor m′ of m on w’s list

delete the pair (m′, w)}

if (some woman w is not engaged and proposed(w))

or some man is multiply engaged

no super-stable matching exists

else

output the engagement relation, a super-stable matching;

Figure 1.3: Algorithm SUPER2

The pairs contained within the preference lists are the acceptable pairs. We do not assume

that the number of residents is equal to the number of posts.

Let A be the set of acceptable pairs in an instance I of HR, and denote |A| by a. A matching

M is a subset of A such that |{h : (r, h) ∈ M}| ≤ 1 for all r ∈ R and |{r : (r, h) ∈ M}| ≤ ph

for all h ∈ H. For a hospital h we extend the notation pM(h) to denote the set of residents

assigned to a hospital in M . A hospital h is full if |pM (h)| = ph, and is under-subscribed

if |pM (h)| < ph. A pair (r, h) ∈ A \ M , blocks M if

• either r is unmatched in M , or r prefers h to pM(r), and

• either |pM (h)| < ph, or h prefers r to at least one member of pM (h).

A matching M is stable if there is no blocking pair for M .
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It is known that the Hospitals/Residents problem can be transformed to an instance of

SMI by making p clones, h1, ..., hp of a hospital h with p posts, with each clone having a

quota of one. When h appears on a resident’s preference list it is replaced by h1 to hp, in

that order. It can then be shown that the stable matchings in this derived instance are in

one-to-one correspondence with the stable matchings in the original instance. However,

this is not the approach that has been most studied in the literature. One weakness of

this approach is that it can increase the size of the instance by a factor of Ω(n), and hence

the GS algorithm applied to the resultant instance could be slower by a factor of Ω(n)

when compared to the direct approach described below [36]. Instead it is normal to solve

the original instance directly. An instance of HR can be solved by an extension of the

GS algorithm for SMI [8, 15]. SMI can be viewed as a restriction of HR in which each

hospital has quota 1 (and the residents and hospitals are re-named men and women). As

with SMI, a stable matching exists for every instance of HR, and all stable matchings for

a given instance have the same size [15]. The extension of the GS algorithm finds one

such matching in O(a) time [15]. Recent pressure from student bodies associated with the

NRMP has ensured that the extended version of the GS algorithm that is employed by

the scheme is now resident-oriented, meaning that it produces the resident-optimal stable

matching for a given instance of HR [43]. This is the unique stable matching M0 in which

every resident assigned in M0 is assigned the best hospital that he/she could obtain in any

stable matching, and any resident unassigned in M0 is unassigned in any stable matching.

Previously the Program had produced the hospital-optimal stable matching (see Theorem

1.8.1 below).

Although an instance of HR may admit more than one stable matching, it is known that

every stable matching has the same size, matches the same set of residents and fills the

same number of posts at each hospital. Further, any hospital that is under-subscribed

in some stable matching is assigned the same set of residents in every stable matching.

Collectively these results are known as the Rural Hospitals Theorem [9, 47, 48], because

usually it is hospitals in rural areas which end up under-subscribed.

The following result addresses the issue of preference from a hospital’s point of view.

Theorem 1.8.1. Suppose that M and M ′ are two stable matchings for an instance of

HR, and suppose that hospital h is assigned non-identical sets of residents in M and M ′.

If h prefers the least favoured resident in pM (h) \ pM ′(h) to the least-favoured resident in
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pM ′(h) \ pM (h), then h prefers all residents in pM (h) to all residents in pM ′(h) \ pM (h).

This result, due to Roth and Sotomayor [49], means that, excluding residents who are as-

signed to the hospital in both matchings, a hospital prefers all its partners in one matching

to all its partners in the other. It is therefore reasonable to say that the hospital prefers

the first matching to the second. This result can be used to show, in a manner similar

to that adopted earlier, that there is a finite distributive lattice under this dominance

relation [15].

1.8.1 The Hospitals/Residents Problem with ties

We now consider HRT, the Hospitals/Residents Problem with Ties. We assume that

preference lists may be incomplete, but do not make any assumption as to how the number

of residents and posts are related.

Weak Stability

Again we first consider the weakest version of stability. A pair (r, h) ∈ A \ M blocks the

matching M if

• either r is unassigned in M , or r prefers h to pM (r), and

• either |pM (h)| < ph, or h prefers r to at least one member of pM (h).

A matching that does not admit any such blocking pair is weakly stable. A weakly stable

matching exists for every instance of HRT, and can be found by forming a derived instance

of HR, and applying the resident-oriented GS algorithm. It turns out that, in contrast to

HR, weakly stable matchings for an instance of HRT may have different sizes, though the

size of the largest is at most twice the size of the smallest [40]. In addition, the hardness

and inapproximability results listed above for SMT and SMTI under weak stability hold

for HRT by restriction.

Super-Stability

A pair (r, h) ∈ A \ M blocks the matching M if
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• r is unassigned in M , or r prefers h to pM (r), or is indifferent between them, and

• |pM (h)| < ph, or h prefers r to at least one member of pM (h), or is indifferent

between r and at least one member of pM (h).

A matching that does not admit any such blocking pair is super-stable. As with SMT(I),

it is trivial to show that there are instances of HRT for which no super-stable matching

exists. However, there is an O(a) algorithm to determine whether an instance of HRT

admits a super-stable matching, and to find one if it does [27]. Additionally, the Rural

Hospitals Theorem holds for HRT under super-stability [27].

Strong Stability

A pair (r, h) ∈ A \ M blocks the matching M if either

• r is unassigned in M , or r prefers h to pM (r), and

• |pM (h)| < ph, or h prefers r to at least one member of pM (h), or is indifferent

between r and at least one member of pM (h).

or

• r is unassigned in M , or r prefers h to pM (r), or is indifferent between them, and

• |pM (h)| < ph, or h prefers r to at least one member of pM (h).

A matching that does not admit any such blocking pair is strongly stable. As with SMT(I),

it is trivial to show that there are instances of HRT for which no strongly stable matching

exists. In Chapter 2 we present a resident-oriented algorithm and a hospital-oriented

algorithm for HRT under strong stability, and we prove the Rural Hospitals Theorem for

strong stability directly. This result was already known [37], but our proof is shorter and

follows as a consequence of the correctness of the resident-oriented algorithm.
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1.9 Stable Roommates

In the Stable Roommates problem (SR), introduced by Gale and Shapley [8], each member

of a set of even cardinality ranks every other member of the set in strict order of preference.

In this context a matching is a partition of the set into disjoint pairs. Such a matching is

unstable if there is a pair, not in the matching, each of whom prefers the other to their

assigned roommate, and is otherwise stable. As in SM, such a pair is said to block the

matching, or to be a blocking pair for the matching. The terminology used for SR is

essentially the same as for SM, with the only significant differences being that pairs are

unordered, so the notation used to represent pairs is {x, y} as opposed to (x, y), and that

we refer to agents instead of men and women.

Stable Roommates with Incomplete lists is a generalisation of SM. There is, however, also

a sense in which SR is a generalisation of SM. Given an instance I of SM involving n men

and n women, there is an instance I ′ (in fact there are many instances) of SR involving

these 2n agents, such that the stable matchings for I ′ are precisely the stable matchings

for I [15]. There are, nonetheless, also some significant differences between SM and SR.

The most striking of these is that there are instances of SR which do not admit a stable

matching [8]. For example, in the instance in Figure 1.4, agent 4 cannot be matched with

any of the other three agents in the instance without creating a blocking pair. Thus there

cannot be a stable matching for the instance.

1 : 3 2 4

2 : 1 3 4

3 : 2 1 4

4 : 1 2 3

Figure 1.4: An instance admitting no stable matching

Knuth [31] presented the possibility of a polynomial-time algorithm to solve SR as an open

problem. This question was resolved by Irving [20], who gave an O(n2) algorithm which

determines whether a given instance of SR admits a stable matching, and if so finds one.

As with SM, we are interested in various generalisations of SR. If preference lists may

be incomplete, so that agents are free to designate certain others as unacceptable, then



CHAPTER 1. REVIEW OF STABLE MARRIAGE LITERATURE 23

a stable matching, if one exists, may or may not be complete [15]. However, if a stable

matching does exist, then in every stable matching the same set of agents are matched,

so that, in particular, all stable matchings have the same size [15]. Irving’s algorithm [20]

works for this case, and has O(a) complexity, where a is the number of acceptable pairs.

It is also known that the stable matchings for a solvable instance of Stable Roommates with

Incomplete lists (SRI) exhibit a semi-lattice structure. This structure can be exploited

to solve in polynomial-time a number of problems for instances of SR which admit a

stable matching, specifically finding a minimum regret stable matching, finding the stable

pairs, and finding all stable matchings in time O(n2), O(n3 log n) and O(n3 log n + n2k)

respectively [12,14,21], where n is the number of agents in the instance and k is the number

of stable matchings. It is, however, known that finding an egalitarian stable matching is

NP-hard [6].

1.10 Stable Roommates with ties and incomplete lists

We consider Stable Roommates with Ties and Incomplete lists (SRTI). As before there

are three types of stability to consider.

For weak stability , a blocking pair for a matching M is a pair that does not appear in M

such that each member of the pair is either unmatched in M , or prefers the other to their

partner in M . Unlike SMTI, for which it is easy to find a weakly stable matching, the

problem of finding a weakly stable matching in an instance of SRTI is NP-hard, even if

there is at most one tie per list, each tie has length 2, and all lists are complete [46].

For super-stability , a blocking pair for a matching M is a pair that does not appear in M

such that each member of the pair is either unmatched in M , or prefers the other to their

partner in M , or is indifferent between them. There is an algorithm, linear in the input

size, which determines whether an instance of SRTI admits a super-stable matching, and

if so finds one [26].

Finally, for strong stability , a blocking pair for a matching M is a pair that does not appear

in M such that one member of the pair is either unmatched in M , or prefers the other to

their partner, while the other is unmatched in M or prefers their partner to the first, or

is indifferent between them. In Chapter 3 we present an O(a2) algorithm to determine if
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an instance of SRTI admits a strongly stable matching, and if so find one.

1.11 Many-to-many stable matchings

We introduce, and later study, a many-to-many extension of Stable Roommates. Bäıou

and Balinski [1] have shown that the extension of SM to a many-to-many bipartite prob-

lem can be solved in O(n2) time, where n is the size of the larger set, and that the major

structural results of SM carry over. In Chapter 4 we consider the extension of SRI to a

many-to-many non-bipartite matching problem, called the Stable Fixtures problem, where

each agent seeks to be matched with a number of other agents. The concept of stability

is extended in the obvious manner. We present an O(a) algorithm to determine whether

a stable matching exists in an instance of this problem, and if so the algorithm finds one.

Additionally, in Chapter 5, we consider Stable Fixtures with Ties, where again the defi-

nition of stability is extended in the obvious manner. We present an O(a) algorithm to

determine whether an instance of Stable Fixtures with Ties admits a super-stable match-

ing, and if so the algorithm finds one. We also briefly discuss the problems of finding

weakly and strongly stable matchings. Note that Stable Fixtures is a generalisation of

Stable Marriage and Hospitals/Residents as well as Stable Roommates, and in view of

this, algorithms for finding stable matchings in variants of Stable Fixtures are powerful

tools. Recently an extension of Stable Fixtures, called Stable Multiple Activities (SMA),

has been studied by Cechlárová and Fleiner [3]. In this extension, there may be more than

one way in which two agents can be matched, and the agents can exhibit preferences over

these ways. Cechlárová and Fleiner show that SMA can be efficiently reduced to SRI.



Chapter 2

Strong Stability in HRT

2.1 Introduction

In this chapter we present two algorithms for HRT under strong stability. The first is

resident-oriented, and the second is hospital-oriented. There is a sense in which strong

stability can be viewed as the most appropriate criterion for a practical matching scheme

when there is indifference in the preference lists, and that in cases where a strongly stable

matching exists, it should be chosen instead of a matching that is merely weakly stable.

Consider a weakly stable matching M for an instance of HRT, and suppose that r is

unassigned in M , or prefers h to pM (r), while h is indifferent between r and its worst

assignee. Such a pair (r, h) would not constitute a blocking pair for weak stability (as-

suming |pM (h)| = ph). However, r might have such an overriding preference for h over

pM (r) that he is prepared to engage in persuasion, even bribery, in the hope that h will

reject r′ and accept r instead. Hospital h, being indifferent between r and r ′, may yield

to such persuasion, and, of course, a similar situation could arise with the roles reversed.

However, the matching cannot be undermined in this way if it is strongly stable. On the

other hand, insisting on super-stability seems unnecessarily restrictive, since if (r, h) is a

blocking pair for super-stability but not for strong stability, neither r nor h has any real

incentive to seek a change. Hence strong stability avoids the possibility of a matching

being undermined by persuasion or bribery, and is therefore a desirable property in cases

where it can be achieved.

In section 2.2 we present an O(a2) algorithm for finding a strongly stable matching, if

25
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one exists, given an instance of HRT, thus solving an open problem presented in [27].

The algorithm is resident-oriented in that it finds a strongly stable matching with sim-

ilar optimality properties to those of the resident-optimal stable matching in HR. This

algorithm is a non-trivial extension of the strong stability algorithms for SMT and SMTI

due to Irving [22] and Manlove [34] respectively. We also show that the analogue of the

Rural Hospitals Theorem for HR holds for HRT under strong stability. In Section 2.3

we establish the complexity of the algorithm to be O(a2). In Section 2.4 we adapt the

resident-oriented algorithm to produce a hospital-oriented counterpart, and in Section 2.5

we show that the latter also has O(a2) complexity. Finally, Section 2.6 presents our con-

clusions and a number of other advances, some made in response to the publication of the

resident-oriented algorithm [28].

2.2 A resident-oriented algorithm for strong stability in HRT

In this section we describe the resident-oriented algorithm for finding a strongly stable

matching, if one exists, given an instance of HRT and prove its correctness. Before doing

so, we present some definitions relating to the algorithm.

Recall that a hospital h such that |{r : (r, h) ∈ M}| = ph is said to be full in the matching

M . During the execution of the algorithm residents become provisionally assigned to

hospitals, and it is possible for a hospital to be provisionally assigned a number of residents

that exceeds its quota. At any stage, a hospital is said to be over-subscribed, under-

subscribed or fully-subscribed according as it is provisionally assigned a number of residents

greater than, less than, or equal to its quota. We describe a hospital as replete if at any

time during the execution of the algorithm it has been over-subscribed or fully subscribed.

The algorithm proceeds by deleting from the preference lists pairs that cannot be strongly

stable. By the deletion of a pair (r, h), we mean the removal of r and h from each other’s

lists, and, if r is provisionally assigned to h, the breaking of this provisional assignment.

We say that a resident r is dominated on a hospital h’s list if h prefers to r at least ph

residents who are provisionally assigned to it.

Recall that the tail of a preference list is the last tie on that list. A resident r who is

provisionally assigned to a hospital h is said to be bound to h if h is not over-subscribed or
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r is not in h’s tail (or both). The provisional assignment graph G is a bipartite graph with

a vertex for each resident and each hospital, with (r, h) forming an edge if resident r is

provisionally assigned to hospital h. Note that a number of such graphs may be constructed

during the execution of the algorithm, and we refer to a resident (resp. hospital) and the

vertex that represents that resident (resp. hospital) interchangeably. A feasible matching

in a provisional assignment graph is a matching M such that, if r is bound to one or

more hospitals, then r is matched with one of these hospitals in M , and subject to this

restriction, M has maximum possible cardinality.

A reduced assignment graph GR is formed from a provisional assignment graph as follows.

For each resident r, and for each hospital h such that r is bound to h, we delete the edge

(r, h) from the graph, and we reduce the quota of h by one; furthermore, we remove all

other edges incident on r. Each isolated resident vertex is then removed from the graph.

Finally, if the quota of any hospital h is reduced to 0, or h becomes an isolated vertex, then

h is removed from the graph. For each surviving h we denote by p′
h the revised quota of

h. Note that the reduced assignment graph is formed afresh from the current provisional

assignment graph in each loop iteration.

Given a set Z of residents in GR, we define N (Z), the neighbourhood of Z, to be the set of

hospital vertices adjacent in GR to a resident vertex in Z. The deficiency of Z is defined

by δ(Z) = |Z| −
∑

h∈N (Z) p′h. It is not hard to show that, if Z1 and Z2 are maximally

deficient, then so also is Z1∩Z2, so there is a unique minimal set with maximum deficiency.

This is the critical set.

The algorithm, displayed in Figure 2.1, begins by assigning each resident to be free (i.e.,

not assigned to any hospital). The iterative stage of the algorithm involves each free

resident in turn being provisionally assigned to the hospital(s) at the head of his list. If,

by gaining a new provisional assignee, a hospital h becomes fully- or over-subscribed then

each pair (r, h), such that r is dominated on h’s list, is deleted. This continues until every

resident is provisionally assigned to one or more hospitals or has an empty list. We then

find the reduced assignment graph GR and the critical set Z of residents. As we will see

later, no hospital in N (Z) can be assigned a resident from those in its tail in any strongly

stable matching, so all such pairs are deleted. The iterative step is then reactivated, and

this entire process continues until Z is empty, which must happen eventually, since if Z is

found to be non-empty, then at least one pair is subsequently deleted from the preference
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lists.

Let M be any feasible matching in the final provisional assignment graph G. If M is not

strongly stable then no strongly stable matching exists, otherwise the algorithm outputs

M .

assign each resident to be free;

repeat {

while some resident r is free and has a non-empty list

for each hospital h at the head of r’s list {

provisionally assign r to h;

if h is fully-subscribed or over-subscribed

for each resident r′ dominated on h’s list

delete the pair (r′, h); }

form the reduced assignment graph;

find the critical set Z of residents;

for each hospital h ∈ N (Z)

for each resident r in the tail of h’s list

delete the pair (r, h);

} until Z = ∅;

let G be the final provisional assignment graph;

let M be a feasible matching in G;

if M is not strongly stable

no strongly stable matching exists;

else

output the strongly stable matching specified by M ;

Figure 2.1: Algorithm HRT-strong-R

The correctness of Algorithm HRT-strong-R, and an optimality property of any strongly

stable matching that it finds, are established below.

Lemma 2.2.1. No strongly stable pair is ever deleted during an execution of Algorithm

HRT-strong-R.

Proof Suppose that the pair (r, h) is the first strongly stable pair deleted during some

execution of the algorithm, and let M ′ be a strongly stable matching in which r is assigned
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to h. There are two cases to consider.

Case 1: Suppose (r, h) is deleted as a result of some other resident, r ′ say, becoming

provisionally assigned to h, so that r is dominated on h’s list. Call the set of residents

provisionally assigned to h at this point R′. None of the residents in R′ can be assigned

to a hospital they prefer to h in any strongly stable matching, for otherwise some strongly

stable pair must have been deleted before (r, h), as h must be in the head of each of the

lists of the residents in R′. In M ′, at least one of the residents in R′, r′′ say, cannot be

assigned to h, so r′′ is either unmatched in M ′, or prefers h to pM ′(r′′), or is indifferent

between h and pM ′(r′′). It follows that (r′′, h) blocks M ′, a contradiction.

Case 2: Suppose that (r, h) is deleted because h is provisionally assigned a resident in the

critical set Z at some point, and at that point r is in h’s tail. We refer to the set of lists

at that point as the current lists. Let Z ′ be the set of residents in Z who are assigned

in M ′ to a hospital from the head of their current list, and let H ′ be the set of hospitals

in N (Z) who are assigned in M ′ at least one resident from the tail of their current list.

Then h ∈ H ′, so H ′ 6= ∅. Consider r∗ ∈ Z. Now r∗ cannot be matched in M ′ with a

hospital that he prefers to any member of the head of his current list, for otherwise some

strongly stable pair must have been deleted before (r, h). Hence, any resident r∗ in Z

who is provisionally assigned to h must be in Z ′, otherwise (r∗, h) would block M ′. Thus

Z ′ 6= ∅.

We now claim that N (Z \ Z ′) is not contained in N (Z) \ H ′. For, suppose that the

containment does hold. Then

|Z \ Z ′| −
∑

h∈N (Z\Z′) ph ≥ |Z \ Z ′| −
∑

h∈N (Z)\H′ ph

= |Z| −
∑

h∈N (Z) ph − (|Z ′| −
∑

h∈H′ ph).

But |Z ′| −
∑

h∈H′ ph ≤ 0, because every resident in Z ′ is matched in M ′ with a hospital

in H ′. Hence Z \ Z ′ has deficiency greater than or equal to that of Z, contradicting the

fact that Z is the critical set. Thus the claim is established.

Hence there must be a resident r1 ∈ Z \ Z ′ and a hospital h1 ∈ H ′ such that r1 is

provisionally assigned to h1. Since r1 is either unmatched in M ′ or prefers h1 to pM ′(r1)
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and h1 is indifferent between r1 and at least one member of pM ′(h1), the pair (r1, h1)

blocks M ′, a contradiction.

We continue with three auxiliary lemmas.

Lemma 2.2.2. Every resident who is assigned to a hospital in the final provisional as-

signment graph G must be assigned in any feasible matching M .

Proof The result is true by definition for any bound resident. Consider the other residents

assigned in G. Any x of them must be collectively adjacent in GR to hospitals with at

least x posts, otherwise one of them is in the critical set Z, and hence Z 6= ∅. But, by a

simple extension of Philip Hall’s Theorem, this means that they are all matched in any

maximum cardinality matching in GR, and hence they must be matched in any feasible

matching M .

Lemma 2.2.3. Let M be a feasible matching in the final provisional assignment graph G.

If (a) some non-replete hospital h has fewer assignees in M than provisional assignees in

G, or (b) some replete hospital h is not full in M , then no strongly stable matching exists.

Proof Suppose that M ′ is a strongly stable matching for the instance. Every resident

provisionally assigned to a hospital in the final assignment graph G must be assigned to

a hospital in M (by Lemma 2.2.2), and any resident not provisionally assigned in G must

have an empty list and hence no strongly stable partners (by Lemma 2.2.1). It follows

that |M ′| ≤ |M |.

Suppose that condition (a) is satisfied. Then some non-replete hospital h′ satisfies |pM (h′)| <

dG(h′), where dG(h′) is the degree of vertex h′ in G, i.e., the number of residents provi-

sionally assigned to h′. As h′ is non-replete, it follows that dG(h′) < ph′ . Now |pM (h)| ≤

min(dG(h), ph) for all h ∈ H. Hence

|M | =
∑

h∈H

|pM (h)| <
∑

h∈H

min(dG(h), ph). (2.1)

Now suppose that |pM ′(h)| ≥ min(dG(h), ph) for all h ∈ H. Then |M ′| > |M | by 2.1, a

contradiction. Hence |pM (h′′)| < min(dG(h′′), p′′h) for some h′′ ∈ H. Hence h′′ is under-

subscribed in M ′, and some resident r′ is provisionally assigned to h′′ in G but not assigned
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to h′′ in M ′. By Lemma 2.2.1, r′ is not assigned to a hospital in M ′ that he prefers to h′′.

Hence (r′, h′′) blocks M ′, a contradiction.

Now suppose that condition (b) is satisfied. Let H1 and H2 be the set of replete and

non-replete hospitals respectively. Then some h′ ∈ H1 satisfies |pM (h′)| < ph′ . Condition

(a) cannot be satisfied, for otherwise the first part of the proof shows that M ′ does not

exist. Hence |pM (h)| = dG(h) < ph for all h ∈ H2. Now pM (h) ≤ ph for all h ∈ H1. Hence

|M | =
∑

h∈H1

|pM (h)| +
∑

h∈H2

|pM (h)| <
∑

h∈H1

ph +
∑

h∈H2

dG(h). (2.2)

Now suppose that |pM ′(h) ≥ ph for all h ∈ H1 and |pM ′(h) ≥ dG(h) for all h ∈ H2. Then

|M ′| > |M | by 2.2, a contradiction. Hence either (i) |pM ′(h′′) < p′′h for some h′′ ∈ H1 or (ii)

|pM ′(h′′)| < dG(h′′) for some h′′ ∈ H2. In Case (ii) we reach a similar contradiction to that

arrived at for condition (a). In Case (i), h′′ is under-subscribed in M ′. As h′′ is replete,

there exists some resident r′ who was provisionally assigned to h′′ during the execution of

the algorithm, but is not assigned to h′′ in M ′. By Lemma 2.2.1, r′ is not assigned to a

hospital in M ′ that he prefers to h′′. Hence (r′, h′′) blocks M ′, a contradiction.

Lemma 2.2.4. Suppose that, in the final assignment graph G, a resident is bound to two

different hospitals. Then no strongly stable matching exists.

Proof Suppose that a strongly stable matching exists for the instance. Let M be a

feasible matching in the final provisional assignment graph G. Denote by H1 the set of

over-subscribed hospitals in G, let H2 = H \ H1 and let dG(h) denote the degree of the

vertex h in G - i.e., the number of residents provisionally assigned to h. Denote by R1

the set of residents bound to one or more hospitals in G, and by R2 the other residents

assigned to one or more hospitals in G. Note that for each h ∈ H2, any resident assigned

to h in G is bound to h, and hence is in R1.

By Lemma 2.2.2, we have

|M | = |R1| + |R2|. (2.3)

Also, by Lemma 2.2.3, we have
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|M | =
∑

h∈H1

ph +
∑

h∈H2

dG(h). (2.4)

If some resident is bound to more than one hospital then, by considering how quotas are

reduced when the residents of R1 are removed in deriving GR from G, it follows that

∑

h∈H1

(ph − p′h) +
∑

h∈H2

dG(h) > |R1|. (2.5)

Combining 2.3, 2.4 and 2.5 gives

∑

h∈H1

p′h < |R2|.

Since no member of H2 belongs to GR, the residents in R2 are collectively adjacent only

to hospitals in H1, and so the foregoing inequality suffices to establish that the critical set

is non-empty, a contradiction.

The next lemma, along with Lemma 2.2.1, is key to showing that Algorithm HRT-strong-R

is correct.

Lemma 2.2.5. Let M be a feasible matching in the final provisional assignment graph. If

M is not strongly stable then there is no strongly stable matching for the instance.

Proof Suppose M is not strongly stable, and let (r, h) be a blocking pair for M . Suppose

r prefers h to pM (r), or r is unassigned in M . Then (r, h) has been deleted, which can

only happen if h is replete. To see this, suppose that h is not replete, but (r, h) was

deleted because h was a neighbour of some resident r ′ ∈ Z at a point when r was in h’s

tail. Suppose that the residents in Z ′ ⊆ Z are provisionally assigned to h′ in GR. Then

0 < |Z ′| ≤ p′h′ . Let Z∗ = Z \ Z ′. Then N (Z∗) ⊆ N (Z) \ {h′} so that

∑

h∈N (Z∗)

p′h ≤
∑

h∈N (Z)

(p′h − p′h′).

Hence
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δ(Z∗) = |Z∗| −
∑

h∈N (Z∗) p′h

= |Z| − |Z ′| −
∑

h∈N (Z∗) p′h

≥ |Z| − |Z ′| − (
∑

h∈N (Z)(p
′
h − p′h′))

= |Z| + p′h′ − |Z ′| −
∑

h∈N (Z) p′h

≥ |Z| −
∑

h∈N (Z) p′h

= δ(Z).

If δ(Z∗) > δ(Z) then Z∗ contradicts the fact that Z is maximally deficient. Hence δ(Z ∗) =

δ(Z). But Z∗ ⊂ Z, contradicting the minimality of Z. Thus h is replete. If h is full in M

then h prefers all its assignees to r, since r is a strict successor of any undeleted entries

in h’s list, contradicting the fact that (r, h) is a blocking pair for M . If h is not full in M

then h is a replete hospital which is not full in M , so by Lemma 2.2.3, no strongly stable

matching exists for the instance, and we are done. We now consider the case where r is

indifferent between h and pM (r).

Suppose h is not full in M . If h is replete then, by Lemma 2.2.3, no strongly stable

matching exists for the instance and we are done. If h is not replete then r must be bound

to h, and since r is not assigned to h in M , by the definition of a feasible matching r must

be bound to pM (r). But then r is bound to two hospitals, so by Lemma 2.2.4 no strongly

stable matching exists for the instance.

Now suppose h is full in M . For (r, h) to block M , h must prefer r to at least one of its

assignees in M . But then r is bound to h, and since r is not assigned to h in M , r must

be bound to pM (r). But then again r is bound to two hospitals, so by Lemma 2.2.4 no

strongly stable matching exists for the instance.

Lemma 2.2.5 proves the correctness of Algorithm HRT-strong-R. Further, Lemma 2.2.1

shows that there is an optimality property for each assigned resident in any strongly stable

matching output by the algorithm. To be precise, we have proved:

Theorem 2.2.6. For a given instance of HRT, Algorithm HRT-strong-R determines

whether or not a strongly stable matching exists. If such a matching does exist, all pos-

sible executions of the algorithm find one in which every assigned resident is assigned as



CHAPTER 2. STRONG STABILITY IN HRT 34

favourable a hospital as in any strongly stable matching, and any unassigned resident is

unassigned in every strongly stable matching.

For obvious reasons, we call any matching found by the above algorithm resident-optimal.

Now we show that the Rural Hospitals Theorem holds for HRT under strong stability. For

the following lemma and theorem we assume that we have an HRT instance that admits

a strongly stable matching.

Lemma 2.2.7. For a given HRT instance, let M be the matching obtained by Algorithm

HRT-strong-R and let M ′ be any strongly stable matching. If a hospital h is not full in

M ′ then every resident assigned to h in M is also assigned to h in M ′.

Proof Suppose r is assigned to h in M , but not in M ′. Then (r, h) blocks M ′ since h is

undersubscribed in M ′ and r cannot prefer any of his strongly stable partners to h.

Theorem 2.2.8. For a given HRT instance I,

1. each hospital is assigned the same number of residents in every strongly stable match-

ing;

2. the same residents are matched in every strongly stable matching;

3. any hospital that is undersubscribed in some strongly stable matching is assigned the

same set of residents in every strongly stable matching.

Proof Let M be the strongly stable matching obtained by Algorithm HRT-strong-R, and

let M ′ be any strongly stable matching such that M ′ 6= M .

1. We first observe that any resident r who is unmatched in M cannot be matched in

M ′, since r must have an empty list (hence (r, h) has been deleted for every hospital

h that r finds acceptable, and by Lemma 2.2.1 no strongly stable pair is deleted

during the execution of Algorithm HRT-strong-R). It follows that |M ′| ≤ |M |. By

Lemma 2.2.7, any hospital that is full in M is also full in M ′, while any hospital that

is not full in M fills at least as many posts in M ′ as in M . It follows that |M ′| ≥ |M |,

and so, combining this with the earlier inequality, |M | = |M ′|. This equality and the

conclusions drawn earlier from Lemma 2.2.7 imply that every hospital is assigned

the same number of residents in M and M ′.
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2. As has already been observed, |M | = |M ′|, and no resident who is unmatched in M

can be matched in M ′, so the same set of residents are matched in M and M ′.

3. As has already been observed, |M ′| ≤ |M |, and the result follows for M ′ by Lemma

2.2.7 and the first part of the proof.

Since M ′ is an arbitrary strongly stable matching, these results follow for every strongly

stable matching.

Example 2.2.1. An example instance is displayed in Figure 2.2. The residents are labeled ri

(1 ≤ i ≤ 6) and the hospitals are labeled hi (1 ≤ i ≤ 3). The entry for hospital hi takes the form

hi : (phi
) Phi

, where Phi
is hi’s preference list. The entry for a resident is similar, but without the

quota element.

r1: (h2 h3) h1 h4 r1: h1 h4

r2: h2 h1 r2: h2 h1

r3: h3 h2 h1 r3: h2 h1

r4: h2 (h1 h3) r4: (h1 h3)

r5: h2 (h1 h3) r5: (h1 h3)

r6: h3 r6:

h1:(2) r2 (r1 r3) (r4 r5) h1:(2) r2 (r1 r3) (r4 r5)

h2:(2) r3 r2 (r1 r4 r5) h2:(2) r3 r2

h3:(1) (r4 r5) (r1 r3) r6 h3:(1) (r4 r5)

h4:(1) r1 h4:(1) r1

Initial preference lists Lists after first loop iteration

Figure 2.2: The preference lists for an example HRT instance

We assume the residents become assigned to the hospitals at the head of their lists in subscript

order. The while loop of Algorithm HRT-strong-R terminates with every resident except r6 pro-

visionally assigned to every hospital in the first tie on their preference list. Resident r6 has an

empty list, because (r6, h3) was deleted as a result of h3 receiving a proposal from r1, causing

r6 to be dominated on the list of h3. Only one edge is removed from the provisional assignment

graph to form the reduced assignment graph, as only resident r2 is bound to a hospital, namely
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h2. The isolated vertices are then removed from the graph, leaving residents r1, r3, r4 and r5, and

hospitals h2 and h3. It can then be shown that every resident in the reduced assignment graph is

in the critical set, and the neighbourhood of the critical set is {h2, h3}. The lists after the relevant

deletions have been made are displayed in Figure 2.2. By following the same process, it can be

shown that a second iteration of the main loop of Algorithm HRT-strong-R terminates with an

empty critical set, and there are two feasible matchings, (r1, h1), (r2, h2), (r3, h2), (r4, h3), (r5, h1)

and (r1, h1), (r2, h2), (r3, h2), (r4, h1), (r5, h3), one of which is output by the algorithm, and both

are strongly stable.

2.3 Implementation and analysis of Algorithm HRT-strong-R

For the implementation and analysis of Algorithm HRT-strong-R, we require to describe

the efficient construction of maximum cardinality matchings and critical sets in a context

somewhat more general than that of simple bipartite graphs.

Consider a capacitated bipartite graph G = (V,E), with bipartition V = R ∪ H, in which

each vertex h ∈ H has a positive integer capacity ch. In this context, a matching is a

subset M of E such that |{h : {r, h} ∈ M}| ≤ 1 for all r ∈ R, and |{r : {r, h} ∈ M}| ≤ ch

for all h ∈ H. For any vertex x, a vertex joined to x by an edge of M is called a mate of

x. A vertex r ∈ R with no mate, or a vertex h ∈ H with fewer than ch mates, is said to

be exposed. An alternating path in G relative to M is any simple path in which edges are

alternately in, and not in, M . An augmenting path is an alternating path of odd length

both of whose endpoints are exposed. It is immediate that an augmenting path has one

endpoint in R and the other in H.

The following lemmas may be established by straightforward extension of the correspond-

ing results for one-to-one bipartite matching.

Lemma 2.3.1. Let P be the set of edges on an augmenting path relative to a matching M

in a capacitated bipartite graph G. Then M ′ = M ⊕P is a matching of cardinality |M |+1

in G.

Lemma 2.3.2. A matching M in a capacitated bipartite graph has maximum cardinality

if and only if there is no augmenting path relative to M in G.

The process of replacing M by M ′ = M ⊕ P is called augmenting M along path P .
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With these lemmas, we can extend to the context of capacitated bipartite graphs the

classical augmenting path algorithm for a maximum cardinality matching. The algorithm

starts with an arbitrary matching – say the empty matching – and repeatedly augments

the matching until there is no augmenting path. The search for an augmenting path

relative to M is organised as a restricted breadth-first search in which only edges of M

are followed from vertices in H and only edges not in M are followed from vertices in R,

to ensure alternation. The number of iterations is O(min(|R|,
∑

ch)), and each search can

be completed in O(|E|) time, since there are no isolated vertices. During the breadth-first

search, we record the parent in the BFS spanning tree of each vertex. This enables us to

accomplish the augmentation in O(|E|) time, observing that, for each vertex h ∈ H, the

set of mates can be updated in constant time by representing the set as, say, a doubly

linked list, and storing a pointer into this list from any child node in the BFS spanning

tree. Hence, overall, the augmenting path algorithm in a capacitated bipartite graph can

be implemented to run in O((min(|R|,
∑

ch))|E|) time.

Now that we have ascertained that we can efficiently find a maximum cardinality matching

in the reduced assignment graph, the following lemma points the way to finding the critical

set.

Lemma 2.3.3. Given a maximum cardinality matching M in the capacitated bipartite

graph GR, the critical set Z consists of the set U of unmatched residents together with the

set U ′ of residents reachable from a vertex in U via an alternating path.

Proof Let C = U ∪ U ′. It is immediate that δ(C) = δ(G)(= |U |), for if N (C) were such

that

∑

h∈N (C)

p′h > |U ′|

there would be an augmenting path relative to M , contradicting the maximality of M .

Further, the critical set Z must contain every resident who is unmatched in some maximum

cardinality matching in G. For if M ′ is an arbitrary such matching (of size |R| − δ(G)),

and if r ∈ R\Z is not matched in M ′, then Z must contain at least |Z|−δ(G)+1 matched

residents. To see this consider that there must be δ(G) unmatched residents, with at most
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δ(G) − 1 of these residents contained in Z. Hence Z contains at most |Z| − δ(G) + 1

residents. It follows that

∑

h∈N (Z)

p′h ≥ |Z| − δ(G) + 1

or

|Z| −
∑

h∈N (Z)

p′h ≤ δ(G) − 1

contradicting the required deficiency of Z.

But, for every r ∈ U ′, there is a maximum cardinality matching in which r is unmatched,

obtainable from M via an alternating path from a resident in U to r. Hence, C ⊆ Z, and

since δ(C) = δ(Z), the proof is complete.

During each iteration of the repeat-until loop of Algorithm HRT-strong-R we need to

form the reduced assignment graph, which takes O(a) time, then search for a maximum

cardinality matching in the bipartite graph GR. This allows us to use Lemma 2.3.3 to find

the critical set. The key to the analysis of Algorithm HRT-strong-R, as with Algorithm

STRONG in [22], is bounding the total amount of work done in finding the maximum

cardinality matchings.

It is clear that work done other than in finding the maximum cardinality matchings and

critical sets is bounded by a constant times the number of deleted pairs, and so is O(a)1.

Suppose that Algorithm HRT-strong-R finds a maximum cardinality matching Mi in the

reduced assignment graph GR at the ith iteration. Suppose also that, during the ith

iteration, xi pairs are deleted because they involve residents in the critical set Z, or

residents tied with them in the list of a hospital in N (Z). Suppose further that in the

(i + 1)th iteration, yi pairs are deleted before the reduced assignment graph is formed.

Note that any edge in GR at the ith iteration which is not one of these xi + yi deleted

pairs must be in GR at the (i+1)th iteration, since a resident can only become bound to a

hospital when he becomes provisionally assigned to it. In particular at least |Mi| − xi − yi

pairs of Mi remain in GR at the (i + 1)th iteration. Hence, in that iteration, we can start

1See, for example, Section 4.4.
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from these pairs and find a maximum cardinality matching in O(min(na, (xi + yi + zi)a))

time, where n is the number of residents and zi is the number of edges in GR at the

(i + 1)th iteration which were not in GR at the ith iteration.

Let s denote the number of iterations carried out, let S = {1, 2, . . . , s}, and let S ′ = S\{s}.

Let T ⊆ S′ denote those indices i such that min(na, (xi + yi + zi)a) = na, and let t = |T |.

Then the algorithm has time complexity O(min(n, p)a + tna + a
∑

i∈S′\T (xi + yi + zi)),

where p is the total number of posts, and the first term is for the first iteration. But
∑

i∈S′(xi + yi) ≤ a and
∑

i∈S′ zi ≤ a (since these summations are bounded by the total

number of deletions and provisional assignments, respectively), and since xi + yi + zi ≥ n

for each i ∈ T , it follows that

tn +
∑

i∈S′\T

(xi + yi + zi) ≤
∑

i∈S′

(xi + yi + zi) ≤ 2a

Thus

∑

i∈S′\T

(xi + yi + zi) ≤ 2a − tn.

After the end of the final iteration a feasible matching is constructed by taking the final

maximum cardinality matching and combining it with the bound resident-hospital pairs.

This operation is clearly bounded by the number of bound pairs, hence is O(a). It follows

that the overall complexity of Algorithm HRT-strong-R is O(min(n, p)a + tna + a(2a −

tn)) = O(a2).

Note that while there is at least one algorithm for finding maximum cardinality matchings

in the context of capacitated bipartite graphs with better time complexity than the one we

use here (see e.g. [7]), it is not clear how we can use this algorithm to give an improvement

in the running time of Algorithm HRT-strong-R.

2.4 A hospital-oriented algorithm for strong stability in HRT

In this section we describe a second algorithm for finding a strongly stable matching, if

one exists, in an instance of HRT, and prove its correctness. Much of the terminology is
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the same as that used for Algorithm HRT-strong-R, but there are a few new or adapted

definitions.

For a hospital h, t(h) is the first tie on h’s list that contains a resident who is not pro-

visionally assigned to h. For a resident r, we denote the tail of r’s list by l(r). Deleting

the tail of a resident r’s list means deleting the pairs (r, h) for each h ∈ l(r). We say

that a hospital h is dominated on a resident r’s list if r prefers some hospital to which it

is provisionally assigned to h. We say that h has a short list if there are fewer than ph

residents on h’s preference list. A resident r who is provisionally assigned to a hospital h

is said to be bound to h if h is not over-subscribed, or if h prefers r to at least one other

resident provisionally assigned to it.

The provisional assignment graph G has a vertex for each resident and each hospital, with

(r, h) forming an edge if resident r is provisionally assigned to hospital h. Note that a

number of such graphs may be constructed during the execution of the algorithm, and

we refer to a resident (resp. hospital) and the vertex that represents that resident (resp.

hospital) interchangeably. Note that one consequence of the algorithm is that a resident

cannot be bound to more than one hospital, so while the definition of the provisional

assignment graph is exactly as for the resident-oriented algorithm, the definition of a

feasible matching changes slightly. Here, a feasible matching in a provisional assignment

graph is a matching M such that, if r is bound to a hospital then r is matched in M with

that hospital, and subject to this restriction, M has maximum possible cardinality.

A reduced assignment graph GR is formed from a provisional assignment graph as follows.

For each resident r who is bound to a hospital h, we delete the edge (r, h) from GR, and

we reduce the quota of h by one; furthermore, we remove all other edges incident on r.

Further, for each resident adjacent to only one hospital h in GR, we remove the edge (r, h)

from GR, and we reduce the quota of h by one. If at any point a hospital has its quota

reduced to 0, and there are still edges incident on the hospital vertex, then these edges are

removed. This may cause some resident to be adjacent to only one hospital in GR, and

if so he is treated as above. This process continues until every hospital with quota 0 has

no edges incident and no resident satisfies the foregoing condition. Each isolated vertex is

then removed from GR. For each surviving hospital h we denote by p′
h the revised quota

of h.
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Given a set Z of hospitals in GR, the neighbourhood of Z, denoted N (Z), is the set of

resident vertices adjacent in GR to a hospital vertex in Z. The deficiency of Z is defined

by δ(Z) =
∑

h∈Z p′h − |N (Z)|. It is not hard to show that, if Z1 and Z2 are maximally

deficient, then so also is Z1∩Z2, so there is a unique minimal set with maximum deficiency.

We call this set the deficient set. Let Z be the deficient set. For each hospital h ∈ Z, and

for each resident r provisionally assigned to h but not provisionally assigned to any other

hospital in Z, we delete the edge (r, h) from GR, thereby removing r from N (Z), and we

reduce p′h by one. Note that, by the definition of the deficient set, this cannot leave any

hospital in the deficient set with a revised quota of 0 or less. The resulting set C = N (Z)

of residents is the critical set. The rationale for the final set of edge deletions is simply

that (r, h) may be a strongly stable pair (if (r, h) is in a strongly stable matching, then

it can be seen that r cannot be involved in a blocking pair with any member of Z - an

illustration of this is included in the example at the end of this section).

The algorithm, displayed in Figure 2.3, begins by assigning each resident to be free (i.e.,

not assigned to any hospital). The iterative stage of the algorithm involves each under-

subscribed hospital h in turn being provisionally assigned the resident(s) in t(h). Then each

pair (r, h) such that h is dominated on r’s list is deleted. If, when becoming provisionally

assigned to a hospital, r becomes bound to two hospitals then the tail of r is deleted. If

these deletions cause some resident to become bound to a second hospital then the tail

of that resident is deleted. This process continues until every hospital h is provisionally

assigned at least ph residents, or has a short list. We then find the reduced assignment

graph GR and the critical set C of residents. As we will see later, no resident in C can

be assigned to a hospital from those in its tail in any strongly stable matching, so all such

pairs are deleted. Again, if these deletions cause some resident to become bound to two

hospitals then the tail of that resident is deleted. The iterative step is then reactivated,

and this entire process continues until C is empty, which must happen eventually, since

if C is found to be non-empty, then at least one pair is subsequently deleted from the

preference lists. On termination of the main loop, the algorithm finds a feasible matching

in the final provisional assignment graph G. If this matching is not strongly stable then

no strongly stable matching exists, otherwise the algorithm outputs the matching.

The correctness of Algorithm HRT-strong-H is established below.
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assign each resident to be free;

repeat {

while some hospital h is undersubscribed

and there is some resident on h’s list who is not assigned to h {

for each resident r ∈ t(h) {

provisionally assign r to h;

for each hospital h′ dominated on r’s list

delete the pair (r, h′);}

while some resident r is bound to more than one hospital

delete (r, h′) for each h′ ∈ l(r); }

form the reduced assignment graph;

find the critical set C of residents;

for each resident r ∈ C {

for each hospital h′ ∈ l(r)

delete the pair (r, h′);

while some resident r is bound to more than one hospital

delete (r, h′) for each h′ ∈ l(r); }

} until C = ∅;

let G be the final provisional assignment graph;

let M be a feasible matching in G;

if M is strongly stable

output M ;

else

no strongly stable matching exists;

Figure 2.3: Algorithm HRT-strong-H

Lemma 2.4.1. No strongly stable pair is ever deleted during an execution of Algorithm

HRT-strong-H.

Proof Suppose that the pair (r, h) is the first strongly stable pair deleted during some

execution of the algorithm, and let M be a strongly stable matching in which r is assigned

to h. There are three cases to consider.

Case 1: Suppose (r, h) is deleted as a result of r being bound to at least two hospitals, at

a time when h ∈ l(r) (note there are two points in the algorithm where this can happen).
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Let h′ 6= h be a hospital to which r is bound, and let G denote the provisional assignment

graph immediately prior to the deletion of (r, h). As r is bound to h′, either (i) h′ is not

over-subscribed, or (ii) h′ prefers r to at least one resident r′ provisionally assigned to

h′ in G. In Case (i), just before (r, h) is deleted, h′ is provisionally assigned the first k

residents on its list, for some k ≤ ph′ . No strongly stable pair was deleted before (r, h), and

(r, h′) 6∈ M . Hence, in M , either h′ is under-subscribed or h′ prefers r to its worst assignee.

Hence (r, h′) blocks M , a contradiction. In Case (ii), since no strongly stable pair was

deleted before (r, h), it follows that, in M , either h′ is under-subscribed or prefers r′ to its

worst assignee, or is indifferent between them. Hence, in M , either h′ is under-subscribed

or prefers r to its worst assignee, so that (r, h′) blocks M , a contradiction.

Case 2: Suppose (r, h) is deleted as a result of r becoming provisionally assigned to some

other hospital, h′ say, so that h is dominated on r’s list. Since (r, h) was the first strongly

stable pair to be deleted, h′ cannot be matched in any strongly stable matching with a set

of ph′ residents all of whom he prefers to r, for otherwise some strongly stable pair must

have been deleted for r to become provisionally assigned to h′. It follows that h′ prefers

r to at least one of its assigned residents in M , or is indifferent between them. Since r

prefers h′ to h, (r, h′) blocks M , a contradiction.

Case 3: Suppose that (r, h) is deleted because r is in the critical set C at some point,

and at that point h ∈ l(r). We refer to the set of lists immediately before the critical

set deletions as the current lists. Since r ∈ C, r is provisionally assigned to at least one

hospital h1(6= h) such that r is indifferent between h and h1. Since r is indifferent between

h and h1, h1 cannot be matched in M with a resident r ′ such that h1 prefers r to r′.

Now every strongly stable pair is contained in the current lists, so even if h1 is matched

with every resident r∗ such that (r∗, h) was removed when forming the reduced assignment

graph or when finding the critical set, it follows that h1 must be matched in M with at

least p′h1
(≥ 1) residents from C. Each of these p′h1

residents must be provisionally assigned

to at least one other hospital in the deficient set Z. Suppose r is the only resident from C

who is provisionally assigned to h1 in the current lists. Then, since (r, h) ∈ M , it follows

that h1 must be under-subscribed in M , or prefer r to at least one resident in pM(h1).

But then (r, h1) blocks M , a contradiction. Hence there must be a resident, r1 say, such

that r1 ∈ C, r1 6= r, and r1 is provisionally assigned to h1 in the current lists. Again, since

r1 ∈ C, r1 is provisionally assigned to at least one hospital h2 ∈ Z (h2 6= h1) such that r is
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indifferent between h2 and h1. Then, by a similar argument to above, h2 must be matched

in M with at least p′h2
(≥ 1) residents from C, each of whom must be provisionally assigned

to at least one other hospital in Z.

Now let H ′ be the set of hospitals h′ ∈ Z such that h′ is reachable from h via a path

in which each edge has a hospital from Z as one endpoint. Clearly h ∈ H ′, so H ′ 6= ∅.

Suppose there is a hospital h′ ∈ H ′ such that h′ is matched in M with fewer than p′h′

residents from C. Without loss of generality we can assume, from the above argument,

that there is a hospital h′′ ∈ Z such that h′ and h′′ are both provisionally assigned some

resident r′ ∈ C, and h′′ is matched in M with p′h′ residents from C, including r′, as well

as every resident r∗ such that (r∗, h′′) was removed when forming the reduced assignment

graph, or when finding the critical set. But, by the above argument h′ must be under-

subscribed in M , or prefer r′ to at least one resident assigned to h′ in M , and so (r′, h′)

blocks M , a contradiction. It follows that every hospital in h′ ∈ H ′ must be matched in

M with p′h′ residents from C.

Consider Z \H ′. By the above argument |N (H ′)| ≥
∑

h?∈H? ph??, and by the construction

of H ′, no resident in N (H ′) is in N (Z \ H ′). It follows that Z \ H ′ must have deficiency

at least δ(Z), a contradiction. Hence there must exist a hospital h′ ∈ Z such that h′

is matched in M with fewer than p′h′ residents from C, while some resident r ′ who is

provisionally assigned to h′ in the current lists is matched in M with a hospital h′′ such

that r′ is indifferent between h′ and h′′, But, by the above argument h′ is either under-

subscribed in M , or matched in M with a resident r ′′ such that h′ prefers r′ to r′′. But

then (r′, h′) blocks M , a contradiction. The result follows.

Lemma 2.4.2. Let M be a feasible matching. Then every hospital is either full in M , or

matched with every resident on its list.

Proof By the definition of a feasible matching, a hospital h is assigned every resident who

is bound to h. We consider how to assign the remaining residents in a feasible matching

M ′. For each pair (r, h) such that r is not bound to h but (r, h) is was removed from

the provisional assignment graph when the reduced assignment graph GR was formed, we

add (r, h) to M ′. It can be verified that every other edge removed from the provisional

assignment graph to form GR has one edge incident on either a hospital which is full in

M ′, or a resident who is assigned in M ′. Further, any hospital which is now isolated must
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be matched in M ′ with every resident on its list. Finally, since there is no deficient set

in GR, any set of non-isolated hospitals with x posts must be collectively adjacent in GR

to at least x residents, otherwise one of them is in the deficient set Z, and hence Z 6= ∅.

But, by a simple extension of Philip Hall’s Theorem, this means that all these posts are

matched in any maximum cardinality matching in GR, and hence they must be filled in

any feasible matching M . The result follows by the definition of a feasible matching.

Lemma 2.4.3. Let M be a feasible matching in the final provisional assignment graph G.

If M is not strongly stable then no strongly stable matching exists.

Proof Suppose that M is not strongly stable, but that M ′ is a strongly stable matching

for the instance. Let (r, h) be a blocking pair for M . Suppose r is matched in M , and

is indifferent between h and h′ = pM(r). Then (r, h) cannot have been deleted, as (r, h′)

has not been deleted, and every deleted element on r’s list is a strict successor of any

undeleted elements. Now, for (r, h) to block M , h must either be under-subscribed in M ,

or prefer r to at least one resident assigned to it in M . In the former case h must be

matched in M with every resident on its list. But then (r, h) must have been deleted,

implying that r is either unmatched in M , or prefers pM(r) to h, a contradiction. In the

latter case r is bound to h. But then, by the definition of a feasible matching, r must

be assigned to h in M , a contradiction. It follows that either r is unmatched in M , or r

prefers h to h′ = pM(r). In the latter case h is either under-subscribed in M or prefers r

to at least one of the residents assigned to it in M , or is indifferent between them. If h

is under-subscribed we get a contradiction from the same argument as above. Otherwise

r must have been provisionally assigned to h at some point. But then (r, h′) must have

been deleted, and so r cannot be matched with h′ in M . Thus r must be unmatched in

M .

We now show that |M | = |M ′|. By Lemma 2.4.2, every hospital is either full in M , or

matched with every resident on its list. Since, by Lemma 2.4.1, no strongly stable pair is

ever deleted by the algorithm, it follows that M ′ cannot be larger than M . Now suppose

that |M | > |M ′|. Then there is a resident r′ such that r′ is matched in M (to h′′ say),

but unmatched in M ′. If h′′ is not full in M ′ then (r′, h′′) blocks M ′, a contradiction.

Hence h′′ is full in M ′. For each resident r′′ such that (r′′, h′′) ∈ M ′, h′′ must prefer r′′

to r′, or (r′, h′′) blocks M ′. But r′ is provisionally assigned to h′′ at the termination of

Algorithm HRT-strong-H. It follows that some strongly stable pair must have been deleted
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by Algorithm HRT-strong-H, a contradiction of Lemma 2.4.1. Hence |M | = |M ′|.

Suppose (r, h) has been deleted. Then r must have been provisionally assigned to a hospital

at some point during the execution of the algorithm. On the other hand, if (r, h) has not

been deleted, since h cannot be undersubscribed in M , by the argument above, r must be

provisionally assigned to h in the final provisional assignment graph. Additionally every

resident r′ who is matched in M is provisionally assigned to pM (r′). Hence there are

|M | + 1 = |M ′| + 1 residents who were provisionally assigned at some point during the

execution of the algorithm, since r is unmatched in M . In particular there is a resident r ′

who was provisionally assigned at some point during the execution of the algorithm, say

to h′′, but is unmatched in M ′. Then either h′′ is not full in M ′, or, by Lemma 2.4.1, there

is a resident r′′ such that (r′′, h′′) ∈ M ′, and h′′ prefers r′ to r′′, or is indifferent between

them. In either case (r′, h′′) blocks M ′, a contradiction. The result follows.

Lemmas 2.4.1 and 2.4.3 prove the correctness of Algorithm HRT-strong-H, and Lemma

2.4.1, along with Theorem 2.2.8, demonstrates an optimality property for each hospital in

any strongly stable matching output by the algorithm. In particular, we have proved:

Theorem 2.4.4. For a given instance of HRT, Algorithm HRT-strong-H determines

whether a strongly stable matching exists. If such a matching exists, the algorithm outputs

one in which every hospital has at least as favourable a set of assignees as it can have in

any strongly stable matching.

For obvious reasons, we call any matching found by the above algorithm hospital-optimal.

Example 2.4.1. An example instance is displayed in Figure 2.4. The format is the same as the

example in Section 2.2, though the example is somewhat more complex.

We assume the hospitals propose in subscript order. During the execution of the main while loop in

Algorithm HRT-strong-H, the pair (r10, h8) is deleted because h8 becomes dominated on r10’s list.

During the execution of the first inner while loop the pairs (r7, h2) and (r7, h3) are deleted because

r7 becomes bound to both h2 and h3. On termination of the main while loop, hospitals h1 and h5

are provisionally assigned the residents in the first two ties on their lists, hospitals h2 and h3 are

assigned the residents in the second tie on their lists (since (r7, h2) and (r7, h3) were both deleted),

and the remaining hospitals are provisionally assigned the residents in the first tie on their lists.

When the reduced assignment graph is formed from the provisional assignment graph the edges

{r10, h1} and {r11, h5} are removed because r10 and r11 are bound to h1 and h5 respectively, and

so the quotas of h1 and h5 are reduced by one. Additionally, the removal of {r10, h1} requires the
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removal of the edge {r10, h9}, and the reduction of h9’s quota by one. Finally, the edge {r12, h9} is

also removed, because r12 is provisionally assigned only to h9, and this causes h9 to have a quota of

0, so the edge {r4, h9} is also removed. The isolated vertices (r10, r11, r12 and h9) are then removed

from the graph. It is then possible to verify that the deficient set is {h1, h2, h3, h4, h5, h6}. However,

r9 is provisionally assigned to only one hospital in the deficient set, so we remove the edge {r9, h4}

(note that the pair {r9, h4} is in both the strongly stable matchings for the instance, listed below),

and thus the critical set is {r1, r2, r3, r4, r5, r6}. The lists after the relevant deletions have been made

are listed in Figure 2.4 (no resident becomes bound to two hospitals as a result of these deletions,

so no further deletions are necessary). It can be seen that a second iteration of the main loop of

Algorithm HRT-strong-H terminates with an empty critical set. One of the two feasible matchings

({(r1, h4)(r2, h5)(r3, h6)(r4, h1)(r5, h2)(r6, h3)(r7, h7)(r8, h8)(r9, h4)(r10, h1)(r11, h5)(r12, h9)} or

{(r1, h4)(r2, h5)(r3, h6)(r4, h1)(r5, h2)(r6, h3)(r7, h8)(r8, h7)(r9, h4)(r10, h1)(r11, h5)(r12, h9)}), both

of which are strongly stable, is output by the algorithm.

2.5 Implementation and analysis of Algorithm HRT-strong-H

The implementation and analysis of the hospital-oriented algorithm is similar to that for

the resident-oriented algorithm. The only additional complication is that we must be able

to identify a resident who is bound to more than one hospital, so we can delete the tail of

that resident. To this end we maintain an array B of residents, with the array elements

being a count of how many hospitals a resident is bound to, and a list of residents who are

bound to more than one hospital. A resident can become bound to a hospital h when he is

first provisionally assigned to h, or when another resident who is provisionally assigned to

h is deleted from h’s list. In both cases we need to know how many residents h is currently

provisionally assigned, but such a count is already maintained as it is required for other

operations. In the former case we also need to know how many residents are in t(h), but

a simple scan ahead through h’s list to find the end of t(h) suffices, and, in total, all such

scans take O(a) time. In the latter case, when h changes from being over-subscribed to

fully-subscribed, we need only track back through the tie preceding t(h), and, for each

resident in that tie, increment by one the corresponding element in B. Again, in total,

all such scans take O(a) time. It follows, by the argument in Section 2.3, that Algorithm

HRT-strong-H also has O(a2) time complexity.
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r1: h4 (h1 h2 h3) r1: h4

r2: h5 (h1 h2 h3) r2: h5

r3: h6 (h1 h2 h3) r3: h6

r4: h1 (h4 h5 h6 h9) r4: h1

r5: h2 (h4 h5 h6) r5: h2

r6: h3 (h4 h5 h6) r6: h3

r7: (h7 h8) (h2 h3) r7: (h7 h8)

r8: (h7 h8) r8: (h7 h8)

r9: (h4 h7) r9: (h4 h7)

r10: (h1 h9) h8 r10: (h1 h9)

r11: h5 r11: h5

r12: h9 r12: h9

h1:(3) r10 (r1 r2 r3) r4 h1:(3) r10 r4

h2:(1) r7 (r1 r2 r3) r5 h2:(1) r5

h3:(1) r7 (r1 r2 r3) r6 h3:(1) r6

h4:(3) (r4 r5 r6 r9) r1 h4:(3) r9 r1

h5:(2) r11 (r4 r5 r6) r2 h5:(2) r11 r2

h6:(1) (r4 r5 r6) r3 h6:(1) r3

h7:(1) (r7 r8 r9) h7:(1) (r7 r8 r9)

h8:(1) (r7 r8) r10 h8:(1) (r7 r8)

h9:(1) (r4 r10 r12) h9:(1) (r10 r12)

Initial preference lists Lists after first loop iteration

Figure 2.4: The preference lists for an example HRT instance

2.6 Conclusions and subsequent work in the literature

In this chapter we have described two polynomial-time algorithms for the problem of

finding a strongly stable matching, if one exists, given an instance of HRT. The algorithms

produce a resident-optimal and a hospital-optimal strongly stable matching respectively.

The resident-oriented algorithm was included in [28], in which it was also shown that

the complexity of any algorithm for HRT cannot be better than the best possible for the

problem of determining if a bipartite graph has a perfect matching. Subsequent to this

publication, Kavitha et al. [30] gave an algorithm that finds a strongly stable matching
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in SMTI in O(ka) time, if one exists, where k is the total number of men and women

in the instance. They also gave a resident-oriented algorithm that finds a strongly stable

matching in O(a(|R| +
∑

h∈H ph)) time, if one exists. It seems likely that this algorithm

can be adapted to give a hospital-oriented algorithm with similar complexity. Additionally

Malhotra [33] gave an O(a2) algorithm, an extension of the resident-oriented algorithm

above, to find a strongly stable matching in an instance of many-to-many Stable Marriage.

Again it seems likely that this algorithm can be modified to run in O(a
∑

q∈Q pq) time,

where Q is the set of all participants in an instance. Malhotra also shows that the set of

strongly stable matchings in a many-to-many stable marriage instance form a distributive

lattice, when grouped into appropriate equivalence classes.



Chapter 3

Strong Stability in SRTI

3.1 Introduction

The problem of finding a strongly stable matching in an instance of Stable Roommates with

Ties and Incomplete lists (SRTI) was listed as an open problem by Irving and Manlove [26].

In this chapter we present an efficient algorithm for this problem. As was noted in Section

2.1, there is a sense in which strong stability can be viewed as the most appropriate criterion

for a practical matching scheme when there is indifference in the preference lists, and that

in cases where a strongly stable matching exists, it should be chosen instead of a matching

that is merely weakly stable. This is because a strongly stable matching is not susceptible

to undermining by persuasion or bribery. SRTI is both a generalisation of SMTI and of

SR, and so the algorithm presented here, Algorithm SRTI-strong, is a generalisation of

those in [34] and [20]. There are, however, some notable differences between Algorithm

SRTI-strong and Algorithms HRT-strong-R and HRT-strong-H, presented in Chapter 2.

Algorithm SRTI-strong has two phases, in the manner of the algorithms for SR [20] and

for SRTI under super-stability [26], whereas Algorithms HRT-strong-R and HRT-strong-H

only have one. The first phase of Algorithm SRTI-strong mirrors the two HRT algorithms,

though it is somewhat less complex because of the one-to-one nature of SRTI. In Section

3.2 we describe the first phase of Algorithm SRTI-strong, and in Section 3.3 we describe

the second phase. In Section 3.4 we establish the complexity of the algorithm to be O(a2).

Finally, we present our conclusions and discuss some advances in the literature in Section

3.5.

50
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3.2 Phase 1 of Algorithm SRTI-strong

In this section we describe the first phase of the algorithm for determining whether a

strongly stable matching exists in a given instance of SRTI, and if so finding one such

matching. Before doing so we present a number of definitions and constructions relating

to the algorithm.

For an agent p, f(p) and l(p) are the head and tail respectively of p’s current list. During

the execution of the algorithm agents become semi-assigned to other agents. Note that,

as the name suggests, this is not a symmetric relation. If an agent p is semi-assigned to

an agent q this does not imply that q is semi-assigned to p. It is possible for an agent p to

be semi-assigned to more than one other agent, but only if all such agents are in f(p).

The algorithm proceeds by deleting from the preference lists pairs that cannot be strongly

stable. By the deletion of a pair {p, q}, we mean the removal of p and q from each other’s

lists, and, if p (resp. q) is semi-assigned to q (resp. p), the breaking of this semi-assignment.

The semi-assignment graph is a bipartite graph G = (U, V,E), constructed as follows:

1. add a node for each agent p with a non-empty list to each of U and V , the proposing

node for p and the receiving node for p respectively;

2. for each agent x, add an edge from x ∈ U to y ∈ V for every agent y ∈ f(x).

For a given set Z of nodes, the neighbourhood of Z, denoted N (Z), is the set of nodes

adjacent to at least one member of Z. The deficiency of Z, δ(Z), is defined by δ(Z) =

|Z|− |N (Z)|, i.e., the difference in the sizes of the sets Z and N (Z). Let Z1 and Z2 be two

sets of maximum deficiency. Then it can be shown that Z1 ∩ Z2 is also a set of maximum

deficiency. It follows that there is a unique minimal set of proposing nodes with maximum

deficiency, which we refer to as the critical set.

The final assignment graph is a non-bipartite graph G = (V,E), constructed as follows

(note that we assume a total order on the agents):

1. add to V a node for each agent with a non-empty list;
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2. for each agent x, add an edge from x ∈ V to y ∈ V for each agent y ∈ f(x) such

that x > y;

The algorithm, displayed in Figure 3.1, begins by setting each agent to be free (i.e., not

semi-assigned to any other agent). The iterative stage of the phase involves each free

agent p in turn becoming semi-assigned to the agents at the head of his list. Each pair

{q, r} such that q ∈ f(p) and q prefers p to r is deleted. This continues until every agent

is semi-assigned to one or more other agents or has an empty list. We then form the

semi-assignment graph and find the critical set Z of agents. No agent in N (Z) can be

assigned a resident from those in its tail in any strongly stable matching, so all such pairs

are deleted. The iterative step is then reactivated, and this entire process continues until

Z is empty, which must happen eventually, since, if Z is found to be non-empty, then

at least one pair is subsequently deleted from the preference lists. On termination of the

iterative step of phase 1, if there are an odd number of agents with non-empty lists there

is no strongly stable matching for the instance. Otherwise we proceed to phase 2.

We now prove two lemmas relating to phase 1 of Algorithm SRTI-strong.

Lemma 3.2.1. If the pair {p, q} is deleted during phase 1 of Algorithm SRTI-strong then

{p, q} is not a strongly stable pair.

Proof The proof is similar to Lemma 2.2.1.

Lemma 3.2.2. Every agent p who has a non-empty list at the end of phase 1 must be

matched in any strongly stable matching.

Proof At the end of phase 1, some agent q is semi-assigned to p. For, suppose not. Then

the set U of all agents must have deficiency at least 1, a contradiction, as the critical set

must be empty at the end of phase 1. If, in a strongly stable matching M , p is unmatched

then, by Lemma 3.2.1, q must be either unmatched in M , or matched with an agent r

such that q prefers p to r or is indifferent between them. In either case {p, q} blocks M ,

and the result follows from this contradiction.

The following two corollaries are immediate from the above result.

Corollary 3.2.3. For a given instance of SRTI, the set of agents may be partitioned into

those agents matched in all strongly stable matchings and those who are matched in none.
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set each agent to be free;

repeat {

while some agent p is free and has a non-empty list {

for each q ∈ f(p) {

p becomes semi-assigned to q;

for each r such that q prefers p to r {

if r is semi-assigned to q

break the semi-assignment;

delete the pair {q, r} from the preference lists; }}}

form the semi-assignment graph;

find the critical set Z of agents;

for each agent p ∈ N (Z)

for each agent q in the tail of p’s list

delete the pair {p, q};

} until Z = ∅;

if there are an odd number of agents with non-empty lists

no strongly stable matching exists; }}

Figure 3.1: Phase 1 of Algorithm SRTI-strong

The former set comprises those agents whose lists are non-empty on termination of phase

1.

Corollary 3.2.4. For a given instance of SRTI, if the number of agents with non-empty

lists at the end of phase 1 is odd then there is no strongly stable matching.

Note that it would be possible, in certain circumstances, to find a strongly stable matching

at the end of phase 1, and additionally, there are certain circumstances beyond those

highlighted by Corollary 3.2.4 under which it could be concluded that no strongly stable

matching exists. However, including these in phase 1 would unnecessarily complicate the

algorithm, and so they will be dealt with in phase 2.
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3.3 Phase 2 of Algorithm SRTI-strong

We start by defining a number of terms which are required for the second phase of the

algorithm.

We call the lists at the end of phase 1, with those agents who have empty lists removed,

the phase 1 table, denoted T 1. A preference table, or table for brevity, is a subset of the

pairs contained within T 1. For a given table T , Tp is the list of agent p in T , with order

induced from p’s original preference list. We denote by fT (p) and lT (p) the head and tail

respectively of Tp. Finally we extend the notion of preference to sets. An agent p prefers

a set P of agents to a set Q of agents if and only if p prefers every member of P to every

member of Q.

A strongly stable table is a table T which satisfies the following conditions:

i) q ∈ fT (p) ⇒ p ∈ lT (q).

ii) the acceptable pair {p, q} is absent from T if and only if p prefers lT (p) to q or q prefers

lT (q) to p.

iii) there is no agent p such that |Tp| < 1 (i.e., p has an empty list).

It can be shown that the phase 1 table is itself a strongly stable table.

Let T be a strongly stable table, and let x be an agent with fT (x) 6= lT (x). We denote

by T f(x) the table formed by deleting {y, z} from T for each y ∈ fT (x) and z ∈ lT (y),

and applying the main loop of phase 1. We denote by T l(x) the table obtained by deleting

from T {x, y} for all y ∈ lT (x), and applying the main loop of phase 1. Note that, in

the first case x becomes free so that the termination condition of the main loop of phase

1 is no longer satisfied. In the second case some agent may become free, but if not then

the critical set must be non-empty, since no agent is semi-assigned to x. The reason for

forming T f(x) and T l(x) is as follows. Suppose M ⊆ T , for some strongly stable matching

M . By Lemma 3.2.2, x must be matched in M . We want to form a strongly stable table

contained in T , which also contains a strongly stable matching. If pM (x) is in fT (x), then

{x, pM (x)} must appear in T l(x), at least before the re-activation of the main loop of phase

1. Otherwise {x, pM (x)} must appear in T f(x), at least before the re-activation of the main

loop of phase 1. In fact, in Lemma 3.3.1 we show that one of these tables is a strongly
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stable table containing M .

Lemma 3.3.1. Let T be a strongly stable table that contains a strongly stable matching

M , and let x be an agent such that fT (x) 6= lT (x). Then either T f(x) or T l(x) is a strongly

stable table containing M .

Proof There are two cases to consider.

Case 1: (T f(x)) Suppose {x, a} ∈ M for some a ∈ lT (x). Since fT (x) 6= lT (x), {x, y} 6∈ M ,

for all y ∈ fT (x). Suppose {z, y} ∈ M for some z ∈ fT (x), y ∈ lT (z). Since z ∈ fT (x),

x ∈ lT (z), by the first defining property of a strongly stable table, so z is indifferent

between x and y = pM (z). Further, since z ∈ fT (x) and a ∈ lT (x), x prefers z to

a = pM(x), so {x, z} blocks M , a contradiction. Thus, after the deletion from T of {b, z}

for each b ∈ lT (z) for each z ∈ fT (x) it follows that each pair in M is still contained in the

preference lists.

Now suppose that after the application of the main loop of phase 1 some pair {p, q} ∈ M

has been deleted. Suppose that this was the first such M -pair to be deleted. There are

two cases to consider.

Case 1a: Suppose {p, q} was deleted when an agent r whom p prefers to q became semi-

assigned to p. Now r cannot be matched in M with an agent s whom he prefers to p, since

the pair {r, s} must have been deleted for r to become semi-assigned to p, and {p, q} was

the first M -pair to be deleted. So p prefers r to q = pM (p), and r either prefers p to pM (r),

or is indifferent between them. But then {p, r} is a blocking pair for M , a contradiction.

Case 1b: Suppose {p, q} was deleted because q ∈ N (P ) for some critical set P , at a point at

which p is in lU (q), where L denotes the preference lists immediately before the critical set

deletions are made. Let B be the set of agents r such that r ∈ N (P ), and pM (r) ∈ lL(r).

Then q ∈ B. Now |N (B) ∩ P | > |B|, as otherwise N (B) ∩ P is a set of agents contained

in P who are collectively semi-assigned to a set of agents of the same size or greater, so

removing the agents in N (B) ∩ P from P will leave a set strictly contained in P with

deficiency δ(P ) or greater, a contradiction. It follows that there exists an agent a such

that a ∈ N (B)∩P and {a, pM (a)} is contained in the preference lists after the critical set

deletions. Note that every agent to whom a is semi-assigned is in N (P ), by the definition

of N (P ), so it follows that a prefers every member of fL(a) to pM (a). So there must be
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an agent b ∈ B such that a prefers b to pM (a). Further a ∈ lL(b), pM (b) ∈ lL(b) (since

b ∈ B), so b is indifferent between a, pM(b). But then {a, b} is a blocking pair for M , a

contradiction.

It follows that M is contained in T f(x). It remains to prove that T f(x) is a strongly stable

table. It follows from the algorithm that the first two defining properties for a strongly

stable table hold for T f(x). Since M is a strongly stable matching contained in T f(x) it is

clear, by Lemma 3.2.2, that the third defining property holds.

Case 2: (T l(x)) Suppose {x, a} 6∈ M for any a ∈ lT (x). Then, after the deletion of {x, a} for

each a ∈ lT (x) no pair from M has been deleted from the preference lists. The remainder

of the argument is exactly as in Case 1.

Now we must decide which of T f(x) and T l(x) to work with. It is entirely possible that we

have deleted a strongly stable pair when forming one or both of these tables, even though

we know that there is a strongly stable matching contained in T which is also contained

in at least one of T f(x) and T l(x). The next two results show that, if no agent violates the

third defining property of a strongly stable table in T f(x), then T f(x) contains a strongly

stable matching.

Lemma 3.3.2. Let T be a strongly stable table in which some agent x has a list such that

fT (x) 6= lT (x). Then either T f(x) is a strongly stable table, or some agent in T f(x) has an

empty list.

Proof Suppose no agent has an empty list in T f(x). Then it follows from the algorithm

that all three defining properties of a strongly stable table hold.

Lemma 3.3.3. Let T be a strongly stable table that contains a strongly stable matching

M . Suppose that some agent k has a list such that fT (k) 6= lT (k). Suppose further that

no agent has an empty list in T f(k). Then T f(k) contains a strongly stable matching.

Proof By Lemma 3.3.2, T f(k) is a strongly stable table. We describe how to construct a

strongly stable matching M ′ contained in T f(k).

For each pair {p, q} ∈ M such that {p, q} ∈ T f(k), place {p, q} in M ′. For the remaining

agents construct a bipartite graph G = (U1, U2, E) as follows: add a node to U1 for each

agent x who prefers lT f(k)(x) to pM (x), and add a node to U2 for each agent y who does not
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prefer lT f(k)(y) to pM (y); add an edge from x ∈ U1 to y ∈ U2 if and only if x ∈ fT f(k)(y).

Let A be a perfect matching in G (we show below that such a matching must exist). For

each edge e in A, we add e to M ′.

To prove that there is a perfect matching in G, we firstly need to show that U1 and U2

have the same cardinality. First we show that every agent semi-assigned to an agent in

U1 must be in U2. Let q be any member of U1. Since no agent in T f(k) has an empty list,

there must be some agent semi-assigned to q in T f(k). Let r be any such agent. Suppose

r 6∈ U2. Then r prefers q to pM (r). But, since q ∈ U1, q prefers r to pM (q), and so {r, q}

blocks M , a contradiction. Now, we show that U1 and U2 have the same cardinality. For

each agent v ∈ U2, v prefers pM (v) to lT f(k)(v), or is indifferent between them. Since

{v, pM (v)} has been deleted it follows, by the second defining property of a strongly stable

table, that pM (v) prefers lT f(k)(pM (v)) to v, and hence pM (v) ∈ U1. Hence |U1| ≥ |U2|.

Suppose |U1| > |U2|, and let P be the set of all agents. Since |U1| > |U2|, it follows that

|P \ U1| < |P \ U2|. But every agent in P \ U2 can only be semi-assigned to agents in

P \ U1, since no agent from P \U2 is semi-assigned to any agent in U1. Further, no agent

in T f(k) has an empty list, so P \ U2 must be a set with positive deficiency, implying that

the critical set is non-empty, a contradiction. Hence there is an agent p 6∈ U2 such that p

is semi-assigned to some agent q ∈ U1, a contradiction. It follows that |U2| = |U1|.

Now suppose there is no perfect matching in G. Since |U1| = |U2|, and there is no deficient

set in the semi-assignment graph, there must be a set S of agents in U2 such that the

agents in S are collectively semi-assigned to fewer than |S| agents in U1. But every agent

semi-assigned to an agent in U1 must be in U2, so the agents in S∪(P \U2) are collectively

semi-assigned to fewer than |P \ U1|+ |S| agents. But then S ∪ (P \U2) has deficiency at

least one in the semi-assignment graph, a contradiction. It follows that there is a perfect

matching in G.

Finally we show that M ′ is strongly stable. Suppose, for a contradiction, that it is not.

Then there exists a blocking pair {p, q} for M ′. If neither p nor q has a worse partner in

M ′ than in M then {p, q} blocks M , a contradiction. So suppose p prefers s = pM (p) to

r = pM ′(p), i.e., p ∈ U2. By the construction of M ′, r ∈ fT f(k)(p), and p ∈ lT f(k)(r). Since

{p, q} blocks M ′, p prefers q to r, or is indifferent between them. Suppose p is indifferent

between q and r. Then q ∈ fT f(k)(p), and so p ∈ lT f(k)(q). But, for {p, q} to block M ′, q

must prefer p to pM ′(q), and so q must prefer lT f(k)(q) to pM ′(q), a contradiction, as this
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implies {q, pM ′(q)} 6∈ T f(k). Hence p prefers q to r. It follows that {p, q} 6∈ T f(k), so, by

the second defining property of a strongly stable table, either p prefers lT f(k)(p) to q, or

q prefers lT f(k)(q) to p. In the former case {p, r} cannot, by the second defining property

of a strongly stable table, be in T f(k), a contradiction. In the latter case, since q prefers

p to pM ′(q), or is indifferent between them, it follows that q prefers lT f(k)(q) to pM ′(q), a

contradiction again. Thus M ′ is strongly stable and the result follows.

We are now in a position to describe phase 2 of the algorithm, which is displayed in Figure

3.2. We start by setting T to be the phase 1 table T 1. So long as there is some agent x

for whom fT (x) 6= lT (x), we form T f(x) and T l(x). If no agent in T f(x) has an empty list

we set T to be T f(x). Otherwise, if no agent in T l(x) has an empty list we set T to be

T l(x). If neither of these conditions is satisfied, no strongly stable matching exists for the

instance. If the iteration in phase 2 terminates, we construct the final assignment graph,

and find a perfect matching in that graph, which must exist and be strongly stable (see

Lemma 3.3.4).

T := T 1;

while some agent x has fT (x) 6= lT (x) {

delete {z, w} from T for each z ∈ fT (x) and w ∈ lT (z),

and apply main loop of phase 1 to obtain T f(x);

delete {x, y} from T for all y ∈ lT (x),

and apply main loop of phase 1 to obtain T l(x);

if no agent in T f(x) has an empty list

T := T f(x);

else if no agent in T l(x) has an empty list

T := T l(x);

else {

report no strongly stable matching exists;

halt; }}

let G be the final assignment graph;

let M be a perfect matching in G;

output M , a strongly stable matching;

Figure 3.2: Phase 2 of Algorithm SRTI-strong



CHAPTER 3. STRONG STABILITY IN SRTI 59

We have one final lemma to prove.

Lemma 3.3.4. Suppose that the iteration in phase 2 terminates, and let G be the final

assignment graph. Then there must be perfect matching M in G, and M must be strongly

stable.

Proof Suppose, for a contradiction, that there is no perfect matching in G. Then, by

Philip Hall’s theorem, there must be a set S1 of agents who are collectively semi-assigned

to a set S2 of agents such that |S1| < |S2|. But then S1 is a set of positive deficiency,

implying that the critical set is non-empty, a contradiction.

Now suppose M is a perfect matching in the final assignment graph G, and suppose, for

a contradiction, that M is blocked by {p, q}. It is clear from inspection of the algorithm

that, if {p, q} was deleted by the algorithm, then either p prefers pM(p) to q, or q prefers

pM (q) to p. Hence {p, q} cannot have been deleted. Clearly neither p nor q can have an

empty list, so both must have a single tie as a list, and the other must be contained in that

tie. But each of p and q has a partner in M selected from that tie, so both are indifferent

between the other and their partner in M , a contradiction. The result follows.

We now have all the results we need to conclude that Algorithm SRTI-strong is correct.

We collate these results in the following theorem.

Theorem 3.3.5. Algorithm SRTI-strong determines whether a strongly stable matching

exists for a given instance of SRTI, and if so it outputs such a matching.

Proof If phase 1 of Algorithm SRTI-strong reports that no strongly stable matching exists,

then no strongly stable matching exists by Corollary 3.2.4. So suppose the algorithm enters

phase 2. If the instance does not admit a strongly stable matching then, since there must

be at least two deletions from the lists during each iteration of the while loop, ultimately

either both T f(x) and T l(x) must contain an agent with an empty list, by Lemma 3.3.4, in

which case the algorithm reports that no strongly stable matching exists. Conversely, if

the instance admits a strongly stable matching then, by Lemmas 3.3.1, 3.3.2 and 3.3.3, we

must end up with a strongly stable table in which every list consists of one tie, and which

contains a strongly stable matching. At this point we find a perfect matching, which must

exist and be strongly stable, by Lemma 3.3.4.

Example 3.3.1. An example instance is displayed in Figure 3.3. Agent pi is labeled i (1 ≤ i ≤ 10)

for brevity, and agent i’s preference list takes the form i : Pi. The instance is constructed so the
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initial preference lists coincide with the phase 1 table, and there are an even number of agents with

non-empty lists, so phase 2 is required.

1: 3 (2 9)

2: (1 7) 6 8

3: (4 6 7) 9 5 (1 10)

4: (8 10) 5 3

5: (6 9) 4 3 (7 8 10)

6: 7 2 (3 5)

7: (5 9) (8 10) (2 3 6)

8: (2 5) (7 10) (4 9)

9: 8 (1 10) 3 (5 7)

10: (3 5) (8 9) 7 4

Phase 1 table

Figure 3.3: The phase 1 table T for an example SRTI instance

Let T be the phase 1 table. Since fT (1) 6= lT (1), we can form T f(1) and T l(1). To form T f(1), we

first delete the tail of agent 3. The reactivation of the main loop of phase 1 then causes agent 1 to

become semi-assigned to agents 2 and 9, which in turn causes the deletions of {9, 3}, {9, 5}, {9, 7},

{2, 6} and {2, 8}. The lists at this point are displayed in Figure 3.4. It can be verified that the

critical set at this point is {7, 8, 10}, with neighbourhood {5}. After deleting the tail of agent 5, it

can be verified that T f(1) is as displayed in Figure 3.4. Since every agent has exactly one tie on his

list we form the final assignment graph G and look for a perfect matching in G. The only perfect

matching in G is {1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, and it can be verified that this matching is

indeed strongly stable.

For comparison, T l(1) goes through the main loop three times, with the critical sets at the end of

the first and second iterations being {2, 6} and {1, 5, 7, 8, 10} respectively. The lists immediately

before these critical set deletions are listed in Figure 3.5. It can be shown that agent 1 (amongst

others) will end up with an empty list in T l(1), because his list will be empty immediately after

the deletions necessitated by the second critical set.
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1: (2 9) 1: (2 9)

2: (1 7) 2: 1

3: (4 6 7) 5 3: (4 6)

4: (8 10) 5 3 4: 3

5: 6 4 3 (7 8 10) 5: 6

6: 7 (3 5) 6: (3 5)

7: 5 (8 10) (2 3 6) 7: 8

8: 5 (7 10) (4 9) 8: (7 10)

9: 8 (1 10) 9: (1 10)

10: 5 (8 9) 7 4 10: (8 9)

Intermediate lists T f(1)

Figure 3.4: Forming T f(1)

1: 3 1: 3

2: 7 6 8 2: 6

3: (4 6 7) 9 5 (1 10) 3: 4 9 5 (1 10)

4: (8 10) 5 3 4: (8 10) 5 3

5: (6 9) 4 3 (7 8 10) 5: 9 4 3 (7 8 10)

6: 7 2 (3 5) 6: 2

7: (5 9) (8 10) (2 3 6) 7: (5 9) (8 10)

8: (2 5) (7 10) (4 9) 8: 5 (7 10) (4 9)

9: 8 10 3 (5 7) 9: 8 10 3 (5 7)

10: (3 5) (8 9) 7 4 10: (3 5) (8 9) 7 4

Before 1st critical set deletions Before 2nd critical set deletions

Figure 3.5: Forming T l(1)

3.4 Implementation and analysis of Algorithm SRTI-strong

We show that, for an instance of SRTI involving a mutually acceptable pairs, Algorithm

SRTI-strong can be implemented to run in O(a2) time.



CHAPTER 3. STRONG STABILITY IN SRTI 62

By a similar argument to that for Algorithm HRT-strong-R (see Section 2.3), phase 1 of

Algorithm SRTI-strong has O(a2) time complexity.

Phase 2 is somewhat more complex. We use the method of [26] to limit the amount of

work done. Two possible courses of action must be considered in each loop iteration. In

the worst case, we may require Ω(a2) time in each iteration to calculate T f(x) and T l(x),

and yet only make O(1) deletions per iteration, so requiring Ω(a) iterations, giving overall

complexity no better than O(a3). To solve this problem we make a copy T2 of the phase 1

table T1 = T 1, which takes O(a) time. We then delete the pairs {x, y}, for all y ∈ lT2(x),

from T2, and we delete {z, w} for each z ∈ fT1(x) and w ∈ lT1(z) from T1. We then apply

the main loop of phase 1 to T1 and T2, starting with the one that has had the greatest

number of pairs deleted. Until we need to find a critical set in one of T1 and T2 we do

not allow the number of deletions from the active table to exceed the number from the

inactive table by more than 1. When we need to find a critical set in one table, say T1,

we find one augmenting path, taking O(a) time. We then switch back to T2 until either

the application of the main loop of phase 1 to T2 terminates, or we need to find a critical

set in T2, whichever comes first. In the latter case we find one augmenting path, and then

switch back to T1. By operating in this manner the difference in work done on T1 and T2

can never be greater than O(a) time. Finally, we maintain two stacks of deleted pairs, one

for each of T1 and T2. As soon as one of the phase 1 applications terminates we halt.

Suppose the application of phase 1 to T1 terminates first (a similar argument applies if

the other application terminates first). If no agent in T
f(x)
1 has an empty list, then we

restore T2 from the stack, and then create another copy of T
f(x)
1 from T2 by applying the

same deletions to T2 that were applied to T1. Otherwise we restore T1 from the stack, and

continue with the application of phase 1 to T2. If this terminates with T
l(x)
2 containing

an agent who has an empty list then we exit the algorithm with the conclusion that no

strongly stable matching exists for the instance. Otherwise we form a second copy of T
l(x)
2

from T1 by applying the same deletions to T1 that were applied to T2.

If the algorithm has not terminated with the conclusion that no strongly stable matching

exists then we have two copies of a strongly stable table. Using the method of Section 2.3,

we can show that the total time taken in traversing the path from the phase 1 table to the

end of the execution of phase 2 via complete strongly stable tables is O(a2). Note that,

when entering the main loop of phase 2 for the second and subsequent times we can still



CHAPTER 3. STRONG STABILITY IN SRTI 63

make use of the maximum cardinality matching in the final semi-assignment graph, so the

method of Section 2.3 will work over multiple applications of phase 1 of the algorithm.

Finally, the time taken on an incomplete table cannot exceed the time taken on the parallel

(complete) strongly stable table by more than O(a) time. At least one pair is deleted in

every iteration of the main loop of phase 2, so there are O(a) such tables. It follows

that there is O(a2) work done on the incomplete tables, and so phase 2 of Algorithm

SRTI-strong, and hence Algorithm SRTI-strong, has O(a2) time complexity.

3.5 Conclusion

We have presented an algorithm which finds a strongly stable matching in an instance of

SRTI in O(a2) time. As noted previously, Kavitha et al. [30] have shown that a strongly

stable matching in an instance of SMTI can be found in O(ka) time, as can a resident-

optimal strongly stable matching for an instance of HRT (see Chapter 2), where k is the

total number of men and women in the instance, and the sum of the number of residents

and the number of hospital posts, respectively. It seems likely that the method employed

can be extended to Algorithm SRTI-strong to reduce the complexity to O(ka) time, though

this remains an open problem at this time.



Chapter 4

Stable Fixtures

4.1 Introduction

In this chapter we introduce a new problem. The Stable Fixtures problem is a generalisation

of the Stable Roommates problem in which each agent has a fixed integer capacity, and

is to be assigned a number of partners less than or equal to that capacity subject to the

normal stability criterion. The name derives from a possible application in which a set of

individuals or teams take part in a competition in which the fixtures are to be specified in

advance. Each agent has a specified target number of fixtures, and may play against each

of the others at most once. Each ranks a subset of the others - his acceptable partners1 -

in order of preference. A set of fixtures is stable if there are no two mutually acceptable

agents, who are not scheduled to play against each other, each of whom either prefers

the other to one of his scheduled opponents or has a fixture list shorter than his capacity.

Stable Fixtures is of interest in its own right, though it is a generalisation of SMI, SRI and

HR. In this chapter we focus on the case of strictly ordered preference lists, but in Chapter

5 we return to preference lists with ties, when we study Stable Fixtures with Ties. We

include the version with strictly ordered lists here, despite the title of this thesis, as it is

a sensible step to take before embarking on a study of the more general version.

More formally, an instance of the Stable Fixtures problem (SF) consists of

1For consistency, we continue to refer to ‘partners’, although ‘opponents’ might be a more appropriate

term in the context of SF.

64
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• P = {p1, . . . , pn}, the set of agents;

• for each i (1 ≤ i ≤ n) an integer capacity cpi
satisfying 1 ≤ cpi

≤ n − 1;

• for each i (1 ≤ i ≤ n) a preference list Ppi
comprising a strictly ordered subset of

P \ {pi}, with length at least cpi
.

If pj appears on Ppi
we say that pj is acceptable to pi, otherwise we say that pj is unac-

ceptable to pi. If pj precedes pk on Ppi
we say that pi prefers pj to pk. We say that a pair

{pi, pj} is an acceptable pair if pi is acceptable to pj, and pj is acceptable to pi.

A fixture allocation, or simply an allocation is a set A of unordered pairs of agents {pi, pk}

such that pi ∈ Ppk
, pk ∈ Ppi

, and, for all i (1 ≤ i ≤ n),

|{pj : {pi, pj} ∈ A}| ≤ cpi
.

The size of A is merely the number of pairs in A. The members of the set {pj : {pi, pj} ∈

A} are referred to as the partners of pi in A.

An acceptable pair {pi, pj} 6∈ A is a blocking pair for allocation A if

• either pi has fewer than cpi
partners, or pi prefers pj to at least one of his partners

in A, and

• either pj has fewer than cpj
partners, or pj prefers pi to at least one of his partners

in A.

An allocation that admits no blocking pair is said to be stable, and is otherwise unstable.

A pair that belongs to some stable allocation is a stable pair.

Recall that, in SR, if a stable matching exists then it is complete, i.e., every agent is

matched to exactly one other agent. By contrast, in SF, it is easy to construct an example

to show that, even if all preference lists are complete, a stable allocation may have some

agents who are matched with fewer other agents than their capacity. For example, consider

an instance involving four agents, each of capacity 2, such that one particular agent is

ranked last by each of the others. It can be shown that the sole stable allocation here has
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size 3, and the unpopular agent has no partners. So, at least in this respect, SF behaves

somewhat differently from SR.

In this chapter we present an extension of Irving’s Stable Roommates algorithm which,

for a given instance of SF, determines if a stable allocation exists, and if so finds one such

allocation, all in O(a) time, where a is the number of acceptable pairs in the instance.

As in the Stable Roommates case, the Stable Fixtures algorithm is split into two phases,

discussed in Sections 4.2 and 4.3 respectively. In both phases, the preference lists of

the agents are successively reduced, though in different ways. In phase 1, unlike the

Stable Roommates algorithm, if some agent’s preference list ends up with fewer entries

than that agent’s capacity, then the only conclusion that can be drawn is that, in any

stable allocation, the agent in question must be matched with every agent in his (reduced)

preference list. In phase 2, however, we show that if some agent’s list becomes shorter

than the minimum of his capacity and the length of his list at the end of phase 1, we can

immediately conclude that no stable allocation exists for the given instance. Finally, in

Section 4.4 we consider the implementation and complexity of the algorithm.

4.2 Phase 1 of Algorithm SF

The first phase of the algorithm closely resembles the first phase of the Stable Roommates

algorithm [20], in that it involves a sequence of proposals, with the proposer becoming

committed to the proposee, and the proposee holding a commitment from the proposer.

The main difference is that the commitments made, and the deletions of entries from

preference lists, are controlled by the capacities of the agents.

Formally, we say that an agent pi is committed to an agent pj if pi has made a proposal

to pj and the pair {pi, pj} has not been deleted (see below), and we say that an agent pj

holds a commitment from an agent pi if pj has accepted a proposal from pi and the pair

{pi, pj} has not been deleted. By the deletion of a pair {pi, pj}, we mean the removal of

pi from Ppj
and the removal of pj from Ppi

, and if pi (resp. pj) is committed to pj (resp.

pi), the breaking of that commitment. We say that an agent pi is dominated on Ppj
if pj

prefers to pi at least cpj
agents who are committed to pj. The use of deletions ensures that

any proposal received by an agent during the algorithm’s execution automatically results

in the proposee holding a commitment from the proposer.
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Every agent is initially committed to no-one and holds no commitments, and we say that

such an agent is free. Each successive proposal is made by some agent pi who is currently

committed to fewer than cpi
other agents; pi will propose, and become committed, to the

first agent on Ppi
to whom he is not already committed, pj say. The commitment relation

is not symmetric in general, so this need not imply that pj is committed to pi. If agent

pj now holds a number of commitments greater than or equal to his capacity cpj
then all

the pairs {pj , pk}, such that pk is dominated on Ppj
, are deleted. This means that there

will be no immediate rejections in the fixtures algorithm, so an agent pj will accept any

proposal made to him. Further, the deletions from Ppj
might include an agent who is

committed to pj , and so this agent now has at least one more proposal to make, unless he

is committed to everyone on his current list. This loop continues as long as some agent pi

is committed to fewer than cpi
other agents, and there is some agent on Ppi

to whom he is

not committed. We call the set of preference lists obtained at the end of phase 1 the phase

1 table, denoted T 1. For a given agent x, we denote x’s list in T 1 by T 1
x . On termination

of the loop, if the sum over all agents of the lesser of an agent’s capacity and the length

of the agent’s list in T 1 is odd then there cannot be a stable allocation for the instance

(see Corollary 4.2.8), and so the algorithm reports this. The first phase of the algorithm

is displayed in Figure 4.1.

assign each agent to be free;

while some agent pi is committed to fewer than cpi
agents and

there is some agent on Ppi
to whom he is not committed {

pj := first agent on Ppi
to whom pi is not committed;

pi proposes, and becomes committed to pj ;

if pj now holds ≥ cpj
commitments

for each agent pk dominated on Ppj

delete the pair {pk, pj} from the preference lists; }

if
∑

p∈P min(cp, |T 1
p |) is odd

no stable allocation exists;

Figure 4.1: Phase 1 of Algorithm SF

Algorithm SF involves some non-determinism but, as with all the algorithms for solving

variants of the Stable Marriage problem, this non-determinism makes no difference to the
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outcome.

We will show in Lemma 4.2.3 that each agent x for whom |T 1
x | ≤ cx is committed to, and

holds a commitment from, every agent on T 1
x , and as a consequence must be matched with

exactly this set of agents in any stable allocation.

We denote by F (x) and L(x) the sets of agents to whom x is committed and from whom

x holds commitments respectively, and we denote by l(x) the last agent on T 1
x . Clearly

|F (x)| ≤ cx, |L(x)| ≤ cx, y ∈ F (x) ⇔ x ∈ L(y), and l(x) is undefined if T 1
x is empty.

We are now in a position to give some properties of the phase 1 table.

Lemma 4.2.1. Let {x, y} be an acceptable pair.

(i) T 1
x and T 1

y cannot both be empty.

(ii) If T 1
x is empty then y prefers l(y) to x.

(iii) If T 1
x and T 1

y are both non-empty then {x, y} is absent from T 1 if and only if x prefers

l(x) to y or y prefers l(y) to x.

Proof (i) It is clear from the algorithm that an agent who receives a proposal at any

point must always hold at least one commitment, and cannot have an empty list in T 1. So

if both T 1
x and T 1

y are empty, neither x nor y could have received a proposal, hence there

is no way that the pair {x, y} could have been deleted, giving a contradiction.

(ii) Because T 1
x is empty, {x, y} must have been deleted, and this must have resulted from

x being dominated on Py. Hence y prefers l(y) to x.

(iii) If x prefers l(x) to y, then {x, y} must be absent from T 1 by the definition of l(x),

and similarly if y prefers l(y) to x. On the other hand, if {x, y} was deleted during phase

1 of the algorithm, then either x was dominated on Py, or y was dominated on Px. In

the former case it follows that y prefers all the members of L(y) to x, and in the latter x

prefers all the members of L(x) to y. It is clear that, in the first case l(y) ∈ L(y), and in

the second case l(x) ∈ L(x), and the result follows.

Lemma 4.2.2. (i) If {x, y} does not belong to T 1 then {x, y} is not a stable pair.

(ii) If |T 1
v | < cv then v is matched with at most |T 1

v | agents in any stable allocation.
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Proof (i) Suppose, for a contradiction, that {x, y} is a stable pair that does not belong to

T 1. Let A be a stable allocation containing the pair {x, y}, and suppose that {x, y} was the

first stable pair deleted during the execution of phase 1 of the algorithm. Suppose further,

without loss of generality, that the deletion of {x, y} took place when an agent z became

committed to x. Then x must already have held cx − 1 commitments from agents he

prefers to y, say u1, . . . , ucx−1, and he must also prefer z to y. Let U = {u1, . . . , ucx−1, z}.

Not all of the agents in U can be partners of x in A, for y 6∈ U is one such partner. So

choose u ∈ U such that {x, u} 6∈ A. Suppose u prefers all of his partners in A to x. Then

for u to have become committed to x during the execution of the algorithm some stable

pair must already have been deleted, contradicting the assumption that {x, y} was the

first such deletion. It follows that u prefers x to at least one of his partners in A, and we

know that x prefers u to y, a contradiction of the stability of A.

(ii) This follows at once from (i).

Lemma 4.2.3. For an instance of SF that admits a stable allocation, let x be an agent

for whom |T 1
x | ≤ cx. Then x is committed to, and holds a commitment from, every agent

on T 1
x . Further every pair of agents who are committed to each other in T 1 are matched

in every stable allocation, so in particular x is matched with every agent on T 1
x in every

stable allocation.

Proof At the end of phase 1, an agent x for whom |T 1
x | ≤ cx must be committed to every

agent in T 1
x , because of the termination condition. Suppose that x holds fewer than T 1

x

commitments, so that x is committed to more agents than the number of commitments he

holds. Clearly the total number of commitments made and the total number of commit-

ments held must be equal, so there is at least one agent y who holds more commitments

than the number of commitments he has made. But an agent only holds as many com-

mitments as his capacity, so y must be committed to fewer agents than his capacity, and

fewer than |T 1
y | agents, contradicting the fact that phase 1 has ended. Thus x must be

committed to every agent on T 1
x , and must also hold a commitment from each of them.

Now let {r, s} be such that r is committed to s and s is committed to r in T 1. Let A be

a stable allocation, and suppose {r, s} 6∈ A. Then, by Lemma 4.2.2(i), r is either matched

with fewer than |T 1
r | partners in A, or r prefers s to at least one of his partners in A, and

similarly s is either matched with fewer than |T 1
s | partners in A, or s prefers r to at least
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one of his partners in A. But then {r, s} blocks A, a contradiction.

Corollary 4.2.4. Any agent x for whom |T 1
x | = 0 has no stable partners.

Corollary 4.2.5. For every agent x for whom T 1
x is non-empty, l(x) ∈ L(x).

Proof If |T 1
x | ≤ cx then, by Lemma 4.2.3, x holds a commitment from every agent on his

list, so L(x) = T 1
x . Since l(x) ∈ T 1

x it follows that l(x) ∈ L(x). Otherwise it is clear, by

a simple count of commitments made and held, that x must hold commitments from cx

agents. Thus the deletion step of the algorithm implies that x must hold a commitment

from the last agent on his list, so l(x) ∈ L(x).

Lemma 4.2.6. Any agent x for whom |T 1
x | ≥ cx must be matched with exactly cx agents

in any stable allocation.

Proof At the end of phase 1, x holds commitments from cx agents, y1, ..., ycx say. Then

for each i (1 ≤ i ≤ cx) x appears in the first cyi
positions in T 1

yi
. If, in an allocation A, x

has fewer than cx partners then, in particular, one of y1, ..., ycx , say y1, is not his partner,

so, by Lemma 4.2.2 (i), {x, y1} blocks A, giving a contradiction.

The following two corollaries are immediate from Lemmas 4.2.3 and 4.2.6. Note that

Corollary 4.2.8 is a sufficient, but not necessary, condition for non-existence of a stable

allocation.

Corollary 4.2.7. All stable allocations for a given instance of the Stable Fixtures problem

have the same size.

Corollary 4.2.8. For a given instance of the Stable Fixtures problem, if
∑

p∈P min(cp, |T
1
p |)

is odd, then there is no stable allocation.

Note that there are certain circumstances under which a stable allocation could be iden-

tified at the end of phase 1, but this would unnecessarily complicate the algorithm, so we

leave identification of stable allocations exclusively to phase 2.

Example 4.2.1. An example instance is displayed in Figure 4.2. The agent pi is labeled i

(1 ≤ i ≤ 10) for brevity, and agent i’s preference list takes the form i : (ci) Pi.

Hand execution of the algorithm shows that, at the end of phase 1, agent 10 has an empty list

and must therefore be unmatched in every stable allocation, agents 6 and 7 end up with only each



CHAPTER 4. STABLE FIXTURES 71

1:(2) 3 2 4 5 7 8 10 1:(2) 3 2 4 5

2:(2) 1 4 3 5 8 9 2:(2) 1 4 3 5

3:(2) 7 8 9 1 2 4 5 10 3:(2) 8 9 1 2 4

4:(2) 5 3 9 1 8 2 4:(2) 5 3 9 1 8 2

5:(2) 2 3 7 1 4 9 6 10 5:(2) 2 1 4 9

6:(2) 7 9 8 5 6:(2) 7

7:(1) 6 1 8 3 5 10 7:(1) 6

8:(1) 1 4 7 9 2 3 6 8:(1) 4 9 3

9:(1) 2 5 8 4 3 6 9:(1) 5 8 4 3

10:(1) 1 5 7 3 10:(1)

Initial preference lists Phase 1 table

Figure 4.2: The initial preference lists and phase 1 table for an example Stable Fixtures

instance

other on their lists and so are matched only with each other in every stable allocation, (thus agent

6, who has a capacity of 2, cannot meet his capacity in any stable allocation), and, by Lemma

4.2.3, agents 1 and 2 must also be matched in every stable allocation. Since
∑

p∈P min(cp, |T 1
p |)

is even, phase 2 commences. The execution of phase 2 is described at the end of the next section.

4.3 Phase 2 of Algorithm SF

We first define a number of terms that are required for phase 2 of the algorithm.

A preference table, or table for brevity, is a subset of the pairs contained within the phase

1 table T 1. For a given table T and agent x, we use Tx to denote the preference list of x

in T , with order induced from Px.

In any preference table T , we denote by FT (x) the first min(cx, |Tx|) agents in Tx, and by

LT (x) the set of agents {y : x ∈ FT (y)}. We denote by lT (x) the last agent in Tx, and by

sT (x) the first agent y ∈ Tx such that y 6∈ FT (x) i.e., the agent in position cx + 1 in Tx

(note that sT (x) is only defined if |Tx| > cx). Further, it is immediate that, at the end of

phase 1, F (x) = FT 1(x), L(x) = LT 1(x), and l(x) = lT 1(x), so lT 1(x) ∈ LT 1(x), for all x
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such that T 1
x is non-empty.

A stable table is a preference table T that satisfies the following conditions:

(i) an acceptable pair {x, y} is absent from T if and only if x prefers lT (x) to y or y prefers

lT (y) to x;

(ii) there is no agent x such that |Tx| < min(cx, |T 1
x |);

(iii) for each agent x for whom Tx is non-empty, lT (x) ∈ LT (x);

(iv) for each agent x, |LT (x)| = |FT (x)|.

It follows from Lemma 4.2.1, Corollary 4.2.5 and the execution of the algorithm that the

phase 1 table is stable.

The essence of phase 2 of the algorithm is the generation of a sequence of nested preference

tables, terminating when a stable allocation is reached, or when condition (ii) is violated,

in which case we will show that no stable allocation exists for the instance.

The following lemma starts to explore some of the properties of stable tables.

Lemma 4.3.1. Let A be an allocation of min(cx, |T 1
x |) fixtures for each agent x, and let

T be a stable table.

(i) If A ⊆ T then no pair that is absent from T can block A.

(ii) If, for every agent x, |Tx| = min(cx, |T 1
x |), then T is a stable allocation.

(iii) If T , U are stable tables and FT (x) = FU (x) for all x, or equivalently LT (x) = LU(x)

for all x, then T = U .

Proof (i) Let {x, y} be a blocking pair for A. It is clear from the execution of phase 1 of

the algorithm that if |T 1
x | < cx and |T 1

y | < cy then {x, y} cannot have been deleted during

phase 1. In this case, if {x, y} 6∈ T then |Tx| < |T 1
x |, a contradiction. Otherwise, the result

is a consequence of a simple extension of the argument in Lemma 4.2.1 (i), Lemma 4.2.6,

and the first and second defining properties of a stable table.

(ii) This follows immediately from (i).

(iii) It follows from the definitions of FT and LT that FT (x) = FU (x) for all x if and only
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if LT (x) = LU (x) for all x, and it is an easy consequence of the first and third defining

properties of a stable table that, if one of these conditions is satisfied, then T = U .

Before we can ascertain whether a stable allocation exists, we must first decide how we

are going to further reduce the preference lists. As in the Stable Roommates problem, we

make use of rotations to achieve this reduction. A rotation exposed in a preference table

T is a sequence

ρ = (x0, y0), (x1, y1), ..., (xr−1, yr−1)

with xi 6= xj (0 ≤ i < j ≤ r − 1), such that xi = lT (yi) and yi+1 = sT (xi) for all i

(0 ≤ i ≤ r − 1), where i + 1 is taken modulo r. For each i we say that xi, yi and the

ordered pair (xi, yi) are in the rotation ρ. The set {x0, ..., xr−1} will be called the X-set

of ρ, and the set {y0, ..., yr−1} will be called the Y -set of ρ. All subscripts should be taken

modulo r where appropriate, and it should be noted that the starting point of the sequence

is arbitrary because of the cyclic nature of a rotation.

We prove that, in a stable table T , no agent x with |Tx| ≤ cx can be in a rotation, and

that the X-sets of two rotations are disjoint, as are their Y -sets.

Lemma 4.3.2. Let T be a stable table. No agent x with |Tx| ≤ cx can be in a rotation

exposed in T .

Proof Let x be an agent with |Tx| ≤ cx. It follows that sT (x) is undefined, so x cannot

be in the X-set of any rotation. Suppose that x is in the Y -set of some rotation ρ. Then

x = sT (y) for some y. But x 6∈ FT (y) ⇒ y 6∈ LT (x), and x violates the fourth property of

a stable table. The result follows.

Lemma 4.3.3. If ρ and σ are two rotations exposed in T then the X-sets of ρ and σ are

disjoint, as are their Y -sets.

Proof If ρ = (x0, y0), (x1, y1), ..., (xr−1, yr−1) is exposed in a table T , then xi+1 =

lT (yi+1) = lT (sT (xi)), so the cyclic sequence x0, ..., xr−1, and hence the rotation ρ, is

completely determined by any one of the xi. Since xi = lT (yi), ρ is also completely

determined by any one of the yi.
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Lemma 4.3.4. Let T be a stable table in which |Tx| > cx for some agent x. Then there

is at least one rotation exposed in T .

Proof We denote by S(T ) the set of agents x with |Tx| > cx. Clearly, for any x ∈ S(T ),

sT (x) is well defined, and sT (x) ∈ S(T ). For, suppose z = sT (x) 6∈ S(T ). Then z 6∈ FT (x),

so x 6∈ LT (z), and |FT (z)| = |LT (z)| < |Tz|, a contradiction. Let y = lT (z). Since z ∈ S(T )

it follows that y 6∈ FT (z), so z 6∈ LT (y), and a similar argument to that for z shows that

y ∈ S(T ).

Let H(T ) be a directed graph with node set S(T ), and for each node x let there be

an outward edge to the node lT (sT (x)). Because every node in H(T ) has out-degree

1, H(T ) must contain at least one cycle. Suppose that the nodes in such a cycle are

x0, ..., xr−1 in that order. Then, since xi+1 = lT (sT (xi)) for 0 ≤ i ≤ r − 1, it follows that

(x0, sT (xr−1)), (x1, sT (x0)), ..., (xr−1, sT (xr−2)) is a rotation exposed in T .

The above proof gives an easy way to find a rotation exposed in T : starting from any

agent x, traverse the unique path in H(T ) from the node x until some agent is visited

twice. If ρ is the rotation generated by this traversal, we say that x leads to ρ in T . If x

leads to ρ in T , but x is not itself in the X-set of ρ, then the path in H(T ) from the node

x to the first node in the cycle corresponding to ρ is called the tail of the rotation.

For a stable table T and an agent x with |Tx| > cx > 1 we denote by kT (x) the least

favoured member of LT (x) \ lT (x). If ρ = (x0, y0), (x1, y1), ..., (xr−1, yr−1) is a rotation

exposed in T , then we denote by T/ρ the table obtained from T by deleting, for 0 ≤ i ≤

r − 1, all pairs {yi, z} such that yi prefers both xi−1 and kT (yi), if defined, to z. If kT (yi)

is not defined then we simply delete all pairs {yi, z} such that yi prefers xi−1 to z. The

process of replacing T by T/ρ is referred to as eliminating the rotation ρ.

In phase 2 of the algorithm the preference table is reduced by successive elimination of

rotations. The starting point is the phase 1 table, which we know is stable. Throughout

the reduction, provided no agent violates the second defining property of a stable table,

the current table will be shown to be stable, so that Lemma 4.3.4 applies throughout,

and the reduction process can continue as long as some agent has a list longer than his

capacity.

From here onwards a short list is a list Tx in a table T such that |Tx| < min(cx, |T 1
x |). The
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effect of rotation elimination is summarised in the following lemma.

Lemma 4.3.5. Let ρ = (x0, y0), (x1, y1), ..., (xr−1, yr−1) be a rotation exposed in a stable

table T . Then, if T/ρ contains no short list,

(i) yi+1 ∈ FT/ρ(xi) for each i, 0 ≤ i ≤ r − 1.

(ii) xi−1 ∈ LT/ρ(yi) for each i, 0 ≤ i ≤ r − 1.

(iii) FT (x) = FT/ρ(x) for each x not in the X-set of ρ, and LT (y) = LT/ρ(y) for each y

not in the Y -set of ρ.

Proof (i) The pair {xi, yi} = {lT (yi), yi} is deleted, because yi prefers both xi−1 and

kT (yi), if defined, to xi. Since yi+1 = sT (xi), yi+1 ∈ FT/ρ(xi) unless {xi, yi+1} =

{xi, sT (xi)} is also deleted. This deletion could only happen because xi is yj for some

j, and yj prefers both kT (yj), if defined, and xj−1 to yi+1, in which case all successors

of yi+1 in yj = xi’s list are also deleted. As a consequence, |Txi
| < cxi

, contrary to the

assumption.

(ii) This follows from (i) and the definitions of FT and LT .

(iii) The facts that, when ρ is eliminated, no agent x who is not in the X-set of ρ can

lose any entry of FT (x), and no agent y who is not in the Y -set of ρ can lose any entry of

LT (y), are immediate consequences of the definition of rotation elimination.

By Lemma 4.3.2 and Lemma 4.3.5 (iii) no agent x with |T 1
x | ≤ cx can have any agent

deleted from his list in a stable table T when a rotation exposed in T is eliminated.

Therefore any short list in a stable table T will be for an agent x with |T 1
x | > cx, but

|Tx| < cx. The next lemma details some further properties of rotation elimination.

Lemma 4.3.6. Let ρ = (x0, y0), (x1, y1), ..., (xr−1, yr−1) be a rotation exposed in a stable

table T . Then, provided that T/ρ contains no short list, it is a stable table contained in T .

Proof If T/ρ contains no short list, then in order to prove that T/ρ is stable it suffices

to prove that T/ρ satisfies properties (i), (iii) and (iv) for a stable table, namely

(i) an acceptable pair {x, y} is absent from T/ρ if and only if x prefers lT/ρ(x) to y or y

prefers lT/ρ(y) to x,
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(iii) for each agent z for whom Tz is non-empty, lT/ρ(z) ∈ LT/ρ(z), and

(iv) for each agent z, |LT/ρ(z)| = |FT/ρ(z)|.

(i) This follows immediately from the stability of T if {x, y} is absent from T . Otherwise,

if {x, y} is deleted when ρ is eliminated, this must be because y is yi for some i and yi

prefers both kT (yi), if defined, and xi−1 to x, or x is yi for some i and yi prefers both

kT (yi), if defined, and xi−1 to y. This is sufficient to establish (i) for all cases.

(iii) By Lemma 4.3.5(iii), if z is not in the Y -set of ρ then LT/ρ(z) = LT (z). Since T is

stable we have lT (z) ∈ LT (z) and it follows at once that lT/ρ(z) = lT (z) ∈ LT/ρ(z).

On the other hand, suppose that z is in the Y -set of ρ, say z = y1. Then by the definition

of rotation elimination, lT/ρ(y1) is either x0 or w = kT (y1), if defined. In the former case,

x0 ∈ LT/ρ(y1), by Lemma 4.3.5 (ii). In the latter case, w ∈ LT (y1) by definition, and so

w ∈ LT/ρ(y1) also.

(iv) Since T is a stable table, we have |FT (z)| = |LT (z)| for all z. If z is not in the Y -

set of ρ then, by Lemma 4.3.5 (iii), LT/ρ(z) = LT (z), and so the required result follows.

Otherwise, if z is in the Y -set of ρ, say z = y1, then LT/ρ(y1) = (LT (y) \ {x1}) ∪ {x0}, so

|LT/ρ(y1)| = |LT (y1)| = |FT (y1)| = |FT/ρ(y1)|.

Finally, the fact that T/ρ is obtained by deleting pairs from T implies that T/ρ ⊆ T .

We have one final lemma to prove before we state the main theorem for phase 2.

Lemma 4.3.7. Suppose that T and U are stable tables, and that U ⊆ T . If ρ =

(x0, y0), (x1, y1), ..., (xr−1, yr−1) is a rotation exposed in T and if FU (x) 6= FT (x) for at

least one x that leads to ρ, then U ⊆ T/ρ.

Proof If x = u0 leads to ρ in T then there is a sequence (u1, v1), ..., (ut−1, vt−1) such

that vi = sT (ui−1) and ui+1 = lT (sT (ui)) for i = 0, ..., t − 1, and ut = xk for some k

(0 ≤ k ≤ r − 1).

If FT (u0) 6= FU (u0) then there is at least one agent in FU (u0) who is s = sT (u0) = v1

or someone below s in Tu0 . Thus lU (s) must be someone equal to, or better than, the

least favoured of u0 or kT (s), if defined. But u1 = lT (s) is below both u0 and kT (s), if

defined, and hence below lU (s) in Ts. It follows that FT (u1) 6= FU (u1). This argument

may now be repeated for u1, ..., ut = xk, xk+1, ... to show that, for every j (0 ≤ j ≤ r − 1),
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FT (xj) 6= FU (xj) and lU (yj+1) is someone equal to, or better than, the least favoured of

xj or kT (yj+1), if defined. So none of the pairs deleted when ρ is eliminated from T is

present in U , and as a consequence, U ⊆ T/ρ.

For ease of reference we state two corollaries of Lemma 4.3.7.

Corollary 4.3.8. Suppose that T and U are stable tables, and that U ⊆ T . If ρ is a

rotation exposed in T , and if FU (x) 6= FT (x) for some x in the X-set of ρ, then U ⊆ T/ρ.

Corollary 4.3.9. Suppose that T and U are stable tables, and that U ⊆ T . Then U can

be obtained from T by eliminating a sequence of rotations. In particular, every stable table

can be obtained from the phase 1 table by eliminating an appropriate sequence of rotations.

Proof If T 6= U then, by Lemma 4.3.1 (iii), FT (x) 6= FU (x) for some x, and hence

|Tx| > cx. So, if x leads to ρ, Lemma 4.3.7 implies that U ⊆ T1 = T/ρ. This argument

may be repeated to produce a sequence T1, T2, ... of stable tables, all of which contain U ,

until, for some k, FTk
(x) = FU (x) for all x. It then follows, by Lemma 4.3.1 (iii), that

Tk = U .

Since every stable table is contained within the phase 1 table, the second part of the

corollary follows at once.

We are now in a position to prove the main result for phase 2 of the algorithm.

Theorem 4.3.10. If there is a stable allocation contained within a stable table T , and if

ρ is a rotation exposed in T , then there is a stable allocation contained within T/ρ.

Proof Let A be a stable allocation contained within T , and suppose that there is a

rotation exposed in T . Let ρ = (x0, y0), (x1, y1), ..., (xr−1, yr−1) be such a rotation. If, for

some i (0 ≤ i ≤ r − 1), xi and yi are not partners in A then, since a stable allocation is a

special case of a stable table, it follows from Corollary 4.3.8 that A ⊆ T /ρ. So suppose xi

and yi are partners in A for all i (0 ≤ i ≤ r − 1). Let Aρ be obtained from A by replacing

the pair {xi, yi} by {xi, yi+1} for each i (0 ≤ i ≤ r − 1).

First we show that Aρ is an allocation. Suppose x appears in both the X-set and the

Y -set of ρ, and cx = 1. Then x = xi = yj for some i, j (0 ≤ i, j ≤ r − 1). But then

the pairs {xi, yi} = {yj, yi} and {xj , yj} can both be in A only if xj = yi, implying that

FT (xi) = {yi} = {xj} = {lT (yj)} = {lT (xi)}, with the contradictory implication that Txi
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contains just one entry. So if x appears in both the X-set and Y -set of ρ then cx > 1.

Further, it is clear that x 6∈ FT/ρ(x), as x 6∈ Tx. It follows that such an x has the same

number of partners in A and Aρ. Further it is clear that any x appearing only once, or

not at all, in the union of the X-set and Y -set of ρ has the same number of partners in A

and Aρ, so Aρ is certainly an allocation.

Next we prove that Aρ ⊆ T /ρ. By Lemma 4.3.5 (i) yi+1 ∈ FT/ρ(xi) for all i, and no pair

that does not contain some yi can be deleted when ρ is eliminated. Now suppose that

some pair {x, y} ∈ Aρ is such that {x, y} 6∈ T/ρ. Then one of x, y must be yi for some

i (0 ≤ i ≤ r − 1). Without loss of generality suppose y = yi for some i (0 ≤ i ≤ r − 1).

Then y prefers lT/ρ(y) to x. We now show that cy > 1. First suppose (x, y) = (xi, yi) ∈ ρ.

Since {xi, yi} ∈ Aρ, it follows that {xi, yi} = {yj+1, xj} for some j 6= i. If x = xj then x

appears twice in the X-set of ρ, a contradiction. Thus x = yj+1. But then y appears in

both the X-set and the Y -set of ρ, and so, by the above argument, cy > 1. Now suppose

(x, y) 6∈ ρ. It follows that {x, y} ∈ A ⊆ T , and hence, in A, y is assigned both xi and x,

so cy > 1. It follows that kT (y) is defined.

Since y = yi for some i (0 ≤ i ≤ r−1), xi(= lT (y)) is removed from Ty when ρ is eliminated,

but no other member of LT (y) is removed from Ty. Hence LT/ρ(y) = {xi−1}∪LT (y)\lT (y).

If {x, y} 6∈ T/ρ, y must prefer lT/ρ(y) to x, so in particular y must prefer kT (y) to x, as

lT/ρ(y) can be no better than this agent. Now, in A, y is matched with both xi = lT (y)

and x (note that x 6= lT (y)), so there is at least one member of LT (y) \ lT (y) whom y is

not matched with in A, z say, though y prefers z to lT (y). Now, z ∈ LT (y), so y ∈ FT (z),

but y 6∈ FA(z), so z is matched with at least one agent in A to whom he prefers y. But

then {z, y} blocks A, a contradiction, so Aρ ⊆ T /ρ.

Finally we need to prove that Aρ is stable. Suppose not. Then there exists a pair {u, v}

that blocks Aρ. Since A is stable, {u, v} cannot block A. Only the xi ∈ X, yi ∈ Y have

different partners in A and Aρ and, of these, only the xi have poorer partners. Hence one

of u, v must be xi for some i. Without loss of generality let u = xi. But it is known from

Lemma 4.3.1 (i) that {u, v} must be in T/ρ to block Aρ, since Aρ ⊆ T /ρ.

Now for {u, v} to block Aρ but not A, u must prefer v to at least one agent he is assigned to

in Aρ, but he must prefer every agent he is assigned to in A to v. Since the only change for

the worse in u’s partners in A and Aρ is that yi has been replaced by yi+1, and yi+1 is the
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least favoured member of FT/ρ(u), it follows that u must be matched with exactly FT/ρ(u)

in Aρ. But then {u, v} ∈ Aρ, since u prefers v to yi+1 and {u, v} ∈ T/ρ, contradicting the

fact that {u, v} blocks Aρ. Hence Aρ is stable. This completes the proof.

This theorem, together with Corollary 4.3.9, has the following immediate corollary.

Corollary 4.3.11. For an instance of Stable Fixtures that admits a stable allocation, every

stable table contains at least one stable allocation.

We now describe phase 2 of the algorithm. Phase 2 operates on a table T , initially the

phase 1 table T 1. As long as there are no short lists in T , and some agent p has a list of

length greater than cp then there must be at least one rotation exposed in T , ρ say, and

this rotation is eliminated from T . If the while loop terminates because there is a short list

in T then there cannot be a stable allocation for the instance, so the algorithm reports that

there is no stable allocation. On the other hand, if the loop terminates because no agent

has a list of length greater than his capacity, then T , which specifies a stable allocation,

is output by the algorithm. The second phase of Algorithm SF is displayed in Figure 4.3.

T := T 1;

while (there are no short lists in T ) and

(some agent p ∈ T is such that |Tp| > cp) {

find a rotation ρ exposed in T ;

T = T/ρ; }

if some list in T is short

no stable allocation exists;

else

output T , a stable allocation;

Figure 4.3: Phase 2 of Algorithm SF

Theorem 4.3.12. Algorithm SF correctly determines whether an instance of SF admits

a stable allocation, and outputs one if it does.

Proof Suppose first that there is a stable allocation for the given instance. If phase 1 of the

algorithm terminates with the conclusion that no stable allocation exists for the instance

then we know, by Corollary 4.2.8, that there is no stable allocation for the instance, a
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contradiction. Hence we must enter phase 2. We know, from Lemma 4.2.2 (i), that every

stable allocation is contained within the phase 1 table and, as long as the condition of the

while loop is satisfied we know, by Lemma 4.3.4, that there is a rotation exposed in the

current table, and, by Lemma 4.3.6, the table formed by eliminating that rotation must

be stable. Furthermore, by Corollary 4.3.11, there is a stable allocation contained within

each successive stable table generated by the algorithm. It follows that the algorithm must

terminate with a stable table T in which every agent x has a list of length min(cx, |T 1
x |),

and T must be a stable allocation, by Lemma 4.3.1 (ii).

Conversely, suppose the instance does not admit a stable allocation. Suppose the algorithm

does not terminate after phase 1. If the algorithm terminates with a stable table T in

which every agent x has a list of length min(cx, |T 1
x |), T must specify a stable allocation,

by Lemma 4.3.1 (ii), a contradiction. Hence some table produced during the execution

of phase 2 must contain an agent with a short list, and the algorithm will conclude that

there is no stable allocation for the instance.

As with the classical Stable Roommates problem [20], the particular stable allocation

generated for an instance of the Stable Fixtures problem depends on the particular set of

rotations eliminated.

Example 4.3.1. Recall that Figure 4.2 shows the phase 1 table T 1 for an example Stable Fixtures

instance. There is only one rotation exposed in T 1, namely (4, 3), (3, 9), (5, 1), (2, 4). When it is

eliminated we obtain T 2, displayed in Figure 4.4, in which there is again only one rotation exposed,

namely (5, 2), (4, 9), (3, 8). When it is eliminated we obtain T 3 = A, a stable allocation, displayed

in Figure 4.4.

4.4 Implementation and analysis of Algorithm SF

We now show that the Stable Fixtures algorithm can be implemented in such a way as to

have O(a) worst-case complexity for an instance involving a acceptable pairs.

In phase 1 of the algorithm, deletion of a pair {pi, pj} can be achieved in constant time

by holding a separate ranking array for each agent such that, in the array for pi, position

j holds the index of the position that pj occupies in Ppi
. This means that, when agent

pj is deleted from the list of agent pi, pi can be deleted from pj’s list using one look-up

of the ranking array. This second part of the deletion is achieved in constant time if the
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1:(2) 3 2 1:(2) 3 2

2:(2) 1 3 5 2:(2) 1 3

3:(2) 8 1 2 3:(2) 1 2

4:(2) 5 9 8 4:(2) 5 8

5:(2) 2 4 9 5:(2) 4 9

6:(2) 7 6:(2) 7

7:(1) 6 7:(1) 6

8:(1) 4 9 3 8:(1) 4

9:(1) 5 8 4 9:(1) 5

10:(1) 10:(1)

Stable table T 2 Stable allocation A

Figure 4.4: The intermediate stable table and stable allocation for the example Stable

Fixtures instance

preference lists are stored in an indexed, doubly linked structure. The number of deletions

is bounded by a, the number of acceptable pairs, while the number of commitments is

bounded by 2a. At the point at which an agent pi receives a commitment for the cpi
th

time it is simple to ascertain which element in Ppi
represents the least preferred of the cpi

agents from whom pi holds a commitment. Thereafter, when an agent pi receives a further

commitment, which he will automatically accept, the cpi
th ranked of all the commitments

he holds can be found by stepping backwards in Ppi
from the previous worst commitment

to the first commitment found. The total number of such backward steps is bounded by

2a, so phase 1 certainly has worst case complexity O(a).

For phase 2 of the algorithm a stack is used to house a path traced out in the directed

graph H(T ). When a vertex is reached that is already on the stack a rotation has been

found and it may be recovered by popping the stack as far as the first occurrence of that

vertex. The rotation may then be eliminated by deleting the necessary pairs, and each

deletion is a constant time operation, as has been noted above. Each successive rotation

search begins from the end of the previous tail, so each pair encountered is a new pair.

This ensures that the same long tail will not be traversed more than once. Since the stack

must be empty at the end of the execution of the algorithm (it only ever contains agents
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who have lists longer than their capacities) the number of push and pop operations is the

same. Further, at least one pair is deleted every time a pop operation is performed, so the

number of pop (and hence push) operations cannot exceed a, and since every operation

associated with finding a rotation and deleting a pair can be achieved in constant time, it

follows that the whole algorithm is O(a).



Chapter 5

Stable Fixtures with Ties

5.1 Introduction

In this chapter we extend our study of Stable Fixtures to the case where preference lists

may include ties - we refer to this problem as Stable Fixtures with Ties (SFT). As with

the problems previously discussed, the addition of ties to SF gives rise to three possible

definitions of stability. Here our main focus is super-stability, but we briefly discuss both

weak and strong stability as well.

We define an instance of SFT in the same manner in which we defined an instance of SF,

except that preference lists may now contain ties. If pj and pk are contained in the same

tie on Ppi
we say that pi is indifferent between pj and pk.

We now define the three variants of stability, by giving the three possible definitions of a

blocking pair.

An acceptable pair {pi, pj} 6∈ A is a blocking pair for weak stability for allocation A if

• either pi has fewer than cpi
partners, or pi prefers pj to all of the least preferred of

its partners in A, and

• either pj has fewer than cpj
partners, or pj prefers pi to all of the least preferred of

its partners in A.

An allocation that admits no such blocking pair is said to be weakly stable.

83
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An acceptable pair {pi, pj} 6∈ A is a blocking pair for super-stability for allocation A if

• either pi has fewer than cpi
partners, or pi prefers pj to all of the least preferred of

its partners in A, or is indifferent between them, and

• either pj has fewer than cpj
partners, or pj prefers pi to all of the least preferred of

its partners in A, or is indifferent between them.

An allocation that admits no such blocking pair is said to be super-stable. A pair that

belongs to some stable allocation is a super-stable pair.

An acceptable pair {pi, pj} 6∈ A is a blocking pair for strong stability for allocation A if

• either pi has fewer than cpi
partners, or pi prefers pj to all of the least preferred of

its partners in A, or is indifferent between them, and

• either pj has fewer than cpj
partners, or pj prefers pi to all of the least preferred of

its partners in A.

An allocation that admits no such blocking pair is said to be strongly stable.

Note that we usually just refer to a blocking pair as the context will make clear which type

of blocking pair is intended.

SRTI is a restriction of SFT in which every agent has capacity 1. Ronn [46] showed

that finding a weakly stable matching in an instance of SRTI is NP-hard. It follows that

finding a weakly stable allocation in an instance of SFT is NP-hard. Additionally, it

can be shown that weakly stable allocations in an instance of SFT may have different

cardinalities. However, in common with the other matching problems discussed here, it

can be shown that a maximum cardinality weakly stable allocation in an instance of SFT

is at most twice the size of a minimum cardinality weakly stable allocation.

The remainder of this chapter is organised as follows. Firstly, we present an algorithm,

linear in the input size, which determines whether an instance of SFT admits a super-

stable allocation, and if so outputs one. The algorithm is split into two phases. Phase 1 is

described in Section 5.2, and phase 2 is described in Section 5.3. An implementation of the

algorithm which can be shown to run in time O(a), where a is the number of acceptable
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pairs, is described in Section 5.4. Finally, in Section 5.5 we make some brief comments

on the problem of finding a strongly stable allocation in an instance of SFT. Note that

some of the terminology and notation used in the following sections is identical to that of

Chapter 4, while some is slightly different. To avoid confusion we include all the relevant

definitions in this chapter.

5.2 Phase 1 of Algorithm SFT-super

The first phase of the algorithm closely resembles the first phase of the Stable Fixtures

algorithm, in that it involves a sequence of proposals, with the proposer becoming commit-

ted to the proposee, and the proposee holding a commitment from the proposer. Mirroring

the SF terminology, we say that an agent pi is committed to an agent pj if pi has proposed

to pj and the pair {pi, pj} has not been deleted (see below), and we say that an agent pj

holds a commitment from an agent pi if pj has accepted a proposal from pi and the pair

{pi, pj} has not been deleted. The main change from Algorithm SF is that an agent may

now become committed to more agents than his capacity. Note that an agent will always

become committed to every agent in a given tie on his list at the same time. An agent

may also hold more commitments than his capacity if he holds commitments from at least

two agents in the last tie on his list, and there are enough of them that, were all to be

rejected, the agent would hold fewer commitments than his capacity.

We make a number of additional definitions. By the deletion of a pair {pi, pj}, we mean

the removal of pi from Ppj
and the removal of pj from Ppi

, and if pi (resp. pj) is committed

to pj (resp. pi), the breaking of that commitment. The use of deletions ensures that any

commitment received by an agent during the execution of the algorithm is automatically

accepted. We say that an agent pi is tie-dominated on Ppj
if pj holds commitments from

at least cpj
+ 1 agents he likes at least as much as pi (possibly including pi), at least two

of whom are in a tie with pi (again, possibly including pi). We say that an agent pi is

dominated on Ppj
if pj holds commitments from at least cpj

agents he prefers to pi. We

describe an agent as replete if, at any time during the execution of the algorithm he holds

a number of commitments greater than or equal to his capacity. Thus, once an agent

becomes replete he remains so forever. Finally, we denote by s(pi) the first tie on pi’s list,

the members of whom pi is not committed to (note that a tie may be of unit length).
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Every agent is initially committed to no-one and holds no commitments, and we say that

such an agent is free. Each successive proposal is made by some agent pi who is currently

committed to fewer than cpi
other agents. Agent pi will propose to the members of s(pi),

and as a result pi will become committed to every member of s(pi). As in the case of

SF, this commitment relation is not symmetric in general, so this need not imply that

the members of s(pi) are committed to pi. If an agent pj ∈ s(pi) now holds a number

of commitments greater than or equal to his capacity, we set pj to be replete and delete

all pairs {pj , pk} such that pk is dominated on Ppj
, thereby breaking any corresponding

commitments. Note that this may still leave pj holding more than cpj
commitments. In

this case every pair {pj , pk} such that pk is tie-dominated on Ppj
is deleted, and again any

corresponding commitments are broken. As with the Algorithm SF, these deletions mean

that there will be no immediate rejections, so an agent will accept any proposal made to

him. This phase of the algorithm will continue as long as some agent pi is committed to

fewer than cpi
other agents, and has some agent in his preference list to whom he is not

committed. We call the set of preference lists obtained at the end of phase 1 the phase 1

table, denoted T 1. For a given agent x, we denote x’s list in T 1 by T 1
x . On termination of

the loop, if the sum over all agents of the lesser of an agent’s capacity and the length of

the agent’s list in T 1 is odd then there cannot be a super-stable allocation for the instance

(see Corollary 5.2.8), and so the algorithm reports this. The algorithm is displayed in

Figure 5.1.

The algorithm described in Figure 5.1 involves some non-determinism, but as with all the

algorithms for solving variants of SM, this makes no difference to the outcome.

We will show in Lemma 5.2.5 that each agent x for whom |T 1
x | ≤ cx is committed to, and

holds a commitment from, every agent on T 1
x , and as a consequence must be matched with

exactly this set of agents in any stable allocation.

We denote by F (x) and L(x) the sets of agents to whom x is committed and from whom

x holds commitments respectively, and we denote by l(x) the last tie on T 1
x .

We are now in a position to give some properties of the phase 1 table.

Lemma 5.2.1. In T 1, no agent x is committed to more than cx agents.

Proof Suppose, for a contradiction, that some agent x is committed to more than cx

agents in T 1. No agent y holds more than cy commitments, otherwise at least one agent
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assign each agent to be free and non-replete;

while some agent pi is committed to fewer than cpi
agents and

there is some agent in his preference list to whom he is not committed {

for each pj ∈ s(pi) {

pi becomes committed to pj ;

if pj holds cpj
commitments {

set pj to be replete;

for each pk dominated on Ppj

delete the pair {pj , pk} from the preference lists; }

if pj holds cpj
+ 1 commitments

for each pk tie-dominated on Ppj

delete the pair {pj , pk} from the preference lists; }}

if
∑

p∈P min(cp, |T 1
p )| is odd or if

some replete agent pi has |T 1
pi
| < cpi

no super-stable allocation exists;

else

proceed to phase 2;

Figure 5.1: Phase 1 of Algorithm SFT-super

z is either dominated or tie-dominated on T 1
y , and hence {z, y} will be deleted. But, since

the number of commitments made must be the same as the number of commitments held,

some agent p must hold more commitments than he has made. But an agent only holds

as many commitments as his capacity, so p must be committed to fewer agents than his

capacity, contradicting the fact that phase 1 has ended.

Lemma 5.2.2. Let {x, y} be an acceptable pair.

(i) T 1
x and T 1

y cannot both be empty.

(ii) If T 1
x is empty then y prefers l(y) to x.

(iii) If T 1
x and T 1

y are both non-empty then {x, y} is absent from T 1 if and only if x prefers

lT (x) to y or y prefers lT (y) to x.

Proof (i) The proof is identical to Lemma 4.2.1 (i).

(ii) The proof is identical to Lemma 4.2.1 (ii).
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(iii) If x prefers l(x) to y, then {x, y} must be absent from T 1 by the definition of l(x),

and similarly if y prefers l(y) to x. On the other hand, if {x, y} was deleted during phase

1 of the algorithm, then there are two cases to consider. In the first case, either y was

dominated on Px, or x was dominated on Py. In the former case it follows that y prefers

all the members of L(y), including l(y), to x, and in the latter x prefers all the members

of L(x), including l(x), to y. In the second case, y was tie-dominated on Px, or x was

tie-dominated on Py. In the former case the tie containing x is deleted from y’s preference

list, and l(y) will be at worst some agent from the tie preceding that which contained x,

so y prefers l(y) to x, and by a similar argument x prefers l(x) to y in the latter case.

Lemma 5.2.3. (i) If {x, y} does not belong to T 1 then {x, y} is not a super-stable pair.

(ii) If |T 1
v | < cv then v is matched with at most |T 1

v | agents in any super-stable allocation.

Proof (i) Let A be a super-stable allocation containing the pair {x, y}, and suppose

that {x, y} was the first super-stable pair deleted during the execution of phase 1 of the

algorithm. Suppose further, without loss of generality, that the deletion of {x, y} took

place when a person z became committed to x. For {x, y} to have been deleted the

commitment of z to x must either have caused y to be dominated on Px, or caused y to

be tie-dominated on Px. Call the set of agents x holds commitments from at this point

Lx, excluding y in the second scenario, if necessary. Now, none of the members of Lx can

have a set of partners in A who are all better than x. For, suppose some such agent u does

have a set of partners in A who are all better than x. Then, for u to have proposed to x,

some super-stable pair must have been deleted, contradicting the fact that no super-stable

pairs were previously removed from the table. Since {x, y} ∈ A, x is not matched in A

with at least one member of Lx, r say. It follows that A will be blocked by {x, r}, giving

a contradiction.

(ii) This follows at once from (i).

Lemma 5.2.4. Suppose some replete agent pi has |T 1
pi
| < cpi

. Then there is no super-

stable allocation for the instance.

Proof Suppose, for a contradiction, that A is a super-stable allocation. By Lemma 5.2.3,

pi can be matched with at most |T 1
pi
| agents in A. Since pi is replete there is some agent,

pj say, from whom pi held a commitment during the execution of phase 1 of the algorithm,
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such that pi is not matched with pj in A. But, again by Lemma 5.2.3, pj cannot be

matched in A, with cpj
agents, all of whom he prefers to pi, otherwise he would never have

been committed to pi. But then pj is either matched with fewer than cpj
agents in A, or

prefers pi to at least one agent with whom he is matched in A, or is indifferent between

them. But then {pi, pj} blocks A, a contradiction. The result follows.

We now restrict our attention to phase 1 tables which do not admit a replete agent with

a list of length less than his capacity.

Lemma 5.2.5. For an instance of SFT that admits a super-stable allocation, let x be an

agent for whom |T 1
x | ≤ cx. Then x is committed to, and holds a commitment from, every

agent on T 1
x . Further every pair of agents who are committed to each other in T 1 are

matched in every super-stable allocation, so in particular x is matched with every agent on

T 1
x in every super-stable allocation.

Proof The proof is identical to Lemma 4.2.3.

We now demonstrate that every agent p for whom |T 1
p | ≥ cp must be matched with cp

agents, in any super-stable allocation, implying that every super-stable allocation for a

given instance of SFT must have the same size.

Lemma 5.2.6. Any agent p for whom |T 1
p | ≥ cp must be matched with exactly cp agents

in any super-stable allocation.

Proof The proof is identical to Lemma 4.2.6.

The following two corollaries are immediate from the above result.

Corollary 5.2.7. All super-stable allocations for a given instance of SFT have the same

size.

Corollary 5.2.8. For a given instance of SFT, if
∑

p∈P min(cp, |T
1
p |) is odd then there is

no super-stable allocation for the instance.

As with Algorithms SRTI-strong and SF, there are certain circumstances under which a

super-stable allocation could be identified at the end of phase 1, but this would unneces-

sarily complicate the algorithm, so we leave all identification of super-stable allocations to

phase 2. An example of the execution of phase 1 of Algorithm SFT-super is included in

the example at the end of the next section.
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5.3 Phase 2 of Algorithm SFT-super

We now define a number of terms. In an extension of previous notation, let pA(x) denote

the partners of agent x in allocation A.

A preference table, or table for brevity, is a subset of the pairs contained within the phase

1 table T 1. For a given table T and agent x, we use Tx to denote the preference list of x

in T , with order induced from Px.

Let x be an agent for whom |Tx| < cx in a preference table T . Then we define FT (x) to

be Tx. Otherwise we denote by FT (x) the minimum set of agents Tx such that

• |FT (x)| ≥ cx,

• there is no proper subset F of FT (x) such that |F | ≥ cx and x prefers every agent

in F to every agent in FT (x) \ F and

• there is no agent y ∈ Tx such that y 6∈ FT (x) and x prefers y to any member of

FT (x), or is indifferent between them.

We denote by LT (x) the set of agents {y : x ∈ FT (y)}, by lT (x) the last tie on x’s list, and

by sT (x) the first tie on x’s list, the members of whom are not in FT (x) (clearly sT (x) is

only defined if |Tx| > |FT (x)|). Recall that a tie can be of length 1. It is immediate that, at

the end of phase 1, F (x) = FT 1(x), L(x) = LT 1(x), and l(x) = lT 1(x), so lT 1(x) ∈ LT 1(x),

for all x such that T 1
x is non-empty.

A super-stable table is a preference table T which satisfies the following conditions:

(i) the acceptable pair {x, y} is absent from T if and only if x prefers lT (x) to y or y prefers

lT (y) to x;

(ii) there is no agent x such that |Tx| < min(cx, |T 1
x |);

(iii) |FT (x)| = min(|T 1
x |, cx) for all x;

(iv) for each agent x, |LT (x)| = |FT (x)|.

It follows from Lemmas 5.2.1 and 5.2.3 and the execution of the algorithm that the phase

1 table is super-stable. For brevity we say that an agent who violates the second defining
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property of a super-stable table has a short list. We start to discuss some properties of

super-stable tables in the following lemma.

Lemma 5.3.1. (i) For an allocation A and a super-stable table T , if A ⊆ T no pair that

is absent from T can block A.

(ii) If, in a super-stable table T , every agent x is such that |Tx| = min(|T 1
x |, cx), then T is

a super-stable allocation.

(iii) If T , U are super-stable tables and FT (x) = FU (x) for all x, or equivalently LT (x) =

LU (x) for all x, then T = U .

Proof (i) Let {x, y} be a blocking pair for A. It is clear from the execution of phase 1 of

the algorithm that if |T 1
x | < cx and |T 1

y | < cy then {x, y} cannot have been deleted during

phase 1. In this case, if {x, y} 6∈ T then |Tx| < |T 1
x |, a contradiction. Otherwise, the result

is a consequence of the first and second defining properties of a super-stable table.

(ii) This follows immediately from (i).

(iii) It follows from the definitions of FT (x) and LT (x) that FT (x) = FU (x) for all x if

and only if LT (x) = LU (x) for all x, and it is an easy consequence of the first and third

defining properties that, if one of these conditions is satisfied, then T = U .

Before we can ascertain whether a super-stable allocation exists, we must first decide how

we are going to further reduce the preference lists. To arrive at the method, we first

introduce some notation and prove a number of preliminary results. For a super-stable

table T , we introduce the notation fT (x) to denote the set FT (x) \ LT (x). We denote by

T l(x) the table obtained by deleting the pairs {x, y}, for all y ∈ lT (x), from T and then

applying the main loop of phase 1. We denote by T f(x) the table obtained by deleting

{z, y} for each z ∈ fT (x) and for each y in z’s preference list such that z prefers x to y, or

is indifferent between them, and then applying the main loop of phase 1. The rationale

behind this is simple. If we assume that T is a super-stable table containing a super-stable

allocation A, and x is an agent with |Tx| > cx, then we can say the following about x and

A: if x is assigned in A an agent y such that y ∈ lT (x), then x is assigned every member

of LT (x) in A. Hence, we can make the deletions necessary to form T f(x) without deleting

any member of A, and we show later that T f(x) is a (smaller) super-stable table containing

A. If, on the other hand, x is not assigned an agent from lT (x) in A, then we can make
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the deletions necessary to form T l(x) without deleting any member of A, and again we

show later that T l(x) is a (smaller) super-stable table containing A. The following lemma

is a formal proof of this.

Lemma 5.3.2. Let T be a super-stable table, let A be a super-stable allocation and let x be

such that |Tx| > cx. If A ⊆ T then either T l(x) is a super-stable table such that A ⊆ T l(x)

or T f(x) is a super-stable table such that A ⊆ T f(x).

Proof There are two cases to consider.

Case 1: (T f(x)) Suppose {x, y} ∈ A for some y ∈ lT (x). Then, for each z ∈ LT (x),

{x, z} ∈ A. For, if not, there exists w ∈ LT (x) such that {x,w} 6∈ A. But x prefers w to

y, or is indifferent between them, and x ∈ FT (w) so {x,w} blocks A, a contradiction. Now

we show that fT (x) is non-empty. Since |Tx| > cx, we need only show that lT (x) ∈ LT (x).

It is an immediate corollary of Lemma 5.2.5 and the execution of phase 1 of the algorithm

that lT 1(p) ∈ LT 1(p) for every agent p for whom T 1(p) is non-empty. Thereafter it is a

consequence of the second defining property of a super-stable table and the execution of

the algorithm that lT (p) ∈ LT (p) for every agent p for whom T 1(p) is non-empty. Thus

fT (x) is non-empty. Since, for each z ∈ fT (x), {z, x} 6∈ A, then neither is {z, y} for each y

such that z prefers x to y or is indifferent between them, as otherwise {z, x} would block

A. It follows that, after deletion of these pairs from T , each pair in A is still contained in

the preference lists. Now suppose that after application of the main loop of phase 1 some

pair {p, q} ∈ A has been deleted. Suppose further that this was the first pair from A to

be deleted, and it was deleted when an agent r became committed to p. For {p, q} to have

been deleted the commitment of r to p must have caused q to be dominated on Pp, or

caused q to be tie-dominated on Pp. Call the set of agents p holds commitments from at

this point S, excluding q in the second scenario, if necessary. Now, none of the members

of S can have a set of partners in A who are all better than p. For, suppose some such

agent u does have a set of partners in A who are all better than p. Then, for u to have

become committed to p, some pair from A must have been deleted, a contradiction of the

fact that {p, q} was the first pair from A to be deleted. Since {p, q} ∈ A, there is at least

one member of S, v say, with whom p is not matched in A. It follows that {p, v} blocks

A, a contradiction. Hence A ⊆ T f(x).

It remains to prove that T f(x) is a super-stable table. The first and third defining properties
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of a super-stable table hold by arguments similar to those in Lemma 5.2.2 (iii) and Lemma

5.2.1 respectively. The second defining property holds by Lemmas 5.2.5 and 5.2.6. For

the fourth defining property, first note that, by Lemma 5.2.5 and the second defining

property, any agent p with a list of length k < cp has FT f(x)(p) = LT f(x)(p), so certainly

|FT f(x)(p)| = |LT f(x)(p)|. For the remaining agents, the second defining property implies

that
∑

p∈P FT f(x)(p) =
∑

p∈P FT (p). By the second defining property again, it follows

that
∑

p∈P LT f(x)(p) =
∑

p∈P LT (p), and by a simple counting argument based on the

execution of the main loop of phase 1 of the algorithm, we can conclude that the fourth

defining property must hold.

Case 2: (T l(x)) Suppose {x, y} 6∈ A for any y ∈ lT (x). Then, after the deletion of {x, z} for

each z ∈ lT (x) no pair from A has been deleted from the preference lists. The remainder

of the argument is as for Case 1.

Now we must decide which of T f(x) and T l(x) to work with. It is entirely possible that we

have deleted a super-stable pair when forming one or both of these tables, even though we

know that there is a super-stable allocation contained in T which is also contained in at

least one of T f(x) and T l(x). The next two results show that, if no agent has a short list

in T f(x) then T f(x) contains a super-stable allocation.

Lemma 5.3.3. Let T be a super-stable table in which |Tx| > cx for some agent x. Then

either T f(x) is a super-stable table, or some agent in T f(x) has a short list.

Proof The proof is similar to the argument in Lemma 5.3.2.

Lemma 5.3.4. Let T be a super-stable table, and let A be a super-stable allocation such

that A ⊆ T . Suppose that |Tx| > cx for some agent x. If no agent in T f(x) has a short list

then there is a super-stable allocation contained in T f(x).

Proof By Lemma 5.3.3, T f(x) is a super-stable table. We construct an allocation B

contained in T f(x) as follows. Suppose {p, q} ∈ A. We consider two cases:

• Case (i): {p, q} ∈ T f(x). Place {p, q} in B.

• Case (ii): {p, q} 6∈ T f(x). Since T f(x) is a super-stable table, then either p prefers

lT f(x)(p) to q or q prefers lT f(x)(q) to p. Suppose, without loss of generality, that

p prefers lT f(x)(p) to q. Then add {p, z} to B, where z is any agent such that
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{p, z} 6∈ A, {p, z} 6∈ B, p ∈ FT f(x)(z), and z prefers at least one of his partners in A

to any member of FT f(x)(z).

We prove that, for every pair {p, q} in Case (ii) above, there is an agent z satisfying the

requirements.

Suppose first that |T
f(x)
p | < cp. Then |T 1

p | < cp, otherwise p violates the second defining

property of a super-stable table. But then the deletion of {p, q} when forming T f(x) from

T must mean that |T
f(x)
p | < |Tp| = |T 1

p | < cp, implying that p violates the second defining

property of a super-stable table. Thus |T
f(x)
p | ≥ cp. But then, by the execution of the

algorithm, p must be committed to, and hold a commitment from, cp other agents. In

particular, in T f(x) there must be an agent z, committed to p (so p ∈ FT f(x)(z)) such that

{p, z} 6∈ A and p prefers z to q. Clearly {p, z} does not block A, so z must prefer every

member of pA(z) to p. But A ⊆ T , so p 6∈ FT (z), and since p ∈ FT f(x)(z), a pair {a, z} ∈ A

must have been deleted during the execution of the algorithm, for some agent a who z

prefers to p.

Further, for every agent r such that {p, r} ∈ A, {p, r} 6∈ T f(x), there is a distinct agent

satisfying the above properties. For, suppose not. Then s = lT f(x)(p) is such that p prefers

s to exactly k members of LT (p), and to at least k + 1 agents t such that {p, t} ∈ A, for

some 1 ≤ k ≤ cp − 1. Hence there exists an agent u such that u ∈ LT (p), {p, u} 6∈ A, and

p prefers u to at least one member of pA(p). But, since p ∈ FT (u), and A ⊆ T , u prefers

p to at least one member of pA(u), implying that {p, u} blocks A, a contradiction. The

result follows.

We now show that each agent has the same number of partners in B as in A. We start by

showing that no agent p is matched with more than min(cp, |T
1
p |) partners in B. Then, by

simple counting and the preceding paragraph, every agent must have the same number of

partners in B as in A. Clearly every agent p with |T 1
p | ≤ cp cannot be matched with more

than |T 1
p | partners in B, by Lemma 5.2.5. So suppose some agent z with |T 1

z | ≥ cz has

cz +1 or more partners in B. It follows that z must have had k of his partners in A deleted

when forming T f(x), while gaining at least k + 1 > 0 new partners when playing the role

of z in Case (ii). Suppose that k = cz. Then all z’s partners in A have been deleted, and

since each of z’s k + 1 > cz new partners appears in FT f(x)(z), we have |FT f(x)(z)| > cz,

a contradiction. Hence k < cz. It follows that z must have at least one partner in A
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such that he prefers all members of FT f(x)(z), including each of his new partners, to this

partner. But each of his new partners prefers z to at least one of their partners in A

(namely q). It follows that z forms a blocking pair for A with each of these new partners,

a contradiction. Hence each agent has the same number of partners in B as in A, and in

particular B is an allocation.

It remains to prove that B is super-stable. Suppose not. So there exists a pair {r, s}, say,

which blocks B. If both r and s have the same set of partners in A and B, or if both prefer

their least preferred partners in B to their least preferred partner in A, or are indifferent

between them, then {r, s} blocks A, a contradiction. Hence one of r, s must have at least

one partner in B to whom they strictly prefer all their partners in A. Suppose, without

loss of generality, that r prefers all his partners in A to his least favoured partners in B,

one of whom is t, say. Then r must have been matched with t by Case (ii), and r must

have played the role of z. But then t ∈ FT f(x)(r), and since t is one of r’s least favoured

partners in B, FT f(x)(r) is the set of r’s partners in B. Since s is not a partner of r in

B, s 6∈ FT f(x)(r), and since r must prefer s to at least one of his partners in B for {r, s}

to block B, it follows that {r, s} 6∈ T f(x). But T f(x) is a super-stable table, so either s

must strictly prefer lT f(x)(s) to r, or r must strictly prefer lT f(x)(r) to s. Either way, {r, s}

cannot block B, a contradiction. Hence B is a super-stable allocation.

We are now in a position to describe phase 2 of the algorithm. Set T to be T 1, the phase

1 table. If there is some agent x with |Tx| > cx we form T f(x) and T l(x). If no agent in

T f(x) has a short list we set T to be T f(x). Otherwise, if no agent in T l(x) has a short list

we set T to be T l(x). Otherwise (i.e., if both T f(x) and T l(x) contain an agent who has a

short list) no super-stable allocation exists for the instance. We continue in this way until

there is no agent x with |Tx| > cx, at which point T specifies a super-stable allocation.

Phase 2 of algorithm SFT-super is described in Figure 5.2.

The following theorem proves that Algorithm SFT-super is correct.

Theorem 5.3.5. For a given instance of SFT, Algorithm SFT-super determines whether

a super-stable allocation exists, and if so finds such an allocation.

Proof Let I be an instance of SFT. Suppose I admits a super-stable allocation. If

phase 1 terminates because
∑

p∈P min(cp, |T
1
p |) is odd or because some replete agent pi

has |T 1
pi
| < cpi

then no super-stable allocation exists for the instance, by Corollary 5.2.8
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T := phase 1 table;

while |Tx| > cx for some agent x {

delete from T {z, y} from T for each z ∈ fT (x) and for each y in

Tz such that z prefers x to y, or is indifferent

between them, and apply main loop of phase 1 to obtain T f(x);

delete {x, y} from T for all y ∈ lT (x) and apply main loop of

phase 1 to obtain T l(x);

if no agent in T f(x) has a short list

T := T f(x);

else if no agent in T l(x) has a short list

T := T l(x);

else {

no super-stable allocation exists;

halt; }}

output the super-stable allocation specified by T ;

Figure 5.2: Phase 2 of Algorithm SFT-super

and Lemma 5.2.4 respectively, a contradiction. Hence we must enter phase 2. The phase 1

table, which is a super-stable table, must contain a super-stable allocation, by Lemma 5.2.3

(i). By Lemmas 5.3.2, 5.3.3 and 5.3.4, every super-stable table produced by the algorithm

must contain a super-stable allocation, and so we must eventually reach a super-stable

table T in which every agent p has a list of length min(cp, |T
1
p |), at which point T , which

specifies a super-stable allocation by Lemma 5.3.1 (ii), is output.

Conversely, suppose I does not admit a super-stable allocation. If phase 1 does not

terminate because
∑

p∈P min(cp, |T
1
p |) is odd or because some replete agent pi has |T 1

pi
| <

cpi
, then phase 2 will start. Since there is no super-stable allocation there cannot be a

super-stable table in which every agent x has a list of length min(cx, |T 1
x |), since such

would specify a super-stable allocation, by Lemma 5.3.1 (ii). It follows that every super-

stable table has some agent x with a list longer than cx. Since at least one entry is deleted

from the preference lists in every loop of phase 2 there must eventually be a point at which

both T f(x) and T l(x) contain an agent who has a short list, and so the algorithm will report

that no super-stable allocation exists.
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Example 5.3.1. An example instance is displayed in Figure 5.3. The agents are numbered from

1 to 10, and for each agent i, i’s preference list takes the form i : (ci) Pi.

1:(2) (2 10) 9 3 (6 7) 5 8 1:(2) (2 10) 9 3 (6 7) 5

2:(2) 9 6 3 7 (1 4 5) 2:(2) 6 3 7 (1 4 5)

3:(2) 9 4 1 10 2 (5 7) 3:(2) 4 1 10 2 (5 7)

4:(2) (5 8) 7 9 (2 3 10) 4:(2) (5 8) 7 9 (2 3 10)

5:(2) (1 2) 6 8 (3 4) 9 5:(2) (1 2) 6 8 (3 4)

6:(2) 7 9 8 5 (1 2 10) 6:(2) 7 9 8 5 (1 2 10)

7:(1) 3 9 1 (4 8) 2 6 7:(1) 3 9 1 (4 8) 2 6

8:(1) 5 9 10 6 7 4 1 8:(1) 5 9 10 6 7 4

9:(1) 4 (7 10) 8 1 6 (2 3 5) 9:(1) 4 (7 10) 8 1 6

10:(1) 6 3 (4 9) 8 1 10:(1) 6 3 (4 9) 8 1

Initial preference lists Phase 1 table

Figure 5.3: The preference lists for an example SFT instance

During phase 1, the pair {1, 8} is deleted when agent 4 becomes committed to agent 8, because

agent 1 is then dominated in agent 8’s list. The pairs {2, 9}, {3, 9} and {5, 9} are deleted, when

agent 3 becomes committed to agent 9, because then agents 2, 3 and 5 are all tie-dominated in

agent 9’s list. These are the only pairs deleted during phase 1. The phase 1 table is displayed in

Figure 5.3. Since, at the end of phase 1, every agent holds a number of commitments equal to his

capacity and the sum of the capacities is even, phase 2 commences. Let T be the phase 1 table.

Since |T1| > c1 = 2, we can form T f(1) and T l(1). For T f(1), we delete the pairs {2, 1}, {2, 4}, {2, 5}

and {10, 1}. It can then be verified that the application of the main loop of phase 1 produces the

preference lists displayed for T f(1) in Figure 5.4. Since there are agents with short lists in T f(1)

we must form T l(1).

For T l(1), we delete the pair {1, 5}. It can then be verified that the application of the main

loop of phase 1 produces the preference lists displayed for T l(1) in Figure 5.4. Since no agent i has

|T
l(1)
i | > ci and there are no agents with short lists in T l(1), T l(1) specifies a super-stable allocation,

a fact which is easily verified.
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1:(2) 3 7 1:(2) 2 3

2:(2) 2:(2) (1 5)

3:(2) 1 3:(2) 1 10

4:(2) 9 4:(2) 7 9

5:(2) 6 8 5:(2) 2 6

6:(2) 5 6:(2) 8 5

7:(1) 1 7:(1) 4

8:(1) 5 8:(1) 6

9:(1) 4 9:(1) 4

10:(1) 10:(1) 3

T f(1) T l(1)

Figure 5.4: T f(1) and T l(1)

5.4 Implementation and analysis of Algorithm SFT-super

We show that, for an instance of SFT involving a mutually acceptable pairs, Algorithm

SFT-super can be implemented to run in O(a) time.

In phase 1 of the algorithm, we adopt a strategy very similar to that described in Section

4.4. The only difference is ascertaining exactly which elements to delete. At the point at

which an agent pi receives a cpi
th commitment it is simple to ascertain which element in

his preference list represents the least preferred of the cpi
agents from whom pi has received

a commitment. Say this agent is pj. As every agent strictly succeeding pj is deleted, the

tie containing pj will mark the end of pi’s list. When pi next receives a commitment, there

are two cases to consider. Firstly, suppose that this new commitment is from an agent

tied in pi’s list with pj. Backtracking up pi’s list from pj to the first agent not in the tie

containing pj will identify which elements need to be deleted from the list, and pi is again

waiting to receive a cpi
th commitment. Secondly, suppose that pi prefers the agent from

whom he has received this new commitment to pj. Then backtracking up pi’s list from pj

to the first commitment encountered will identify the tie containing the cpi
th commitment

on the list, and it is simple to identify which elements to delete from the list. The number

of backward steps is clearly bounded by a so, as with Algorithm SF (Chapter 4), phase 1
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has worst-case complexity O(a).

Phase 2 is somewhat more complex. We use the method of [26] to limit the amount of

work done. Two possible courses of action must be considered in each loop iteration. In

the worst case, we may require Ω(a) time in each iteration to calculate T f(x) and T l(x),

and yet only make O(1) deletions per iteration, so requiring Ω(a) iterations, giving overall

complexity no better than O(a2). To solve this problem we make a copy Tb of the phase 1

table Ta = T 1, which takes O(a) time. We then delete the pairs {x, y}, for all y ∈ lTb
(x),

from Tb, and delete {z, w} for each z ∈ fT (x) and for each w in Tz such that z prefers x

to y, or is indifferent between them from Ta. We then apply the main loop of phase 1 to

Ta and Tb, starting with the one that has had the greatest number of pairs deleted, and

never allowing the number of deletions from the active table to exceed the number from

the inactive table by more than 1. We maintain two stacks of deleted pairs, one for each

of Ta and Tb. As soon as one of the phase 1 applications terminates we halt.

Suppose the application of phase 1 to Ta terminates first (a similar argument applies if the

other application terminates first). If no agent in T
f(x)
a has a short list, then we restore

Tb from the stack, and then create another copy of T
f(x)
a from Tb by applying the same

deletions to Tb that were applied to Ta. Otherwise we restore Ta from the stack, and

continue with the application of phase 1 to Tb. If this terminates with T
l(x)
b containing

an agent who has a short list then we exit the algorithm with the conclusion that no

super-stable allocation exists for the instance. Otherwise we form a second copy of T
l(x)
b

from Ta by applying the same deletions to Ta that were applied to Tb.

If the algorithm has not terminated with the conclusion that no super-stable allocation

exists then we have two copies of a super-stable table, and the time taken to obtain these

two copies is O(d), where d is the number of pairs deleted during this iteration of the main

loop of phase 2. By repeating this process until phase 2 terminates we can see that the

algorithm has overall time complexity O(a).

5.5 Strong stability in SFT

We have extensively studied whether there is an efficient algorithm to determine if an

instance of SFT admits a strongly stable allocation. In particular, we have attempted
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to construct an algorithm, which we refer to as Algorithm SFT-strong, which works in a

similar manner to Algorithm SFT-super. Thus far, however, we have not been successful.

The problem is that, for the second phase of Algorithm SFT-strong, we have been unable

to prove a result akin to Lemma 5.3.4. Indeed, it is tempting to conjecture that the

problem of determining whether an instance of SFT admits a strongly stable allocation

is NP-complete, given the nature of the problems encountered when attempting to prove

such a result. Were this the case it would break the pattern so far established, as no

variant of Stable Marriage with ties involving fewer than three sets of agents has been

shown to be NP-complete for any problem not related to weak stability. We do, however,

note that determining whether an instance of Stable Marriage with Partial orders admits

a strongly stable matching is NP-complete [28].



Chapter 6

The structure of SMTI under

super-stability

6.1 Introduction

Recall that the stable matchings for an instance of SMI are in one-to-one correspondence

with the closed subsets of the rotation poset for that instance [24]. In this chapter we

show how to construct, for the set of super-stable matchings in an instance of SMTI, a

structure equivalent to the rotation poset for the set of stable matchings in an instance of

SMI. We use this structure to solve efficiently a number of problems involving super-stable

matchings. These include finding all the super-stable pairs, finding an egalitarian super-

stable matching, finding a minimum regret super-stable matching, and generating all the

super-stable matchings. The latter problem may have exponential time complexity in the

worst case, as the number of matchings may be exponential in the size of the instance.

However, we show that, after some pre-processing, we can generate successive matchings

in time linear in the number of acceptable pairs.

To find the rotation poset for an instance of SMI, the rotations are identified directly

from the preference lists. We studied the analogous approach for SMTI, but settled on a

more amenable approach. Instead we start from the rotation poset for an instance of SMI

derived from the instance of SMTI in question, and then we identify how to group the

rotations together to construct so-called meta-rotations.

101
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This chapter is structured as follows. In Section 6.2 we show how to construct a poset

such that there is a one-to-one correspondence between the closed subsets of the poset and

the super-stable matchings for an instance of SMTI. In Section 6.3 we show that we can

use the elements of the poset to define a concept analogous to a rotation in an instance

of SMI. In Section 6.4 we show that the poset can be constructed in time quadratic in

the number of acceptable pairs in the instance, and in Sections 6.5, 6.6, 6.7, and 6.8, we

show that that we can efficiently: find all the super-stable pairs; generate all the super-

stable matchings; find an egalitarian super-stable matching; and find a minimum regret

super-stable matching, respectively.

Note that in this chapter, where the context does not make clear whether a blocking pair

is with respect to stability in an instance of SMI, or with respect to super-stability in an

instance of SMTI, we refer to a blocking pair in the former case, and a super-stable blocking

pair in the latter case.

6.2 A one-to-one correspondence for super-stability

Before we describe the construction of the poset we need to recall, and expand on, some

of the results stated in Chapter 1. As noted previously, a given instance of SMTI may not

admit a super-stable matching, but there is an O(a) algorithm which determines if such a

matching exists, and if so finds one [34]. The algorithm, Algorithm SUPER2, is displayed

in Figure 1.3 of Section 1.7. After each proposal a number of pairs may be deleted from

the preference lists. The following results are from [34].

Lemma 6.2.1. No super-stable pair is ever deleted during an execution of Algorithm

SUPER2.

Theorem 6.2.2. For a given instance of SMTI, Algorithm SUPER2 determines whether

or not a super-stable matching exists. If such a matching does exist, all possible executions

of the algorithm find one in which every man has as good a partner, and every woman as

bad a partner, as in every super-stable matching.

As with SM, the matching obtained by Algorithm SUPER2 is man-optimal, and if the roles

of the men and women are switched we obtain the woman-optimal super-stable matching.
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Recall that the set of super-stable matchings for an instance I of SMTI forms a finite

distributive lattice [51], and if a person p is indifferent between partners q and q ′ in super-

stable matchings M and M ′ (M 6= M ′), then q = q′ [38]. This latter result is important

for part of what follows. We also state in full a result from [24] pertaining to SMI, which

we use in Lemma 6.2.4:

Theorem 6.2.3. If man m and woman w are partners in some stable matching S then

1. there is no stable matching S ′ in which both m and w have worse partners;

2. there is no stable matching S ′ in which both m and w have better partners.

Here we seek a similar structure to the rotation poset for an instance of SMI to allow us

to exploit the lattice property of the set of super-stable matchings for I. We refer to such

a structure as the meta-rotation poset.

Let I be an instance of SMTI which admits a super-stable matching, and let M0 and Mz

be the man-optimal and woman-optimal super-stable matchings respectively (we assume

M0 6= Mz, as otherwise there is only one super-stable matching for I).

Let B1 be the reduced preference lists obtained by applying Algorithm SUPER2 to I to

obtain M0, and let B2 be the reduced preference lists obtained by applying Algorithm

SUPER2 to I to obtain Mz. We then define B to be the intersection of B1 with B2. Let B′

denote the preference lists for an instance of SMI obtained from B by breaking the ties in

some arbitrary but fixed way. We call B and B ′ the base lists and the resolved base lists,

respectively. For purposes of reference we regard the members of each tie in B (and I) as

being listed according to the way in which that tie was broken to form B ′. Note that in B,

and hence in B′, every man (resp. woman) has a single woman (resp. man) at the head

of his (resp. her) list, and no two men (resp. women) can have the same woman (resp.

man) at the head of their lists. Note that B ′ can be considered to be an instance of SMI,

which we shall also refer to as B′ (and we also use B and I interchangeably).

By Lemma 6.2.1 every super-stable matching M for I is super-stable in B, and is stable

in B′ (by the alternative definition of super-stability given in Section 1.6). Thus there is a

stable set (see Section 1.4) corresponding to M . We call a stable set which has a derived

matching that is super-stable in B a super-stable set. In particular, every super-stable

matching for I must correspond to a closed subset of R′, the rotation poset for B′. Here
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we show how to derive from R′ a new poset such that the closed subsets of this new poset

are in one-to-one correspondence with the super-stable matchings for I.

Algorithm POSET2 utilises a similar strategy to that of Algorithm POSET (Figure 1.1)

as a first step to constructing a representation for the meta-rotation poset for I. The

starting point is a directed acyclic graph representing R′, which we shall also refer to as

R′. The lists referred to in the algorithm are those in B. A proper tie is a tie of length

at least 2. The algorithm is broken down into two parts, displayed in Figures 6.1 and 6.2.

The algorithm identifies pairs of rotations (ρ1, ρ2) such that, were ρ1 eliminated but ρ2 not

eliminated, then a resulting matching would admit a super-stable blocking pair. Thus we

must ensure that ρ2 is eliminated before ρ1 by adding the appropriate edge to the digraph.

A stable man (resp. stable woman) on a woman’s (resp. man’s) list is a man (resp.

woman) who forms a stable pair with that woman (resp. man). Alternatively a stable

man m on a woman w’s list is such that (m,w) ∈ ρ(m,w) or (m,w) ∈ Mz, and similarly for

a stable woman on a man’s list (recall that ρ(m,w) denotes the rotation that deletes the

pair (m,w)). In the algorithm the ties t are proper, whereas the ties t′ may not be.

In the algorithm in Figure 6.1 the relationship between the various women on the preference

list of man m is as follows:

m : ...w1... (...w
′...w2...w...w3)

︸ ︷︷ ︸

t

...

where

• w is the last stable woman in tie t;

• w1 is the last stable woman before t;

• w2 is the penultimate stable woman in t;

• w3 is the last woman in t, and

• w′ ranges across all women in t not equal to w.

Note that woman w1 must exist by the super-stability of the man-optimal stable matching

for B′ and the fact that man m has a single woman at the head of his list. Also note that

w3 may coincide with w, and w2 may not exist.
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let R′ be a representation of the rotation poset for B′;

for each man m

for each proper tie t on m’s list containing at least one stable woman {

let w be the last stable woman in t;

let w1 be the last stable woman preceding t;

for each w′ 6= w in t {

let t′ be the tie on the list of w′ containing m;

let m1 be the first stable man that w′ does not prefer to m;

if ρ(m,w) precedes ρ(m1,w′) in R′

10 add edge (ρ(m,w), ρ(m,w1)) to R′;

else {

if ρ(m1,w′) does not precede ρ(m,w1) in R′

13 add edge (ρ(m1,w′), ρ(m,w1)) to R′;

if there are at least two stable women in t {

let w2 be the penultimate stable woman in t;

16 add edge (ρ(m,w2), ρ(m,w1)) to R′; }

let w3 be the last woman in t;

if w3 6= w

19 add edge (ρ(m,w3), ρ(m,w1)) to R′; }}}

Figure 6.1: Algorithm POSET2: Constructing the meta-rotation poset for an instance of

SMTI: first step: men’s side

On the list of w′, m1 is the first stable man in tie t′, or the first stable man after t′ if

there is no stable man in t′. Note that man m1 must exist by the super-stability of the

man-optimal stable matching for B′.

In the algorithm in Figure 6.2 the relationship between the various men on the preference

list of woman w is as follows:

w : ... (...m2...m
′...m...)

︸ ︷︷ ︸

t

...m1...

where

• m is the last stable man in tie t;
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for each woman w

for each proper tie t on w’s list containing at least one stable man {

let m be the last stable man in t;

let m1 be the first stable man after t;

for each m′ 6= m in t {

let t′ be the tie on the list of m′ containing w;

let w1 be the last stable woman preceding t′;

let m2 be the first stable man in t;

if ρ(m′,w1) precedes ρ(m1,w) in R′

30 add edge (ρ(m2,w), ρ(m1,w)) to R′;

else {

if ρ(m,w) does not precede ρ(m′,w1) in R′

33 add edge (ρ(m,w), ρ(m′,w1)) to R′;

if there are at least two stable men in t

35 add edge ρ(m2,w), ρ(m,w)) to R′; }}}

Figure 6.2: Algorithm POSET2 cont.: Constructing the meta-rotation poset for an in-

stance of SMTI: first step: women’s side

• m1 is the first stable man after t;

• m2 is the first stable man in t, and

• m′ ranges across all men in t not equal to m.

Note that m2 may coincide with m.

The relationship between the various women on the list of m′ is as follows:

m′ : ...w1... (...w...)
︸ ︷︷ ︸

t′

...

where w1 is the last stable woman preceding tie t′.

When Algorithm POSET2 has terminated, the amended digraph R′ will consist of a num-

ber of strongly connected components. We construct a new digraph R from R ′ as follows:

create a node nC for each strongly connected component C in R′; if there is an edge
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from u to v in R′, where u and v are in different strongly connected components C and

D respectively, we add an edge from nC to nD in R if such an edge does not already

exist. We show, via a number of lemmas, that the closed subsets of R are in one-to-one

correspondence with the super-stable matchings in B.

Lemma 6.2.4. Let t be a tie on the list of a person y, let x1, x2, ..., xk be the stable partners

of y in B′ who are in t, and suppose that t is broken in B ′ so that x1, x2, ..., xk appear in

that order. Then none of x1, x2, ..., xk−1 can be a super-stable partner of y in B.

Proof A super-stable matching in B is a stable matching in B ′. Consider a stable matching

M in B′ containing the pair {y, xi} for some i (1 ≤ i ≤ k − 1). In B′, xk prefers y to

his partner in M , by Theorem 6.2.3. Then, in B, xk either prefers y to that partner or

is indifferent between them. Since y is indifferent between xk and xi in B it follows that

{y, xk} is a super-stable blocking pair for M .

Lemma 6.2.5. Each super-stable matching in I corresponds to a closed subset of R.

Proof Suppose, for a contradiction, that some super-stable matching in I does not

correspond to a closed subset of R. Then there must be a super-stable set U which is

obtainable by eliminating a rotation u but not eliminating a rotation v, where an edge

from v to u was added during the execution of the algorithm. There are a number of cases

to consider. The first four relate to Figure 6.1, and the last three relate to Figure 6.2.

Case 1 (line 10): The edge (v, u) was added as (ρ(m,w), ρ(m,w1)). Recall that w1 is the last

stable woman preceding the tie t containing w on the list of m. In U , ρ(m,w1) has been

eliminated, but ρ(m,w) has not, so m is matched in MU with some woman w′′ such that

he is indifferent between w and w′′. By Lemma 6.2.4 w = w′′. For the edge in question

to have been added there must be a woman w′(6= w) ∈ t such that w′ has a tie t′ on her

list containing m, and there is a rotation ρ(m1 ,w′) which, at this point in the algorithm, is

preceded by ρ(m,w), where m1 is the first stable man in t′ or, if such does not exist, the

first stable man after t′. Since ρ(m,w) has not been eliminated in U neither has ρ(m1,w′), so

w′ must be partnered in MU by a man m′ such that w′ prefers m to m′ or is indifferent

between them, and m 6= m′ (since (m,w) ∈ MU ). Then (m,w′) is a super-stable blocking

pair for MU , a contradiction.

Case 2 (line 13): The edge (v, u) was added as (ρ(m1 ,w′), ρ(m,w1)), where the agents are

as defined in Case 1. In U , ρ(m,w1) has been eliminated, but ρ(m1 ,w′) has not. Then w′
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is matched in MU with a man m′ such that w′ prefers m to m′, or is indifferent between

them. Further, m is matched in MU with a woman w such that m prefers w′ to w, or

is indifferent between them. Finally (m,w′) 6∈ MU , by Lemma 6.2.4. Hence (m,w′) is a

super-stable blocking pair for MU , a contradiction.

Case 3 (line 16): The edge (v, u) was added as (ρ(m,w2), ρ(m,w1)), where w2 is the penul-

timate stable woman in the tie on the list of m containing w. Since ρ(m,w1) has been

eliminated from U and ρ(m,w2) has not, m is matched in MU with some woman wm such

that m is indifferent between w and wm, and w 6= wm. Further ρ(m,w2) must precede

ρ(m,w), so (m,w) has not been deleted. Hence w prefers m to lU(w), her partner in MU , or

is indifferent between them (by the second defining property of a stable set). Thus (m,w)

is a super-stable blocking pair for MU , a contradiction.

Case 4 (line 20): The edge (v, u) was added as (ρ(m,w3), ρ(m,w1)), where w3 is the final

woman in the tie containing w on the list of m, and is non-stable. By a similar argument

to that in Case 3, (m,w3) is a super-stable blocking pair for MU , a contradiction.

Case 5 (line 30): The edge (v, u) was added as (ρ(m2 ,w), ρ(m1 ,w)). So there is a woman w

with a tie t on her list in which m2 is the first stable man and m is the last stable man, and

m1 is the first stable man after t. Since ρ(m1 ,w) has been eliminated from U but ρ(m2 ,w)

has not, w is matched in MU with some man m′′ from t. By Lemma 6.2.4 m = m′′. For

the edge in question to have been added there must be a man m′(6= m) ∈ t with a tie

t′ on his list containing w, and with w1 the last stable woman preceding t′. Further the

algorithm requires that ρ(m′,w1) precedes ρ(m1 ,w). Since ρ(m1 ,w) has been eliminated from

U , so has ρ(m′ ,w1), so m′ is matched in MU with a woman w′ such that m′ prefers w to w′

or is indifferent between them (and w 6= w′). But then (m′, w) is a super-stable blocking

pair for MU , a contradiction.

Case 6 (line 33): The edge (v, u) was added as (ρ(m,w), ρ(m′,w1)), where the agents are as

defined in Case 5. Since ρ(m′,w1) has been eliminated from U , m′ is matched in MU with

a woman w′ such that m′ prefers w to w′ or is indifferent between them. Since ρ(m,w) has

not been eliminated, w is matched in MU with a man m′′ such that w prefers m′ to m′′ or

is indifferent between them. Finally (m′, w) 6∈ MU , by the preceding case. Hence (m′, w)

is a super-stable blocking pair for MU , a contradiction.

Case 7 (line 35): The edge (v, u) was added as (ρ(m2 ,w), ρ(m,w)), where the agents are as
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defined in Case 5. Since ρ(m,w) has been eliminated and ρ(m2,w) has not, w is matched in

MU with a man mw such that w is indifferent between m and mw and mw 6= m. Since

ρ(m,w) has not been eliminated, m must be matched in MU to a woman wm such that m

prefers w to wm or is indifferent between them. But then (m,w) is a super-stable blocking

pair for MU , a contradiction.

It follows that there is no super-stable set in which u has been eliminated but v has not,

and hence that each super-stable matching in I corresponds to a closed subset of R.

Lemma 6.2.6. Each closed subset of R corresponds to a unique super-stable matching in

I.

Proof Let S be a closed subset of R. Let S be the super-stable set corresponding to M0.

Let T be the stable set produced when the set of rotations equivalent to S is eliminated

from S, and suppose T is not super-stable. Then there is a super-stable blocking pair

(m′, w) for MT . Hence m′ prefers w to his partner in MT , w′ say, or is indifferent between

them.

Case 1: Suppose m′ prefers w to w′. Since (m′, w) is not a blocking pair for MT in B′ it

follows that w prefers her partner in MT , m say, to m′ in B′, and hence w prefers m to

m′ in B, or is indifferent between them. Since the former case contradicts the fact that

(m′, w) is a super-stable blocking pair for MT , it follows that w is indifferent between m′

and m in B.

By the construction of R, m must be the last stable man in the tie t containing m and m ′

on the list of w (see line 35 of Algorithm POSET2). Consider the point in the algorithm

when m′ plays the role of m′ (and m and w play the roles of m and w respectively), m1 is

the first stable man after t, and w1 is the last stable woman preceding the tie containing

w on the list of m′.

If ρ(m′,w1) precedes ρ(m1,w), then ρ(m2,w) is made to precede ρ(m1 ,w), where m2 is the first

stable man in t. Thus, when ρ(m1 ,w) is eliminated so is ρ(m2 ,w), and, by the structure of

the rotation poset for B′, which R is built upon, so is every pair (ms, w), where ms is a

stable man in t. Thus, (m,w) can not possibly be in MT , a contradiction. So ρ(m′ ,w1)

does not precede ρ(m1 ,w).

Since ρ(m′,w1) does not precede ρ(m1,w), by the construction of R ρ(m,w) precedes ρ(m′,w1).
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Since (m,w) ∈ MT , (m′, w1) has not been eliminated from T , so m′ must prefer w′, his

partner in MT , to w1 or be indifferent between them. But m′ prefers w1 to w, so (m′, w)

cannot block MT . This contradiction establishes the super-stability of MT in this case.

Case 2: Suppose m′ is indifferent between w and w′. By the construction of R, w′ must

be the last stable woman in the tie t containing w and w ′ on the list of m′. Consider the

point in the algorithm when w plays the role of w′ (and m′ and w′ play the roles of m

and w respectively), m1 is the first stable man in, or, if such does not exist, after the tie

on the list of w containing m′ and w1 is the last stable woman preceding t (note that we

refer to the agents as they appear in this proof, not as they appear in the algorithm).

If ρ(m′,w′) precedes ρ(m1 ,w) then, by the algorithm, ρ(m′,w′) precedes ρ(m′,w1). Thus, (m′, w′)

must be deleted before the rotation ρ(m′,w1) is eliminated. Since m′ prefers w1 to w′ it

follows that (m′, w′) can not possibly be in MT , a contradiction. So ρ(m′,w′) does not

precede ρ(m1 ,w).

Since ρ(m′,w′) does not precede ρ(m1,w), by the construction of R ρ(m1,w) precedes ρ(m′,w1).

Since (m,w) ∈ MT and m′ prefers w1 to w, it follows that (m1, w) has been deleted. But

then w must be matched in MT with a man she prefers to m′, contradicting the fact that

(m′, w) is a super-stable blocking pair for MT . Thus MT is super-stable.

Finally note that S corresponds to a unique closed subset of R′, which corresponds to a

unique stable matching for B′. It follows that each closed subset of R corresponds to a

unique super-stable matching in I.

The last two lemmas lead to the following key theorem :

Theorem 6.2.7. The closed subsets of R are in one-to-one correspondence with the super-

stable matchings of I.

Before we give an example to illustrate the execution of Algorithm POSET2 we make a

formal definition of a meta-rotation.

6.3 Meta-rotations

Each node in R corresponds to one or more of the rotations in B ′, and is a minimal

difference between super-stable matchings. We call each collection of rotations a meta-
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rotation, and hence R is a representation of the meta-rotation poset. To eliminate a

meta-rotation is to eliminate each of its constituent rotations in turn. A meta-rotation is

exposed in a super-stable set if all the preceding meta-rotations in R have been eliminated.

A pair (m,w) is in a meta-rotation Φ if it is in one of the rotations, ρ say, in Φ, and no

rotation in Φ that precedes ρ has a pair involving m in it.

Recall that the rotations in question are the rotations for B ′, and B′ is dependent on the

order in which the ties were broken. Once the precedences between the meta-rotations

have been established, it is possible to abstract away from the underlying set of rotations

by representing a meta-rotation as a set of triples or cycles which show the change in

partner for any man who changes partner when the meta-rotation is eliminated.

Representing these changes as a set of triples is similar to the transformation construct

employed in [5]. Let M be a stable matching and let S be a set of rotations that can

be eliminated in succession from the stable set from which M is derived. Let M ′ be

the stable matching derived from the resulting stable set. Then a transformation is a

set Π of triples (m,w,w′), one for each man m who has different partners in M and

M ′, such that (m,w) ∈ M , (m,w′) ∈ M ′. Letting M be the matching derived from a

super-stable set S, and letting Φ be a meta-rotation exposed in S we can see that Π is

a representation of Φ which is independent of the particular underlying set of rotations.

Using this representation, eliminating a meta-rotation Π = (mi, w
1
i , w

2
i ) (1 ≤ i ≤ k)

from a super-stable set S means deleting all pairs (m,w2
i ) such that w2

i prefers mi to m

(1 ≤ i ≤ k). Any pair (m,w) such that (m,w,w′) ∈ Π for any w′ is in Φ.

Representing these changes as a set of cycles is similar, and more compact in terms of

the amount of information to be written down. Using the symbols defined above, we

represent the meta-rotation Φ as a set Π of cycles Cj = (mj
0, w

j
0), ..., (m

j
sj−1, w

j
sj−1) such

that (mj
i , w

j
i ) ∈ M , (mj

i , w
j
i+1) ∈ M ′, where i + 1 is taken modulo sj, and sj is the length

of the jth cycle. Using this representation, let Π =
⋃t

j=1(m
j
0, w

j
0), ..., (m

j
sj−1, w

j
sj−1) be

a meta-rotation consisting of t cycles. Eliminating Π from a super-stable set S means

deleting all pairs (m,wj
i+1) such that wj

i+1 prefers mj
i to m, where i + 1 is taken modulo

sj (0 ≤ i ≤ sj − 1) (1 ≤ j ≤ t). Any pair (m,w) such that (m,w) ∈ Cj for any 1 ≤ j ≤ t

is in Φ.

We now give an example to illustrate the application of Algorithm POSET2.
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Example 6.3.1. In Figure 6.4 we present an instance I of SMT, and in Figure 6.5 we present

an instance I ′ of SM which can be considered to be the resolved base lists for I . In I ′ there are

10 rotations, which we denote by ρ1, ..., ρ10. For each of the first 7 entries wi or wi on a man m’s

list, ρi is the rotation the elimination of which causes the pair (m, w) to be deleted, and similarly

for the last seven entries on a woman’s list. Those entries with subscripts denote stable men or

women, those with superscripts denote non-stable men or women. For example the stable pairs

(1, 1) and (2, 2) and the non-stable pairs (6, 1) and (8, 1) are deleted when ρ1 = {(1, 1)(2, 2)} is

eliminated. The rotation poset for I ′ is displayed in Figure 6.3. It can be verified that there are

14 closed subsets of this poset, and so there are 14 stable matchings for I ′.

ρ
1

ρ
2

ρ
5

ρ
7

ρ
6

ρ
9

ρ
8

ρ
10

ρ
4

ρ
3

Figure 6.3: The rotation poset for I ′

1: 11 (24 73 86 33 44) 610 5 1: 3 79 49 57 25 61 81 11

2: 21 15 84 48 510 77 65 3 2: 8 68 76 36 54 44 14 21

3: 32 44 (63 52) (26 73) 89 1 3: 2 610 78 83 13 53 42 32

4: 42 55 66 77 24 32 19 8 4: 6 710 (28 85 14) 34 52 42

5: 52 33 42 65 84 17 24 7 5: 1 210 68 78 (88 45 32) 52

6: 63 11 76 (28 86 310 58) 4 6: 7 110 46 25 55 83 33 63

7: 73 38 26 86 410 19 58 6 7: 5 27 (47 66 33) 13 83 73

8: 84 11 45 63 73 58 33 2 8: 4 (39 66) 76 16 54 24 84

The men’s preference lists The women’s preference lists

Figure 6.4: An instance I of SMT

We show that the derivation of the meta-rotation poset for I from the rotation poset for I ′ requires

the addition of at least one edge of each of the various types, and also explain why these additions

are necessary.
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1: 11 24 73 86 33 44 610 5 1: 3 79 49 57 25 61 81 11

2: 21 15 84 48 510 77 65 3 2: 8 68 76 36 54 44 14 21

3: 32 44 63 52 26 73 89 1 3: 2 610 78 83 13 53 42 32

4: 42 55 66 77 24 32 19 8 4: 6 710 28 85 14 34 52 42

5: 52 33 42 65 84 17 24 7 5: 1 210 68 78 88 45 32 52

6: 63 11 76 28 86 310 58 4 6: 7 110 46 25 55 83 33 63

7: 73 38 26 86 410 19 58 6 7: 5 27 47 66 33 13 83 73

8: 84 11 45 63 73 58 33 2 8: 4 39 66 76 16 54 24 84

The men’s preference lists The women’s preference lists

Figure 6.5: I ′, the resolved base lists for I

First consider the second tie on the list of man 3, and in particular consider the effect of the first

part of Algorithm POSET2, in Figure 6.1, on this tie, when woman 7 is w′. Then man 3 is m,

woman 2 is w, woman 4 is w1, and man 4 is m1. We can see from the lists that ρ6 = ρ(m,w),

ρ7 = ρ(m1,w′), and ρ4 = ρ(m,w1). So ρ(m,w) precedes ρ(m1,w′), and the algorithm adds the edge

(ρ6, ρ4) to the digraph. Suppose that this edge was not added to the digraph. Then ρ4 could be

eliminated before ρ6, and so we could have a matching containing both (3, 2) and (6, 7). However,

(3, 7) would block this matching. Thus we need the edge (ρ6, ρ4) in the digraph.

Now consider the tie on the list of man 6, and in particular consider the effect of the first part of

Algorithm POSET2, in Figure 6.1, on this tie, when woman 8 is w′. Then man 6 is m, woman 3

is w, woman 7 is w1, man 3 is m1, woman 2 is w2, and woman 5 is w3. Further, ρ10 = ρ(m,w),

ρ9 = ρ(m1,w′), ρ6 = ρ(m,w1), ρ8 = ρ(m,w2) = ρ(m,w3). Since ρ(m,w) does not precede ρ(m1,w′), the

algorithm enters the else statement. Then ρ(m1,w′) does not precede ρ(m,w1), so the algorithm adds

the edge (ρ9, ρ6) to the digraph. Since there are at least two stable women, namely women 2 and

3, in the tie on man 6’s list, the algorithm adds the edge (ρ8, ρ6), to the digraph. Further, w is not

the last woman in the tie, so the algorithm again adds (ρ8, ρ6) to the digraph. We consider the

consequence if these edges had not been added. Suppose the first edge, (ρ9, ρ6) was not added to

the digraph. Then ρ6 could be eliminated before ρ9, and so we could have a matching containing

(6, 2) and (3, 8). However, (6, 8) would block this matching, a contradiction. Thus we need the

edge (ρ9, ρ6) in the digraph. Now suppose the second edge, (ρ8, ρ6), was not added to the digraph.

Then ρ6 could be eliminated before ρ8, and so we could have a matching, M say, containing (6, 2).

But the rotation which deletes (6, 3) must be preceded by that which deletes (6, 2). For, women 2

and 3 are both stable women in the same tie on man 6’s list, but man 6 prefers woman 2 to woman
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3 in the resolved base lists. Thus woman 3 must be matched in M with a man she does not prefer

to man 6, and so (6, 3) blocks M . Thus we need the edge (ρ8, ρ6) in the digraph. Finally suppose

the third edge, (ρ8, ρ6), was not added to the digraph (so this edge is added twice, but we show

that it needs adding for two different reasons). Then ρ6 could be eliminated before ρ8, and so

we could conceivably have a matching, M say, containing (6, 2) in which ρ8 = ρ(6,5) has not been

eliminated, so woman 5 has a partner she does not prefer to man 6. But then (6, 5) would block

this matching. Thus we again need the edge (ρ8, ρ6) in the digraph.

Now we switch our attention to the women’s lists. First consider the tie on woman 4’s list, and

in particular consider the effect of the second part of Algorithm POSET2, in Figure 6.2, on this

tie, when man 1 is m′. Then woman 4 is w, man 8 is m, man 3 is m1, woman 1 is w1, and man

2 is m2. Further, ρ1 = ρ(m′,w1), ρ4 = ρ(m1,w), and ρ8 = ρ(m2,w). Hence ρ(m′,w1) precedes ρ(m1,w),

so the algorithm adds the edge (ρ8, ρ4) to the digraph. Suppose that this edge was not added to

the digraph. Then ρ4 could be eliminated before ρ8, and ρ1 must have been eliminated before

ρ4. Thus we could have a matching containing either (8, 4) or (2, 4). But in any such matching,

because ρ1 has been eliminated, man 1 cannot prefer his partner to woman 4, and so (1, 4) blocks

the matching. Thus we need the edge (ρ8, ρ4) in the digraph.

Finally consider the tie on the list of woman 5, and in particular consider the effect of the second

part of Algorithm POSET2, in Figure 6.2, on this tie, when man 3 is m′. Then woman 5 is w,

man 4 is m, man 5 is m1, woman 4 is w1, and man 8 is m2. Further, ρ4 = ρ(m′,w1), ρ2 = ρ(m1,w),

ρ5 = ρ(m,w) and ρ8 = ρ(m2,w). Hence ρ(m′,w1) does not precede ρ(m1,w), so the algorithm enters

the else statement. Then ρ(m,w) does not precede ρ(m′,w1), so the algorithm adds the edge (ρ5, ρ4)

to the digraph. Further, there are two stable men, namely man 8 and man 4, in the tie on woman

5’s list, so the algorithm adds the edge (ρ8, ρ5) to the digraph. We consider the consequence if

these edges had not been added. Suppose the first edge, (ρ5, ρ4), was not added to the digraph.

Then ρ4 could be eliminated before ρ5, and so we could have a matching containing both (4, 5) and

(3, 2). However, (3, 5) would block this matching. Thus we need the edge (ρ5, ρ4) in the digraph.

Now suppose the second edge, (ρ8, ρ5), was not added to the digraph. Then ρ5 could be eliminated

before ρ8, and so we could have a matching, M say, containing (8, 5). But man 4 cannot then have

a partner better than woman 5 in M , and so (4, 5) blocks M . Thus we need the edge (ρ8, ρ5) in

the digraph.

It can be verified that, when the 6 edges above are added to the digraph R′ representing the rotation

poset for I ′, there is one strongly connected component consisting of more than one rotation, and

it includes the rotations ρ4 to ρ9. Thus the meta-rotation poset consists of 5 meta-rotations,

Φ1, ..., Φ5, such that Φ1 = ρ1, Φ2 = ρ2, Φ3 = ρ3, Φ5 = ρ10, and Φ4 consists of the remaining 6

rotations. The meta-rotation poset for I is displayed in Figure 6.6. It can be verified that there

are 7 closed subsets of the poset, and so there are 7 super-stable matchings for I , 7 less than the
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number of stable matchings for I ′.

Ф
6

Ф
5

Ф
4

Ф
3

Ф
2

Ф
1

Figure 6.6: The meta-rotation poset for I

6.4 Implementation and analysis of Algorithm POSET2

Let n be the number of men matched in a super-stable matching in an instance I of

SMTI, and hence the number of men in B ′, and let a be the number of acceptable pairs

in I. Then B′ can be constructed from I by two applications of Algorithm SUPER2,

taking O(a) time [34], and then breaking the ties arbitrarily, again taking O(a) time. The

rotation poset for B′ can be constructed by Algorithm POSET in O(a) time [15], and in

so doing it is an easy matter to note which rotation each pair is deleted by, and annotate

the preference lists accordingly. Since a rotation must contain at least two men, and a

man can appear in at most a rotations, there are at most a/2 rotations in the rotation

poset for B′. Further, it can be seen from the algorithm in Figure 1.1 that the digraph

representing the rotation poset cannot have more than a edges. We can therefore initiate

a depth first search from each rotation ρ in the rotation poset for B ′ to create an adjacency

matrix representing the transitive closure of R′. The total time for this is O(a2), since

each search takes O(a) time, and there are O(a) searches. We can then verify if a rotation

ρ1 precedes a rotation ρ2 in constant time.

Now we consider Algorithm POSET2, starting with the first part of the algorithm, dis-

played in Figure 6.1. It can be verified that the total number of iterations of the inner

for loop is bounded by the number of acceptable pairs, and identifying each of the peo-

ple who play the roles required in the algorithm can be achieved in constant time. We

can determine in constant time which rotation deletes a given pair, because of the work
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done when constructing the rotation poset for B ′. We can also determine in constant time

whether a given rotation precedes a second given rotation, by looking at the adjacency

matrix. Clearly updating the digraph when a new edge is added can also be achieved in

constant time. Thus the overall time complexity of the first part of the algorithm is O(a).

The case for the second part of Algorithm POSET2, displayed in Figure 6.2, is similar,

and it can be verified that the time complexity of it is also O(a).

Finally, we need to consider the complexity of taking the graph output by the algorithm

and forming the new poset. We use as our starting point a representation R ′ of the rotation

poset constructed by an algorithm similar to Algorithm POSET, and with identical running

time, where R′ has O(a) edges, but additionally has the property that the outdegree of

each node in R′ is O(n) (see [15]). Adding an edge to R′ takes constant time, so, since the

time complexity of each part of the algorithm is O(a), it follows that we add O(a) edges

to R′ during the execution of Algorithm POSET2, so the meta-rotation poset R has O(a)

edges. Finding all the strongly connected components in a directed graph G = (V,E) takes

O(|V | + |E|) time (see, for example, [4, pps. 488-494]). For an SMI instance consisting

of b acceptable pairs there are at most b
2 rotations, since each rotation consists of at least

2 pairs. Thus |V | is O(a), and we have previously established that R ′ has O(a) edges.

Hence finding all of the strongly connected components in R′ takes O(a) time. Since

there are O(a) edges in R′, ensuring that the precedences between the strongly connected

components are correct also takes O(a) time in the worst case. Thus the overall time

complexity of producing the new poset is O(a2). However, the only stage of the algorithm

that is not O(a) is finding the transitive closure of the rotation poset for B ′. If we could

identify in O(a) time, without requiring to find the transitive closure of the rotation poset

for B′, whether a given rotation precedes a second given rotation, then the algorithm could

be implemented to run in O(a) time.

6.5 The super-stable pairs

In this section we show that we can find all the super-stable pairs for an instance I of

SMTI in O(a2) time.

Theorem 6.5.1. A pair (m,w) is a super-stable pair if and only if it is in some meta-

rotation, or it is in Mz.
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Proof Clearly a pair is super-stable if it is in Mz. Suppose (m,w) belongs to a meta-

rotation ρ. Then there is a super-stable set, S say, in which ρ is exposed, and hence (m,w)

is in MS , and so is super-stable.

Now suppose (m,w) is a super-stable pair. If (m,w) appears in Mz there is nothing to

prove. Suppose (m,w) does not appear in Mz. Then (m,w) ∈ M for some super-stable

matching M 6= Mz, and m must have a partner w′ 6= w in Mz. Since M must dominate

Mz in B′, and an agent p can have at most one super-stable partner from any given tie

on their list, m must prefer w to w′ in I. But then there must be a meta-rotation that

changes m’s partner from w to w′ or some other woman w′′ such that m prefers w to w′′

and w′′ to w′, and hence there must be a meta-rotation ρ such that (m,w) ∈ ρ.

Theorem 6.5.2. All the super-stable pairs can be found in O(a2) time.

Proof This follows immediately from Theorem 6.5.1, and the fact that the meta-rotation

poset for I, and hence the meta-rotations for I, can be found in O(a2) time.

6.6 Generating all super-stable matchings

In this section we show how to generate the super-stable matchings for an instance of

SMTI in a manner analogous to that for generating the stable matchings for an instance

of SM(I) presented in [13].

For a given instance I of SMTI, let R be the representation of the meta-rotation poset

for I found by Algorithm POSET2. We use R to construct a tree T with root node r

corresponding to M0, and edges corresponding to the meta-rotations for I. The tree T is

constructed so that any path in T from r to a node v corresponds to a unique closed subset

of R, and hence, by Theorem 6.2.7, to a super-stable matching in I. Further, the order

of the meta-rotations on a path will be such that every predecessor of a meta-rotation Φ

which is part of the path will precede Φ on the path, so that the super-stable matching

corresponding to v can be generated by eliminating the meta-rotations on the path to v

from r in order.

To construct T we must first label the meta-rotations in R according to a topological order

on R. This can be achieved in O(a) time, since R has O(a) edges. We then construct T

in the following manner.
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We start at r, and expand T from each unexpanded node in turn. Let v be an unexpanded

node. We expand v as follows. Let p(v) be the set of meta-rotations on the path from r

to v, and let w be the label on the final meta-rotation on the path. Let q(v) be the set

of meta-rotations in R which have indegree zero when the meta-rotations in p(v) and all

incident edges are removed from R, and which have a label larger than w. We add |q(v)|

nodes to T , with an edge from v to each new node labeled with one of the meta-rotations

in q(v).

Lemma 6.6.1. Given R we can construct T in O(ka) time, where k is the number of

nodes in T .

Proof For each node v of T , we require a graph Gv derived from R by deleting those

nodes that correspond to meta-rotations on the path p(v), and all edges incident on them.

Further, we need to know the indegree of each node in Gv. Then, if ρ is the meta-rotation

on the edge from v to h, q(h) is the union of the set of all neighbours of ρ in Gv with

indegree 1 (these all have label larger than ρ since all the meta-rotations on p(v) have

been removed from Gv), and the set of meta-rotations in q(v) with label larger than ρ.

Since there are only O(a) edges in R, no node in R, and hence in Gv , can have outdegree

greater than O(a), so we can find the first part in time O(a). Now consider q(v). Suppose

|q(v)| > n. Then some man must appear in at least two meta-rotations in q(v). But the

meta-rotations in q(v) are all exposed in the super-stable set obtained by eliminating the

meta-rotations in p(v), a contradiction. Hence |q(v)| ≤ n, so we can find the second part

in time O(n).

To construct these graphs efficiently we must construct T in a depth first manner. Thus,

for a node v, we find all the elements in Gv which have indegree 0 (the edges out of v)

and store them. We then choose the edge with the lowest label larger than that on the

last edge on p(v) which has not been visited, < v,w > say, with meta-rotation Φ, and

construct Gw by deleting Φ and all incident edges from Gv. Since there are only O(a)

edges in R this can be done in time O(a). Further, the indegree of each node in Gw is

the same as its indegree in Gv except for the neighbours of Φ which have indegree 1 less,

thus the indegrees can be calculated in O(a) time. When we come back from node w to

node v, we need to know the meta-rotation on edge < v,w > to reconstruct Gv. We then

repeat this process for the edge with the lowest label which has not been visited. In this

manner we can construct T in O(a) time per node.
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It remains to prove that the nodes of T are in one-to-one correspondence with the closed

subsets of R.

Lemma 6.6.2. Every node of T corresponds to a unique closed subset of R.

Proof Clearly r corresponds to a closed subset of R, namely the empty set. Consider

each of the edges emanating from r. By the construction of T each corresponds to a meta-

rotation initially exposed, and hence the nodes u for each edge (r, u) correspond to closed

subsets of R. Now let v be an arbitrary node of T , and assume that every node added

to T before v corresponds to a closed subset of R. Let u be the immediate predecessor

of v in T . By the construction of T , the edge (u, v) represents a meta-rotation for which

every predecessor is represented by an edge on the path from r to u. It follows that v

corresponds to a closed subset of R.

Now suppose that two nodes, u and v say, of T correspond to the same closed subset of R.

Let Φ1, ...,Φs and Π1, ...,Πs be the edge labels on the paths from r to u and v respectively.

Let j be such that Φi = Πi for every 1 ≤ i < j, but Φj 6= Πj . Suppose, without loss

of generality, that the label on Φj is greater than that on Πj . Then Πk is Φj for some

k > j. It follows that an edge must have been added to the path from r to u despite

the meta-rotation with which that edge is labelled having topological label smaller than

the topological label on the meta-rotation preceding that edge on the path from r to u, a

contradiction. The result follows.

Lemma 6.6.3. Every closed subset of R is represented by at least one node of T .

Proof Let Φ = Φi1 , ...,Φis be a closed subset of R, ordered according to the topological

order on R. Suppose Φ is not represented by any node in T . Let j be such that Φi1 , ...,Φij

are the edge labels on the path from r to a node u in T , but no node in T has edge

labels Φi1 , ...,Φij+1 . Consider the expansion of u. Since Φ = Φi1 , ...,Φij include all the

predecessors of Φij+1 in R, Φij+1 certainly has indegree 0 when the meta-rotation in p(u)

and all incident edges are removed from R. Further, since Φi1 , ...,Φis is a topological

ordering of the meta-rotations in Φ, Φij+1 also has label larger than Φij . Thus there is

an edge added from u to a new node v, with the edge labelled Φij+1 . This contradiction

proves the result.

Lemmas 6.6.1, 6.6.2 and 6.6.3 together give rise to the following theorem.
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Theorem 6.6.4. We can generate the set of all super-stable matchings in O(a2 + ka)

time, where k is the number of matchings.

6.7 Finding an egalitarian super-stable matching

Algorithm SUPER2 produces a matching which is simultaneously man-optimal and woman-

pessimal. Now we consider how to find a super-stable matching which does not treat the

sets so inequitably. There are two ways in which we will approach this problem. In Section

6.8 we show how to find a super-stable matching which minimises the regret of the worst-

off participant, while in this section we show how to find a matching which minimises the

sum of the regrets of all the participants.

In this section the meta-rotation poset is exploited in a manner that is directly analogous

to the exploitation of the rotation poset in the paper of Irving et al. [25]. The results

presented here are, in the most part, identical to those in [25].

For a pair (m,w), mr(m,w) (resp. wr(m,w)) is equal to 1 plus the number of women

(resp. men) whom m (resp. w) prefers to w (resp. m). An egalitarian super-stable

matching is one in which the weight of a matching M , w(M), where

w(M) =
∑

(m,w)∈M

(mr(m,w) + wr(m,w))

is minimised.

We define the weight of a meta-rotation Φ to be

w(Φ) =
l∑

i=1

(

ri−1∑

j=0

(mr(mi
j , w

i
j) − mr(mi

j, w
i
j+1)) +

ri−1∑

j=0

(wr(mi
j , w

i
j) − wr(mi

j−1, w
i
j)))

where l is the number of cycles in Φ of the form {(m0, w0), ..., (mri−1, wri−1)}, and j + 1

and j − 1 are taken modulo ri.

It can be shown that the weight of a meta-rotation is equal to the change in the weight

of a matching when the meta-rotation is eliminated from the super-stable set from which

the matching is derived. More generally, for any matching M ,
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w(M) = w(M0) −
k∑

i=1

w(Φi)

where M can be obtained from M0 by eliminating the meta-rotations Φ1, ...,Φk from the

relevant super-stable sets.

Recall that, for an instance of SMTI, there is a one-to-one correspondence between the

closed subsets of the meta-rotation poset for the instance and the super-stable matchings

for the instance (Theorem 6.2.7). To facilitate finding an egalitarian super-stable matching

we form the weighted meta-rotation poset by adding the weight of each meta-rotation to

the corresponding node of the poset. For each closed subset of the poset, we refer to the

total weight of the meta-rotations in that subset as the weight of the subset. We can

then find an egalitarian super-stable matching by finding a closed subset of the weighted

meta-rotation poset with maximum weight.

Let I be an instance of SMTI. Our starting point is R, the representation of the meta-

rotation poset for I found by Algorithm POSET2, which we can obtain in O(a2) time.

Recall that R has O(a) edges. We form a network N from R by adding to R nodes s and

t, a source and a sink respectively, and by adding the following edges:

• if meta-rotation ρ has weight w < 0, an edge is added from s to ρ, with capacity |w|;

• if meta-rotation ρ has weight w > 0, an edge is added from ρ to t, with capacity w;

In addition, every edge in R is included in N , with infinite capacity. A positive node is a

node representing a meta-rotation with weight greater than 0, while a negative node is a

node representing a meta-rotation with weight less than 0.

Lemma 6.7.1. Let S be the set of positive nodes which do not have their edge into t cut

by a minimum cut C in N . Let T be the set of predecessors of the nodes in S. Then S∪T

is a maximum weight closed subset of R.

Proof Let W be a maximum weight closed subset of R. Let v be a negative node in W .

Then v must precede at least one positive node in W . Thus finding a maximum weight

closed subset of R is equivalent to finding a subset U of the positive nodes in R which

maximizes, over all possible subsets, w(U)− |w(P (U))|, where P (U) is the set of negative
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nodes that are predecessors of any positive node in U . This, in turn, is equivalent to

finding a subset U of the positive nodes in R which minimizes, over all possible subsets,

w(V ) − w(U) + |w(P (U))|, where V is the set of positive nodes in R.

Let U be an arbitrary subset of V . In N , suppose every edge from s to a node in P (U) is

cut, and suppose that every edge from a node in V −U is cut. Then this set of edges defines

a cut in N . Hence the capacity of C, cap(C), is such that cap(C) ≤ w(V −U)+ |w(P (U))|.

Now consider S. By definition of S, C must cut all the edges from a node in V − S to

t. Further, C must cut all the edges from s to a node in P (S), since C must have

finite capacity and all the edges in N from R have infinite capacity. Thus cap(C) =

w(V −S)+ |w(P (S))| ≤ w(V −U)+ |w(P (U))|, where U is an arbitrary subset of V . The

result follows.

Lemma 6.7.2. Given S, as defined in Lemma 6.7.1, an egalitarian super-stable matching

can be found in O(a) time.

Proof To find the predecessors of S, we can track backwards from each node in S,

marking a node when it is encountered for the first time, and starting from the next node

in S when we reach s or a marked node. Since R has O(a) edges this can be achieved in

O(a) time. Then we simply start from M0 and eliminate the marked meta-rotations in

topological order.

As noted above, it takes O(a2) time to find R. It is therefore desirable to bound all the

other work we need to do to find an egalitarian super-stable matching by O(a2). To show

that we can find a minimum cut in N in O(a2) time, we require the following lemma.

Lemma 6.7.3. A minimum cut in N has capacity bounded by O(a).

Proof It is clear that a minimum cut cannot have capacity greater than the sum of the

capacities of the edges from the nodes in R to t. Recall that each such edge has a capacity

equal to the weight of the meta-rotation at the originating node. We show that the sum

of these weights is bounded by O(a).

The weight of a meta-rotation consists of the sum of the change of the men’s partners

added to the sum of the change of the women’s partners. The former is negative, so

the second must be greater than the weight of the meta-rotation. But this second part,
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summed over all the meta-rotations, clearly cannot exceed the number of pairs in the

preference lists, so is bounded by O(a).

Theorem 6.7.4. A minimum cut C in N can be found in O(a2) time.

Proof If all capacities in N are integral, then Ford-Fulkerson runs in O(E|f ∗|) time,

where E is the number of edges in N , and f ∗ is a maximum flow in N [4]. Certainly E is

O(a), and, by Lemma 6.7.3, |f ∗| is bounded by O(a).

Combining the foregoing results, we get the following:

Theorem 6.7.5. For an instance I of SMTI, an egalitarian super-stable matching can be

found in O(a2) time.

Feder [6] presented an algorithm to find an egalitarian stable matching in O(n2.5 log n)

time for an instance of SM of size n, but as there is a O(a2) pre-processing cost for

super-stability, extending his algorithm would not give any improvement. Note that the

construction given here was first used by Picard [45].

6.8 Finding a minimum regret super-stable matching

Recall that, for a super-stable matching M , the regret of a person p is the position in

p’s preference list of the partner of p in M . The regret of a super-stable matching M ,

denoted r(M), is the maximum regret of any person in M . In other words the regret

of a super-stable matching is measured by the person who is worst off in that matching.

A minimum regret super-stable matching is a super-stable matching with smallest regret

amongst all the super-stable matchings for a given instance of SMTI. In this section we

present an algorithm that finds a minimum regret super-stable matching in O(a) time.

Recall that, for an instance I of SMTI that admits a super-stable matching, the base lists

are the intersection of the preference lists obtained after applying Algorithm SUPER2 to

find the man-optimal super-stable matching with those obtained after applying Algorithm

SUPER2 to find the woman-optimal super-stable matching.

Let B be the base lists for an instance I of SMTI that admits a super-stable matching.

Again we assume that M0 6= Mz, for otherwise the single super-stable matching for I must
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trivially be the minimum regret super-stable matching. Recall that to delete a pair (m,w)

we break any engagement between m and w, and remove each of m and w from the other’s

list.

Algorithm MinReg starts from B, and from two matchings M = M0 and M ′ = Mz. The

algorithm finds a person x with regret max(r(M), r(M ′)) in M or M ′. If that person

has the same partner in M and M ′ then the algorithm outputs M , which we show later

must be a minimum regret super-stable matching. Otherwise, if x is a man the algorithm

deletes (x, pM ′(x)), reactivates Algorithm SUPER2 with the women proposing, and sets

M ′ to be the super-stable matching output by Algorithm SUPER2. Thus, in M ′, x now

has a better partner. Alternatively, x must be a woman. The algorithm then deletes

(pM (x), x), reactivates Algorithm SUPER2 with the men proposing, and sets M to be the

super-stable matching output by Algorithm SUPER2. Thus, in M , x now has a better

partner. We show that, regardless of which conditional statement is executed, there must

still be a minimum regret super-stable matching contained in the preference lists. The

algorithm is displayed in Figure 6.7.

M := M0;

M ′ := Mz;

repeat {

let x be a person with regret max(r(M), r(M ′)) in M or M ′;

if pM (x) = pM ′(x) {

output M ;

halt; }

else if x is a man{

delete (x, pM ′ (x));

reactivate Algorithm SUPER2 with the women proposing;

M ′ := matching output by Algorithm SUPER2;}

else{

delete (pM (x), x);

reactivate Algorithm SUPER2 with the men proposing;

M := matching output by Algorithm SUPER2;}}

Figure 6.7: Algorithm MinReg - finding the minimum regret super-stable matching



CHAPTER 6. THE STRUCTURE OF SMTI UNDER SUPER-STABILITY 125

We prove the correctness of Algorithm MinReg via a sequence of lemmas, but first we

make some definitions. A matching M man-dominates a matching M ′ if and only if every

man who has different partners in M and M ′ prefers his partner in M to his partner in

M ′. Woman-dominance is defined similarly. A matching M ′′ is between M and M ′ if and

only if M 6= M ′′, M ′ 6= M ′′, and either M man-dominates M ′′ and M ′′ man-dominates

M ′, or M woman-dominates M ′′ and M ′′ woman-dominates M ′.

Lemma 6.8.1. Suppose that, for one particular execution of Algorithm MinReg, M ′

changed from M1 to M2 because some man m was x, and pM (m) 6= pM ′(m). Then every

super-stable matching between M2 and M1 contains (m, pM ′(m)).

Proof Suppose that there exists a super-stable matching M3 such that M3 is between

M2 and M1, and (m,w) 6∈ M3, where w = pM1(m). Then M2 man-dominates M3, M3

man-dominates M1, M2 6= M3 and M1 6= M3, and M3 must be contained in the preference

lists after (m,w) has been deleted. It follows that at least one pair from M3 must be

deleted by the algorithm after splitting m and w. Suppose (m′, w′) was the first such pair

deleted during the execution of the algorithm. There are two cases to consider.

Case 1: Suppose (m′, w′) was deleted because m′ received a proposal from a woman w′′

whom he prefers to w′. Now w′′ must be matched in M3 to a man m′′ such that w′′ prefers

m′ to m′′, or is indifferent between them, since (m′, w′) is the first pair from M3 to be

deleted. But then (m′, w′′) is a super-stable blocking pair for M3, a contradiction.

Case 2: Suppose (m′, w′) was deleted because m′ is multiply engaged, to women in the tie

in his list containing w′. Let w′′ be an arbitrary woman engaged to m′ at this point. In

M3, w′′ cannot be matched with a man she prefers to m′, since (m′, w′) is the first pair

from M3 to be deleted. Since (m′, w′) ∈ M3, (m′, w′′) is a super-stable blocking pair for

M3, a contradiction.

It follows that (m,w) is in every super-stable matching between M2 and M1.

Lemma 6.8.2. Suppose that, for one particular execution of Algorithm MinReg, M changed

from M1 to M2 because some woman w was x, and pM(w) 6= pM ′(w). Then every super-

stable matching between M2 and M1 contains (pM (w), w).

Proof The proof is similar to that for Lemma 6.8.1.
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In the following theorem, cM (x) denotes the regret of person x in super-stable matching

M .

Theorem 6.8.3. Algorithm MinReg produces a minimum regret super-stable matching.

Proof Suppose that, at the start of some iteration of the loop, the preference lists contain

a minimum regret super-stable matching. We show that the preference lists must contain a

minimum regret super-stable matching at the end of the loop iteration. Let x be a person

with regret max(r(M), r(M ′)) in M or M ′. Without loss of generality, suppose that x is

selected by the algorithm, and suppose that pM (x) 6= pM ′(x). Suppose further that x is a

man (the case that x is a woman is analogous, and uses Lemma 6.8.2). As cM (x) < cM ′(x)

it follows that cM ′(x) = max(r(M), r(M ′)). Let M1 be M ′ at the start of the loop iteration,

and let M2 be M ′ at the end of the loop iteration. By Lemma 6.8.1, every super-stable

matching between M2 and M1 contains (x, pM ′(x)). Thus, for any super-stable matching

Md contained in the preference lists for which at least one pair of Md was deleted during the

loop iteration in question, it follows that r(Md) ≥ cMd
(x) = cM ′(x) = max(r(M), r(M ′)).

Hence there must be a minimum regret super-stable matching contained in the preference

lists at the end of the loop iteration. Since there is clearly a minimum regret super-stable

matching contained in the preference lists at the start of the first loop iteration, the result

follows by induction.

Let Mmin be the matching output by the algorithm. If M = M ′(= Mmin) at this point

then, by the foregoing, Mmin is a minimum regret super-stable matching, as it is the

only matching contained in the preference lists. So suppose M 6= M ′. Consider x. Since

pM (x) = pM ′(x), pM (x) must be the only person on x’s list. Hence (x, pM (x)) is in

every super-stable matching between M and M ′, and so every super-stable matching

between M and M ′ has regret r(M), and so Mmin = M is a minimum regret super-stable

matching.

6.8.1 Implementation and analysis of Algorithm MinReg

Initially we require M0 and Mz, each of which takes O(a) time to find. The algorithm

starts at M0 and Mz, and outputs a matching between M0 and Mz. It follows that the

total number of proposals/deletions is O(a). We also need to be able to find a person of

regret max(r(M), r(M ′)). We show how to find a person of maximum regret in M ′ in O(1)
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time below, where n is the number of men in the instance. The case for M is analogous,

and then it is simply a matter of looking at a set of pointers of size O(n) and determining

which points to the highest value.

We maintain two arrays of n doubly-linked lists, one for the men and one for the women.

For the men (resp. women), there is a list for each possible regret r of a man (resp.

woman), with a pointer pm (resp. pw) to the list representing the highest value of r which

is not empty. In addition we require a pointer for each person, pointing to that person

in the relevant linked list. Finally, we require a counter for each list, to maintain a total

of the number of people in that list. Clearly we can find a man of maximum regret by

following the pointer pm. After a reactivation of Algorithm SUPER2, each person with

a new mate is removed from their current linked list, in constant time using the set of

pointers, and added to the head of the linked list corresponding to their new regret r, with

the corresponding increments and decrements made to the list counters. If the counter for

the list pointed to by pm holds 0, we set pm to point to the list for regret one less, until we

find a list with a non-zero counter. Since a man’s regret can only improve as the algorithm

executes, this takes O(n) time in total. For the women, if any list counter changes from

0, then pw is set to point to that list if it represents a regret greater than that in the list

currently pointed to by pw. Overall these updates take time O(n), as does initialisation

of the list structures. Hence Algorithm MinReg takes O(a) time in total.

6.9 Conclusions and subsequent work in the literature

In this chapter we have shown that, for an instance I of SMTI, the set of all super-

stable matchings can be found in O(a2 + ka) time, where k is the number of super-stable

matchings; all the super-stable pairs can be found in O(a2) time; all the meta-rotations

can be found in O(a2) time; an egalitarian super-stable matching can be found in O(a2)

time; and a minimum regret super-stable matching can be found in O(a) time. Subsequent

to the completion of this work, Dias et al. [5] gave algorithms for finding all stable pairs

and all stable matchings for an instance of Stable Marriage with Forbidden pairs (SMF),

with time complexities O(a) and O(a + kn) respectively, where k is the number of stable

matchings. Manlove and Fleiner [39] has shown that we can reduce an instance I of SMT

to an instance I ′ of SMF so that the set of super-stable matchings in I is exactly the set
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of stable matchings in I ′. This reduction takes O(a) time, and so this method provides a

speed up for the problems of finding all super-stable pairs and all super-stable matchings

for an instance of SMTI, since we can reduce an instance of SMTI to an instance of SMT

in time linear in the number of acceptable pairs, such that the super-stable matchings

of the two instances are in one-to-one correspondence. Additionally, it would seem likely

that this method could lead to an algorithm to find an egalitarian super-stable matching

more efficiently than the method of Section 6.7.



Chapter 7

On weak stability in SMTI

7.1 Introduction

In this chapter we present a number of results relating to SMTI under weak stability.

Recall that weakly stable matchings may have different cardinality, though the largest is

at most twice the size of the smallest [34]. Furthermore, Maximum Cardinality SMTI,

the problem of finding a maximum cardinality weakly stable matching in an instance of

SMTI, is NP-hard, even if the ties are at the tails of lists and on one side only, and each tie

has length 2 [40]. Thus we are interested in approximating a maximum cardinality weakly

stable matching. As noted in Chapter 1, Maximum Cardinality SMTI is not approximable

within δ, unless P=NP, for some δ > 1, even if the preference lists are of constant length,

there is at most one tie per list, and the ties occur on one side only [16]. However δ is

close to 1, so it is still feasible that there will be some improvement on the best known

approximation algorithms, listed in Section 1.6. Additionally, there is an instance of SMT

which admits neither a man-optimal weakly stable matching nor a woman-optimal weakly

stable matching [47], thus apparently precluding the existence of a lattice structure similar

to that discussed in Chapter 6. This lattice, of course, allows us to solve a number of

problems, including listing all the super-stable matchings for an instance of SMTI, in time

polynomial in the number of such matchings. We are certainly interested in being able to

do the same for the weakly stable matchings in an instance of SMTI, but to date little

progress has been made in producing multiple weakly stable matchings for an instance,

let alone all the weakly stable matchings. It is also known that the problems of finding an

129
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egalitarian weakly stable matching and finding a minimum regret weakly stable matching

are both NP-hard, even if the ties are on one side only, there is at most one tie per list

and each tie has length 2 [40]. It has also been shown that both problems are also not

approximable within Ω(n) unless P=NP [16]. Additionally, determining whether a given

man-woman pair is weakly stable is NP-complete, even if the ties are at the tails of lists

and on one side only, and each tie has length 2 [40].

In Chapter 8 we look at weak stability in instances of SMTI in which the preferences of

at least one set are sublists of a fixed complete ordering of the other set, but first we

study weak stability in a more general setting. In Section 7.2 we show a relationship

between the size of a maximum cardinality weakly stable matching and the size of all

strongly stable matchings in an instance of SMTI or SRTI which admits a strongly stable

matching. We also show that this relationship is potentially stronger in HRT, i.e., when

we introduce capacitated agents. Thus, for a restricted set of instances of SMTI, we

have an algorithm for approximating a maximum cardinality weakly stable matching with

guarantee better than any previously known. In Section 7.3 we give an improvement on

the best known approximation algorithm for both maximum and minimum cardinality

weakly stable matchings for instances of SMTI with sparse ties. In Section 7.4 we show

that we can efficiently determine whether an instance of SMTI admits a unique weakly

stable matching. Finally, in Section 7.5 we show that the problem of finding a weakly

stable matching in an instance of SMTIF (Stable Marriage with Ties, Incomplete lists and

Forbidden pairs) is NP-complete, though we can find a super-stable matching in such an

instance efficiently. The former problem, had it been solvable in polynomial-time, could

have led to an efficient algorithm for generating all the weakly stable matchings in time

linear in the number of such matchings.

Note that in this chapter we must occasionally draw a distinction between the three types

of blocking pair. Therefore we say a pair is a weakly stable blocking pair for a matching

M if it blocks M when considered as a weakly stable matching, we say a pair is a strongly

stable blocking pair for a matching M if it blocks M when considered as a strongly stable

matching, and we say a pair is a super-stable blocking pair for a matching M if it blocks

M when considered as a super-stable matching.
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7.2 Comparing strongly stable matchings to weakly stable

matchings

In this section we show that, in the one-to-one matching problems SMTI and SRTI, a

strongly stable matching is at least 2
3 the size of a maximum cardinality weakly stable

matching, while there is a potentially stronger result for HRT.

7.2.1 The comparison in SMTI

We start by showing that, if an instance of SMTI admits a strongly stable matching, that

matching must be at least 2
3 the size of a maximum cardinality weakly stable matching.

Theorem 7.2.1. Let I be an instance of SMTI, let M be a strongly stable matching for

I, and let M ′ be a maximum cardinality weakly stable matching for I. Then |M | ≥ 2
3 |M

′|.

Proof Suppose some person p is matched in M ′ but not in M . Then p’s partner in M ′

must be matched in M . For otherwise there is a pair (m,w) ∈ M ′ such that m, w are

unmatched in M . But m, w clearly find each other acceptable, and hence (m,w) is a

strongly stable blocking pair for M . We show that, to include in M ′ a person who was

unmatched in M , we must include in M ′ three people who were matched in M . The role

of these people depends on the whether we are adding a man or a woman to M ′, so each

person can play two roles. In the following paragraph each pi is from one set, and each qi

is from the other.

Consider a person p1 who is unmatched in M . Suppose p1 is matched in M ′, to q1. By

the above, q1 must be matched in M . Consider p2 = pM (q1). Clearly p2 6= p1. Clearly q1

prefers p2 to p1, for otherwise (p1, q1) is a strongly stable blocking pair for M . Suppose

p2 is unmatched in M ′, or prefers q1 to pM ′(p2). Then (p2, q1) is a weakly stable blocking

pair for M ′. Hence p2 must be matched in M ′, and must prefer q2 = pM ′(p2) to q1, or be

indifferent between them. Clearly q2 6= q1, since (p1, q1) ∈ M ′ and p2 6= p1. Now suppose

q2 is unmatched in M . Then (p2, q2) is a strongly stable blocking pair for M , so q2 must be

matched in M . So, for every man, say, who is matched in M ′ but not in M there are two

women who are matched in M , and each such man generates two such distinct women.

Hence |M ′| − |M | ≤ x ≤ |M |
2 , where x is the number of men who are matched in M ′ but

not in M . Clearly |M ′| ≤ 3
2 |M |.



CHAPTER 7. ON WEAK STABILITY IN SMTI 132

1: 1 1: 2 1

2: (1 2) 2: (2 3)

3: 2 3 3: 3

Figure 7.1: An instance of SMTI

The instance of SMTI in Figure 7.1 demonstrates that the lower bound of Theorem 7.2.1

is tight, as it admits a strongly stable matching of size 2, namely (2, 1), (3, 2), and a weakly

stable matching of size 3, namely (1, 1), (2, 2), (3, 3). Note that this example can easily be

extended to instances of arbitrarily large size for which the bound is tight.

1: (1 2) 1: 1

2: 2 2: (1 2)

Figure 7.2: A second instance of SMTI

By contrast, the instance of SMTI in Figure 7.2 admits a strongly stable matching of size

2 (hence also a maximum cardinality weakly stable matching), namely (1, 1), (2, 2), and a

weakly stable matching of size 1 (hence also a minimum cardinality weakly stable match-

ing), namely (1, 2). Thus, even if a strongly stable matching is of equal size to a maximum

cardinality weakly stable matching, it is still possible for a minimum cardinality weakly

stable matching to be half the size of a maximum cardinality weakly stable matching.

Note again that this example can easily be extended to instances of arbitrarily large size.

7.2.2 The comparison in HRT

We now extend the result of Theorem 7.2.1 to HRT. This extension gives a potentially

stronger result than Theorem 7.2.1.

Theorem 7.2.2. Let I be an instance of HRT, let M be a strongly stable matching for

I, and let M ′ be a maximum cardinality weakly stable matching for I. Then |M ′| ≤

3
2 |M | − 1

2uM , where uM = Σh∈H∗fh, H∗ is the set of hospitals that are not full in M , and

fh is the number of posts that a hospital h ∈ H∗ fills in M .
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Proof Consider a resident r1 who is unmatched in M . Suppose r1 is assigned in M ′

to hospital h1. Clearly h1 is full in M , as otherwise (r1, h1) is a strongly stable blocking

pair for M . Hence there is some resident r2(6= r1) who is assigned to h1 in M , but is

not assigned to h1 in M ′. Clearly h1 prefers r2 to r1, for otherwise (r1, h1) is a strongly

stable blocking pair for M . Suppose r2 is unassigned in M ′, or prefers h1 to pM ′(r2).

Then (r2, h1) is a weakly stable blocking pair for M ′. Hence r2 must be assigned to some

hospital in M ′, and must prefer h2 = pM ′(r2) to h1, or be indifferent between them. Now

suppose h2 is not full in M . Then (r2, h2) is a strongly stable blocking pair for M . Hence

h2 must be full in M . Note that (r2, h1) 6∈ M ′, by the choice of r2, so h1 6= h2.

So, for every resident who is matched in M ′ but not in M there are two hospital posts

which are filled in M at hospitals that are full in M , and each such resident generates

two such distinct hospital posts. Let gM be the number of hospital posts filled in M at

hospitals that are full in M , and let uM be the number of posts filled in M at hospitals that

are not full (i.e., undersubscribed) in M . Then |M ′| − |M | ≤ 1
2gM . Now |M | = gM + uM ,

so |M ′| − |M | ≤ 1
2 (|M | − uM ), or |M ′| ≤ 3

2 |M | − 1
2uM .

7.2.3 The comparison in SRTI

Now we consider the extension of Theorem 7.2.1 to SRTI. The proof is similar to that of

Theorem 7.2.1.

Theorem 7.2.3. Let I be an instance of SRTI, let M be a strongly stable matching for I,

and let M ′ be a maximum cardinality weakly stable matching for I. Then |M | ≥ 2
3 |M

′|.

Proof Suppose some agent p is matched in M ′ but not in M . Then p’s partner in M ′

must be matched in M . For otherwise there is a pair {p, q} ∈ M ′ such that p, q are

unmatched in M . But p and q find each other acceptable, and hence {p, q} is a strongly

stable blocking pair for M .

Consider an agent p who is unmatched in M . Suppose p is matched in M ′, to q. By the

above, q must be matched in M . Consider r = pM (q). Then r 6= p. Clearly q prefers r to

p, for otherwise {p, q} is a strongly stable blocking pair for M . Suppose r is unmatched in

M ′, or prefers q to pM ′(r). Then {q, r} is a weakly stable blocking pair for M ′. Hence r

must be matched in M ′, and must prefer s = pM ′(r) to q, or be indifferent between them.
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Clearly s 6= q, since {p, q} ∈ M ′ and r 6= p. Now suppose s is unmatched in M . Then

{r, s} is a strongly stable blocking pair for M , so s must be matched in M . Clearly p 6= s.

Potentially, pM (s) could be matched in M ′ with an agent who is unmatched in M , and so

four agents who are matched in M are required and suffice to allow two agents who are

unmatched in M to become matched in M ′.

So, for every two agents who are matched in M ′ but not in M there are four agents who

are matched in M . Hence |M ′| − |M | ≤ x ≤ 1
2 |M |, where x is the number of agents who

are matched in M ′ but not in M . Clearly |M ′| ≤ 3
2 |M |.

Since SMTI can be viewed as a special case of each of both HRT and SRT, the examples

in Figures 7.1 and 7.2 demonstrate the same properties for both of these problems as they

do for SMTI.

7.3 An approximation guarantee

In this section we consider the problem of approximating a maximum cardinality weakly

stable matching in an instance of SMTI. We denote by s+(I) and s−(I) the size of a

maximum and minimum cardinality weakly stable matching in I respectively. Ideally,

in the case of Maximum Cardinality SMTI, one might hope for a bound of the form

s+(I)/|M | ≤ f(p) given an instance I of SMTI, where M is a stable matching found by

some approximation algorithm, p is the proportion of preference lists that contain ties,

and f(p) is a function that decreases to 1 as p decreases to 0.

However, it is not hard to see that a bound of this form is infeasible. Were such an

algorithm to exist, a ‘gap’ argument could be used to show that it could solve instances

of Maximum Cardinality SMTI exactly. Given an arbitrary such instance, it could be

‘expanded’ by the addition of new persons, none of whom has a tie in his or her list, and

none of whom can be matched in any stable matching. With an appropriate expansion

factor, application of the supposed approximation algorithm to this derived instance would

solve the original instance exactly.

Instead we derive a bound on the difference in size between a maximum (or minimum)

cardinality stable matching and an arbitrary stable matching, expressed in terms of the

number of preference lists that contain ties. So the trivial approximation algorithm - break
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all ties arbitrarily and apply the Gale/Shapley algorithm - has a performance guarantee,

for both Maximum Cardinality SMTI and Minimum Cardinality SMTI, expressible as a

difference rather than a ratio. As observed by Garey and Johnson [11, pp.137-138], this

form of performance guarantee can reasonably be viewed as being stronger than the more

familiar performance ratio form, and there are relatively few NP-hard problems for which

approximation algorithms with performance guarantees of this kind are known.

Some additional definitions are necessary before presenting the main results of this section.

Let M and M ′ be stable matchings for an instance I of SMTI. If a person p strictly prefers

his partner in M to his partner in M ′, or is matched in M but not in M ′, then we say

that p strictly prefers M to M ′. If p is indifferent between his partners in M and M ′, or

has the same partner in M as in M ′, or is matched in neither M nor M ′, then we say that

p is indifferent between M and M ′.

Define a tied pair to be a pair (m,w) such that m is in a tie in w’s list, or w is in a tie

in m’s list (or both). In what follows, tM denotes the number of tied pairs in M , and uI

denotes the number of preference lists in I that contain ties. In general tM depends on

the matching M , whilst uI is invariant for the given instance I; clearly tM ≤ uI .

Lemma 7.3.1. Let T be a maximum cardinality stable matching for a given instance I of

SMTI. Then if M is an arbitrary stable matching in I, |T | ≤ |M | + tM .

Proof We construct an undirected edge-coloured graph G = G(M,T ) as follows: G has

a vertex for each person in I, and two vertices form a blue (respectively red) edge if the

corresponding persons are matched in T but not in M (respectively in M but not in T ). It

is clear that the connected components of G are paths and cycles with edges of alternating

colour. Furthermore, |T | − |M | is at most equal to the number of blue augmenting paths

in G, i.e., the number of paths of odd length in which the first and last edges are blue.

Further, every such path has at least three edges, since a component that is a path of

length one would provide a blocking pair for one of the supposed stable matchings.

We claim that, in every blue augmenting path, at least one of the intermediate vertices

represents a person who is indifferent between T and M , and is therefore in a tied pair in

both T and M . This claim, together with the preceding observation, suffices to establish

the lemma.

To establish the claim, let p1, q1, . . . , pr, qr form a blue augmenting path in G. Since p1
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and qr are both matched in T but not in M , they both prefer T to M . Suppose that no

person in the path is indifferent between T and M . A simple inductive proof starting from

p1 then reveals that qi (i = 1, 2, . . . , r− 1) strictly prefers M to T , otherwise (pi, qi) would

block M , and pi (i = 2, 3, . . . , r) strictly prefers T to M , otherwise (pi, qi−1) would block

T . Thus (pr, qr) blocks M , a contradiction. Hence at least one of the pi (2 ≤ i ≤ r) or qi

(1 ≤ i ≤ r − 1) must be indifferent between T and M , as claimed.

Since tM ≤ |M |, it follows immediately by Lemma 7.3.1 that there exists an approximation

algorithm for Maximum Cardinality SMTI with performance ratio 2. Using a similar

argument to the one employed in the proof of Lemma 7.3.1, we may deduce that |M | ≤

|S| + tS , where S is a stable matching of minimum cardinality. Since tS ≤ |S|, it follows

immediately that there exists an approximation algorithm for Minimum Cardinality SMTI,

also with performance ratio 2. The inequality established by Lemma 7.3.1 also leads to

the following result:

Theorem 7.3.2. There is an approximation algorithm A such that, given any instance

I of either Maximum Cardinality SMTI or Minimum Cardinality SMTI, A finds a stable

matching M in I satisfying the following inequality:

s+(I) − uI ≤ |M | ≤ s−(I) + uI .

Proof Let M be defined as in Lemma 7.3.1. Since tM ≤ uI , Lemma 7.3.1 implies that

s+(I)−uI ≤ |M | ≤ s+(I). Also by Lemma 7.3.1, s+(I) ≤ s−(I)+uI , and hence the result

follows.

We remark that, when the ties in a given instance I of SMTI are sparse, i.e., uI is small

compared to the numbers of men and women in I, the performance guarantee indicated

by Theorem 7.3.2 is an improvement on the best-known previous results (see Section 1.6).

The following instance is an illustration of the worst case for the above theorem. For each

n ≥ 1, we define an SMTI instance I with 2n men, namely {p1, . . . , pn, q1, . . . , qn}, and 2n

women, namely {r1, . . . , rn, s1, . . . , sn}. For each i (1 ≤ i ≤ n), define preference lists for

pi, qi, ri, si as follows:

pi : si ri ri : pi

qi : si si : (pi qi)

There is a stable matching of size n (namely M1 = {(pi, si) : 1 ≤ i ≤ n}) and one of size

2n (namely M2 = {(pi, ri), (qi, si) : 1 ≤ i ≤ n}). Clearly s+(I) = 2n, and also s−(I) = n
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since |M2| = 2|M1|. Since the difference between s+(I) and s−(I) is the number of lists

with ties, the bounds given by Theorem 7.3.2 are tight.

7.4 Finding a second weakly stable matching

Finding a way to generate all the weakly stable matchings for an instance of SMTI is an

open question of great interest. In this section we take a first tentative step toward being

able to generate all the weakly stable matchings. For a given instance I of SMTI, and a

matching M which is weakly stable in I, we show that we can find, in time linear in the

input size, a matching M ′ 6= M which is also weakly stable in I, if such a matching exists,

thereby determining whether I admits a unique weakly stable matching. Note that we

again use Algorithm SUPER2, which is displayed in Figure 1.3 in Section 1.7.

So let I be an instance of SMTI, and let M be a weakly stable matching for I. We consider

three cases. The first case is trivial. Suppose I admits at least two super-stable matchings.

Then, by finding the man-optimal and woman-optimal super-stable matchings, by applying

the man-oriented and woman-oriented versions of Algorithm SUPER2 [34] respectively, we

have found two distinct weakly stable matchings, and so at least one of these is a weakly

stable matching M ′ 6= M .

There are two cases left to consider, where I admits a unique super-stable matching, and

where I does not admit a super-stable matching. We consider these two cases in turn.

First, suppose I does not admit a super-stable matching. The following lemma shows that

we can find two distinct weakly stable matchings, if they exist, in O(a) time, where n is

the size of I.

Lemma 7.4.1. Let I be an instance of SMTI which does not admit a super-stable matching,

and let M be the weakly stable matching obtained from the man-oriented GS algorithm

applied to an instance I ′ of SMI derived from I. Then we can find a second weakly stable

matching different from M in O(a) time.

Proof Since M cannot be super-stable in I there must exist a pair (m,w) 6∈ M which is

a super-stable blocking pair for M . There are three forms this pair can take:
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1. m prefers w to his partner in M , and w is indifferent between m and her partner in

M .

2. w prefers m to her partner in M , and m is indifferent between w and his partner in

M .

3. m and w are both indifferent between the other and their partner in M .

Where we have indifference in the first two cases the relevant tie will have been resolved

in I ′ so that m or w prefers their partner in M to w or m respectively, and in the third

case this must have happened in at least one of the ties, in order that M should be stable

in I ′. We change the way these ties are resolved so that m and w always prefer the other

to their partner in M . Denote by I ′′ the resulting instance of SMI. Clearly (m,w) now

blocks M in I ′′, so application of the man-oriented GS algorithm to I ′′ must produce a

matching M ′ 6= M which is weakly stable in I.

Finding a super-stable blocking pair for M takes O(a) time, as does application of the

man-oriented GS algorithm, while all other operations, with the necessary data structures

in place, take O(n) time in the worst case. As the pre-processing of the data structures

can be accomplished in O(a) time (see for example [15]), the process overall is O(a).

Now we consider the case where I admits a unique super-stable matching M . Let B ′ be

the lists after the application of Algorithm SUPER2 with the men proposing. Let B be

the original preference lists for the instance with (m,w ′) deleted for each woman w′ such

that m prefers w′ to pM(m), and all people with empty lists in B ′ removed (M is stable in

every instance of SMI obtainable from I, and so the set of people matched in M is exactly

the set of people matched in every stable matching in each such instance). For each pair

(m,w) ∈ M , if w is in a tie in m’s list we partially resolve the tie so that w precedes the

remainder of the tie, and if m is in a tie in w’s list we partially resolve the tie so that the

remainder of the tie precedes m. We call these lists the man-oriented base lists. It is clear

that each man has a single, unique woman at the head of his list in B. Let s(m) be the

set of women belonging to the tie (recalling that ties can be of length 1) on m’s list which

follows pM (m), if such a tie exists. Otherwise let s(m) be the empty set. We construct a

directed graph G0 as follows:

Create a node in G0 for each woman in M . For each man m, create an edge of G0 from
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pM (m) to w, for each w ∈ s(m). Consider the graph G0. If there is a cycle C in G0, then

we can construct a second weakly stable matching M ′ as follows:

For each w ∈ C, set pM ′(w) to be pM (w′) where w′ precedes w in C. All the other woman

in I are paired with the man they are paired with in M .

If there is no cycle then we repeat the above method, starting from the construction of the

lists B from the application of Algorithm SUPER2, this time with the women proposing.

If there is a cycle in the new graph Gz then we construct a new matching M ′′ in the same

manner. If there is again no cycle then M is the unique weakly stable matching for I.

The following lemmas prove the correctness of this method.

Lemma 7.4.2. The matching M ′ formed by the process described above is weakly stable.

Proof Suppose that (m,w) is a weakly stable blocking pair for M ′. Then m prefers w to

pM ′(m) and w prefers m to pM ′(w). Any woman who has different partners in M and M ′

prefers her partner in M ′ to her partner in M , or is indifferent between them. So w prefers

m to pM (w). Suppose m has the same partner in M and M ′, or is indifferent between his

partners in M and M ′. Then m prefers w to pM (m), and (m,w) is a super-stable blocking

pair for M , a contradiction. So m prefers pM(m) to pM ′(m). But pM ′(m) is a member

of s(m), so m must prefer w to every member of s(m), implying that w = pM (m), or m

prefers w to pM (m). In the latter case (m,w) blocks M , a contradiction, so w = pM(m),

and hence m = pM(w). But then w prefers m to m = pM (w), a contradiction. This

contradiction establishes the result.

This proof is also valid for the second iteration of the method, in which M ′′ is constructed.

We need only reverse the roles of the men and women.

Lemma 7.4.3. If there is no cycle in G0 then M is the woman-optimal stable matching

for every instance of SMI obtainable from I.

Proof Suppose that there is no cycle in G0, but there is an instance I ′ of SMI obtainable

from I in which M ′(6= M) is the woman-optimal stable matching. Then there must

be a rotation exposed in M . Suppose ρ = (m0, w0), ..., (mr−1, wr−1) is that rotation.

Then wi+1 is the second woman on mi’s list in I ′, and hence wi+1 ∈ s(mi) in B, by the

construction of B, where the subscripts are taken modulo r. But then there must be a

cycle C =< w0, w1, ..., wr−1 > in G0. This contradiction establishes the result.
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Reversing the roles of the men and women in the above proof shows that, if there is no cycle

in Gz then M is the man-optimal stable matching for every instance of SMI obtainable

from I. Combining these two results shows that, if there is a cycle in neither G0 nor

Gz then M is both the man-optimal and the woman-optimal stable matching for every

instance of SMI obtainable from I. It follows that M is the unique weakly stable matching

for I. Thus the method either produces a second weakly stable matching for I, or else M

is the unique weakly stable matching for I. Finally, the application of Algorithm SUPER2

takes O(a) time, while it is certainly the case that every other operation in this process

takes O(a) time. It follows that, given an instance I of SMTI and a matching M that is

weakly stable in I, we can find a weakly stable matching M ′ 6= M in O(a) time, if one

exists, where a is the number of acceptable pairs in I.

7.5 An aside on SMTIF

As noted earlier, Dias et al. [5] gave an algorithm for finding a stable matching in an

instance of SMF. We show that this result can be extended to find a super-stable matching

in an instance of SMTIF, but the problem of determining whether an instance of SMTIF

admits a weakly stable matching is NP-complete. To see why we are interested in the

latter problem, suppose it had been polynomial-time solvable, and that we could extend

the results in Section 7.4 to SMTIF. Then we could have generated all the weakly stable

matchings for an instance I of SMTI with polynomial-time between the generation of

successive matchings by the following method. Find a weakly stable matching M1 for I,

and then use the results in the preceding section to find a different weakly stable matching,

M2 say. Find a pair, (m,w) say, which is in M1 but not in M2. Create an instance I1 of

SMTIF in which (m,w) is forbidden, and create a second instance I2 of SMTIF in which

(m,w) is a forced pair i.e., (m,w) must appear in every weakly stable matching. Then the

set of weakly stable matchings in I is the union of the set of weakly stable matchings in

I1 and I2. Repeating this process until every instance of SMTIF does not admit a weakly

stable matching will produce all the weakly stable matchings for I.
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7.5.1 Finding a super-stable matching in SMTIF

Let I be an instance of SMTIF. Then I comprises a unique instance I ′ of SMTI together

with a set F of forbidden pairs. We assume that I ′ admits a super-stable matching,

otherwise I clearly does not admit a super-stable matching. An algorithm for finding a

super-stable matching in I is displayed in Figure 7.3, again using Algorithm SUPER2 (see

Section 1.7). The algorithm and Theorem 7.5.2 are extensions of material in [5].

M := man-optimal super-stable matching for I ′;

while there exists (m, w) ∈ M ∩ F {

delete (m, w);

reactivate Algorithm SUPER2 with the men proposing;

if Algorithm SUPER2 reports that no super-stable matching exists

no super-stable matching exists for I ;

else

M := matching output by Algorithm SUPER2; }

output M , a super-stable matching for I ;

Figure 7.3: Algorithm SUPER-FORBIDDEN

Lemma 7.5.1. Let I be an instance of SMTIF. No pair which is contained in a super-

stable matching for I is deleted during the execution of Algorithm SUPER-FORBIDDEN.

Proof Suppose, for a contradiction, that (m,w) is deleted during the execution of the

algorithm, but there is a super-stable matching M for I which contains (m,w). Suppose

further that (m,w) is the first such pair deleted. Clearly (m,w) can only be deleted by the

reactivation of Algorithm SUPER2. Suppose that the deletion takes place because some

man m′ proposes, and becomes engaged to, w, and w prefers m′ to m, or is indifferent

between them. Now m′ cannot be matched in M with a partner he prefers to w, since

(m,w) is the first pair from M to be deleted. But then m′ prefers w to pM (m′), or is

indifferent between them, and so (m′, w) blocks M , a contradiction.

Theorem 7.5.2. Let I be an instance of SMTIF. Then Algorithm SUPER-FORBIDDEN

determines whether a super-stable matching exists for I, and if so outputs the man-optimal

such matching, all in O(a) time.
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Proof Firstly, suppose there is no super-stable matching for I. Then, for every matching

M generated by Algorithm SUPER-FORBIDDEN, there is some pair (m,w) ∈ M such

that (m,w) ∈ F . Thus no iteration of the main loop of the algorithm can produce a

super-stable matching for I, and at least one pair is deleted from the preference lists

during each iteration. It follows that the algorithm must eventually delete a pair from the

woman-optimal super-stable matching for I ′, the unique instance of SMTI from which I

can be obtained. The output of Algorithm SUPER2 during the iteration when this pair is

deleted cannot be a super-stable matching, and so Algorithm SUPER-FORBIDDEN will

terminate with the conclusion that there is no super-stable matching for I.

Now suppose I admits a super-stable matching, M0. By Lemma 7.5.1 no pair which

appears in any super-stable matching for I is deleted by Algorithm SUPER-FORBIDDEN,

so the algorithm must eventually produce a matching which is super-stable in I. Let

M1,...,Mk be the sequence of matchings produced by Algorithm SUPER-FORBIDDEN.

Then each of M1,...,Mk must dominate M0, or be equal to it. Thus Mk must be super-

stable in I, and must be man-optimal.

Finally, we construct a boolean matrix containing to record whether a given pair is forbid-

den or not, taking O(a) time. We can then check in constant time whether a given pair

(m,w) is forbidden at the point at which w first appears at the head of m’s list, and mark

it as such if relevant. Since it takes O(a) time for the combined iterations of Algorithm

SUPER2, the overall running time of Algorithm SUPER-FORBIDDEN is O(a).

7.5.2 Finding a weakly stable matching in SMTF

We now show that the problem of finding a weakly stable matching in an instance of

SMTF is NP-complete.

Theorem 7.5.3. Determining whether an instance of SMTF admits a weakly stable match-

ing is NP-complete.

Proof Clearly the problem of determining whether an instance of SMTF admits a weakly

stable matching is in NP. We transform from the special case of Maximum Cardinality

SMTI where the target is a complete matching [40]. Let I be an instance of Maximum

Cardinality SMTI, in which the set of men is X1 = {m1, ...,mn} and the set of women is
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Y1 = {w1, ..., wn}. We create an instance I ′ of SMTF as follows: let X = X1 ∪ {mn+1} be

the set of men in I ′ and let Y = Y1 ∪ {wn+1} be the set of women in I ′. The preference

lists in I ′ are as follows (where Pi and Qi denote the preference lists of mi and wi in I

respectively, and “−” in agent p’s list denotes all the agents on the opposite side who do

not appear explicitly elsewhere on p’s list, listed in arbitrary order):

mi : Pi wn+1 − (1 ≤ i ≤ n)

mn+1 : wn+1 −

wi : Qi mn+1 − (1 ≤ i ≤ n)

wn+1 : m1 m2 ... mn+1

Finally, F = {(mi, wn+1) : 1 ≤ i ≤ n}, where F is the set of forbidden pairs. We show

that I admits a complete weakly stable matching if and only if I ′ admits a weakly stable

matching.

Suppose I admits a complete weakly stable matching M . Then M ′ = M ∪{(mn+1, wn+1)}

is clearly weakly stable in I ′, and does not contain a forbidden pair.

Conversely, suppose I ′ admits a weakly stable matching M ′. Then (mn+1, wn+1) is in M ′.

Suppose mi is matched in M ′ with a woman wj such that wj 6∈ Pi for some 1 ≤ i ≤ n

and 1 ≤ j ≤ n. Then (mi, wn+1) blocks M ′, a contradiction. It follows that mi must be

matched in M ′ with a partner from Pi. Hence M ′ \ {(mn+1, wn+1} is a complete weakly

stable matching in I. The result follows.



Chapter 8

Master Lists

8.1 Introduction

In this chapter we still focus on weak stability, but we now address a special case of SMTI,

where every person in at least one set has a preference list which is a sublist of a fixed

complete ordering of the people in the other set. We call this complete ordering a master

list. We consider two cases: where there is a master list for both sides - Master List SMTI

or ML-SMTI; and where there is a master list for at least one side - Single Master List

SMTI or SML-SMTI. Such a situation could occur where, for example, students are ranked

by schools based on exam results, and the schools may or may not be ordered according

to national rankings. Thus ML-SMTI and SML-SMTI are versions of SMTI which could

occur in real-life situations. Additionally we study ML-SMT and SML-SMT, where every

agent has a complete preference list.

As well as different categories of instance, we study a number of different problems. We

start with a definition. A man minimum regret matching is a matching in which the regret

of the worst-off man is minimised. We denote by Egalitarian ML-SMT, (Man) Minimum

Regret ML-SMT, and Stable Pair of ML-SMT the problems of finding an egalitarian weakly

stable matching, finding a (man) minimum regret weakly stable matching and the problem

of determining whether a given pair is weakly stable in an instance of ML-SMT respectively.

Additionally the first two problems could also be framed in the context of SML-SMT,

while the third could also be framed in any of ML-SMTI, SML-SMT or SML-SMTI.

Finally we also study Maximum Cardinality ML-SMTI and Minimum Cardinality ML-

144
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SMTI, the problems of finding a maximum cardinality and minimum cardinality weakly

stable matching respectively in an instance of ML-SMTI, and the same problems in SML-

SMTI.

We show that, even with this additional restriction, the relevant problems in ML-SMTI

and SML-SMTI still remain hard, as they do in SML-SMT, except in the special cases of

Minimum Regret SML-SMT, where one side effectively becomes irrelevant anyway, and

the maximum and minimum cardinality problems. In the context of ML-SMT, on the

other hand, we show that all the above problems are solvable in polynomial-time, and

further we show that the set of weakly stable matchings for an instance of ML-SMT can

be generated with sublinear time between each matching. This is the first such algorithm

for any version of SMTI under weak stability, and is all the more interesting as it not

based on any of the usual techniques for solving stable marriage problems.

The NP-completeness, NP-hardness, and inapproximability results produced for SMT and

SMTI characterise the restrictions on the instances in terms of the preference lists of

individual agents (see, for example, the first paragraph of Chapter 7). For instances of

SML-SMT(I), we continue to characterise the restrictions on the agents on the side for

whom the preference lists are not sublists of a master list in these terms, but for the other

side, and for instances of ML-SMT(I), we shall characterise the restrictions in terms of

the master list. We do this because, in any practical setting, it is unlikely that agents

whose preference lists are sublists of a master list will be required to select an acceptable

subset of the other agents in a way that conforms to a particular pattern. We do, however,

highlight cases where these agents have lists of constant length.

In Sections 8.2 and 8.3 we present a number of NP-completeness and inapproximability

results for Maximum Cardinality ML-SMTI and SML-SMTI. These results build on results

from [40] and [16]. In Section 8.4, we show that Egalitarian ML-SMT can be solved in O(n)

time, for an instance of size n, while in contrast Egalitarian SML-SMT is NP-complete,

even if the master list is strict. In Section 8.5 we show that Minimum Regret ML-SMT

can be solved in O(n) time, for an instance of size n (i.e., with n men), and Minimum

Regret SML-SMT can be solved in O(n2) time, for an instance of size n, if there is no tie

at the tail of the master list. By contrast, we show that Minimum Regret SML-SMT is

NP-complete if there is a tie at the tail of the master list, even if there are no ties on the

other side, and Man Minimum Regret SML-SMT is NP-complete if the master list is of
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men, even if it is strictly ordered. In Section 8.6, we show that Stable Pair of ML-SMTI

is NP-complete, even if there are ties in only one of the master lists, and that SML-SMT

is NP-complete, even if the master list is strict. By contrast, we show that Stable Pair of

ML-SMT can be solved in O(n) time for an instance of size n. Additionally, we show that

we can find all s stable pairs in an instance of ML-SMT of size n in O(n + s) time. In the

final section, Section 8.7, we show that we can generate all k weakly stable matchings for

an instance I of ML-SMT in O(log(n)k) time, where I is of size n.

Note that the NP-completeness and NP-hardness results hold by restriction for the equiv-

alent master list versions of HRT, SRT(I) and SFT.

Throughout this chapter, [A] denotes the agents in set A listed in arbitrary strict order,

and “−” in agent p’s list denotes all the agents on the opposite side who do not appear

explicitly elsewhere on p’s list, listed in arbitrary strict order. As ever, ties are represented

by parentheses and, whenever ties are involved, stable means weakly stable.

Note that a number of the NP-completeness proofs in this chapter extend historical results.

In most instances the proofs of these results are long, and so we do not include in full the

established details, except where necessary for a complete understanding of the extension.

8.2 Maximum Cardinality ML-SMTI

We start by demonstrating the NP-completeness of Maximum Cardinality ML-SMTI, even

if the ties occur on one side only. To do this, we show that the transformation of Lemma

1 of [40] can have master lists imposed directly. A subdivision graph of a graph G∗ is

obtained from G∗ by replacing every edge in G∗ with a path of length 2. Exact Maximal

Matching is the problem of finding a maximal matching of a specified size in a given graph.

Note that the following result is used, in Theorem 8.2.2, to obtain an even stronger result.

Lemma 8.2.1. Maximum Cardinality ML-SMTI is NP-complete, even if the ties occur in

one master list only.

Proof Clearly Maximum Cardinality ML-SMTI is in NP. We transform from Exact

Maximal Matching for subdivision graphs, which is NP-complete [19]1. Let G = (V,E) be

1In fact Horton and Kilakos proved that Minimum Edge Dominating set, which is known to be poly-

nomially equivalent to Minimum Maximal Matching, is NP-complete. Minimum Edge Dominating set is
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the graph for an instance of Exact Maximal Matching for subdivision graphs. Then G is a

bipartite graph with vertex sets V1 ⊆ V and V2 ⊆ V , and every vertex in V1 has degree 2.

We may assume, without loss of generality, that |V1| = |V2| = n and that K ≤ n, where K

is the size of the target matching (see Lemma 1 of [40] for details). Let V1 = {m1, ...,mn}

and let V2 = {w1, ..., wn}. We construct an instance I of Maximum Cardinality ML-SMTI

as follows: let V1∪V ′
1 ∪X be the set of men in I, and let V2∪Y ∪Z be the set of women in

I, where V ′
1 = {m′

1, ...,m
′
n}, X = {x1, ..., xn−K}, Y = {y1, ..., yn} and Z = {z1, ..., zn−K}.

For each vertex mi ∈ V1, there are two edges incident on mi. Let {mi, wji
} and {mi, wki

}

be those two edges, and assume ji < ki (1 ≤ i ≤ n). For each woman wj ∈ V2, let

Mj = {mi : {mi, wj} ∈ E}, and let M ′
j = {mi : {mi, wj} ∈ E ∧ j = ki}. The preference

lists of the agents in I are as follows:

mi : yi wji
wki

z1 z2...zn−K (1 ≤ i ≤ n)

m′
i : yi wki

(1 ≤ i ≤ n)

xi : w1 w2...wn (1 ≤ i ≤ n − K)

wj : (Mj ∪ M ′
j) (x1...xn−K) (1 ≤ j ≤ n)

yj : (mj m′
j) (1 ≤ j ≤ n)

zj : (m1...mn) (1 ≤ j ≤ n − K)

It is straightforward to verify that

(m1 m2...mn m′
1 m′

2...m
′
n) (x1 x2...xn−K)

is a master list of the men in I, and

y1 y2...yn w1 w2...wn z1 z2...zn−K

is a master list of the women in I. Clearly there are ties in only one master list. We set

a target value of K ′ = 3n − K. Lemma 1 of [40] establishes that I has a stable matching

of size K ′ if and only if G has a maximal matching of size K. The result for Maximum

Cardinality ML-SMTI follows.

the problem of determining, for a given graph G = (V, E) and a positive integer K, whether there is a

set S of edges of size at most K such that every edge in E \ S is adjacent to some edge in S. There is a

straightforward polynomial-time reduction from Minimum Maximal Matching to Exact Maximal Matching.
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Note that the above result proves that the special case of Maximum Cardinality ML-SMTI

in which the target is a complete stable matching is NP-complete, even if the ties occur

in one master list only. We shall call this problem Complete ML-SMTI. For a number of

transformations in succeeding sections, we wish to use as our starting point Complete SML-

SMTI, the problem of finding a complete stable matching in an instance of SML-SMTI.

This problem is a generalisation of Complete ML-SMTI, and so must be NP-complete, by

Lemma 8.2.1. In addition, since Complete ML-SMTI is NP-complete even if the ties occur

in one master list only, Complete SML-SMTI is NP-complete both when there are ties in

the master list only, and when the master list is strictly ordered, but there are ties in the

lists on the other side. We will make use of both of these cases in later results.

Let I be the instance of SMTI from Lemma 8.2.1. If we add a new man aj to the end of

the list of every woman ej ∈ Y ∪Z in I, and in addition create a new man bj, and women

cj and dj with lists as follows:

aj : cj dj ej

bj : cj dj

cj : aj bj

dj : aj bj

then it can be verified that this new instance has ties on the women’s side only, and each

woman has exactly two ties on her list (where a tie may be of length 1). Further, by adding

all the cj and then all the dj to the head of the master list of women, and appending all

the aj and then all the bj to the end of the master list of men, it can be shown that all the

preference lists in this new instance are sublists of these extended master lists. Finally,

consider the proof of Lemma 1 in [40]. Clearly (aj , cj) ∈ M , and (bj , dj) ∈ M for any

stable matching M in this new instance, hence this restriction of Maximum Cardinality

SMTI is NP-complete. We use this restriction for the transformation in the next theorem.

Note that the transformation is similar to that of Theorem 2 of [40].

Theorem 8.2.2. Maximum Cardinality ML-SMTI is NP-complete, even if the ties occur

in one master list only, and are of length 2.

Proof Clearly Maximum Cardinality ML-SMTI is in NP. We transform from the version

of Maximum Cardinality ML-SMTI described above, where the target value is the number
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of men in the instance. Let I be an instance of the aforementioned problem, let U =

{m1, ...,mn} be the set of men in I, let W = {w1, ..., wn} be the set of women in I, with

master list w1 w2 ... wn. Recall that every woman has exactly two ties on her list, and a tie

can be of length 1. For each woman wj ∈ W , Mh
j = {mi ∈ U : mi ∈ first tie on list of wj}

and M t
j = {mi ∈ U : mi ∈ second tie on list of wj}. Let Mh

j = {mkj ,1, ...,mkj ,hj
} and

let M t
j = {mlj ,1, ...,mlj ,tj} for some hj , tj > 0. We form an instance I ′ of Maximum

Cardinality ML-SMTI as follows: let U∪
⋃n

i=1 Xi be the set of men in I ′, and let
⋃n

j=1 Wj∪
⋃n

j=1 Yj be the set of women in I ′, where

Wj = {wj,r : 1 ≤ r ≤ hj + tj} (1 ≤ j ≤ n)

Xi = {xi,r : 1 ≤ r ≤ hi + ti} (1 ≤ j ≤ n)

Yj = {yj,r : 1 ≤ r ≤ hj + tj} (1 ≤ j ≤ n).

Finally let W t
j =

⋃hj+tj
r=hj+1{wj,r}. The preference lists in I ′ are formed as follows: each

man mi ∈ U starts with his preference list from I. For each woman wj on mi’s list in I,

if mi ∈ Mh
j then mi = mkj ,a for some a (1 ≤ a ≤ hj), while if mi ∈ M t

j then mi = mlj ,b

for some b (1 ≤ b ≤ tj). In the former case we replace wj by the women in W t
j ∪ {wj,a}

in strict subscript order, while in the latter case we replace wj by wj,b+hj
. The remaining

preference lists are as follows:

xi,r : (wi,r yi,r) (1 ≤ i ≤ n) (1 ≤ r ≤ hi + ti)

wj,r : xj,r mkj ,r (1 ≤ j ≤ n) (1 ≤ r ≤ hj)

wj,r+hj
: xj,r+hj

mkj ,1 mkj ,2...mkj ,hj
mlj ,r (1 ≤ j ≤ n) (1 ≤ r ≤ tj)

yj,r : xj,r (1 ≤ j ≤ n) (1 ≤ r ≤ hj + tj)

Assume
⋃n

j=1 Mh
j = {ma1 ,ma2 , ,mac} and

⋃n
j=1 M t

j = {mb1 ,mb2 , ,mbd
}. Let the men in

Mh
j be ordered such that if mkj ,p = mar and mkj ,q = mas then p < q if and only if r < s.

Then it is straightforward to verify that
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x1,1 x1,2...x1,h1+t1 x2,1...xn,hn+tn

ma1 ma2 ...mac mb1 mb2 ...mbd

is a master list of the men in I ′, and

(w1,1 y1,1) (w1,2 y1,2)...(w1,h1+t1 y1,h1+t1) (w2,1 y2,1)...(wn,hn+tn yn,hn+tn)

is a master list of the women in I ′. Clearly there are ties in only one master list, they are

of length 2, and any individual list has at most one tie and it occurs at the end of the list.

We show that I ′ has a stable matching in which all the men are matched if and only if I

does.

Suppose I has such a matching M . We construct a matching M ′ exactly as in Theorem

2 of [40], except that, where the pair (xj,a, yj) is added to M ′ in that theorem, we add

(xj,a, yj,a). It is clear that all the men in I ′ are matched in M ′, hence any blocking pair

for M ′ must be of the form (mi, wj,a). The rest of the proof is exactly as in Theorem 2

of [40].

We now give an inapproximability result. We show it is NP-hard to approximate Maxi-

mum Cardinality ML-SMTI within δ, for some δ < 1, even if the preference lists in the

given instance are of constant length and there is only one tie in each master list. The

transformation is similar to that of Theorem 6 of [16].

Theorem 8.2.3. It is NP-hard to approximate Maximum Cardinality ML-SMTI within

δ, for some δ < 1. The result holds even if the preference lists in the given instance are of

constant length and there is only one tie in each master list.

Proof We transform from Minimum Maximal Matching for subdivision graphs of cubic

graphs, which is NP-complete [19]. Let G = (V,E) be the subdivision graph of some cubic

graph for an instance of Minimum Maximal Matching. Then G is a bipartite graph with

vertex sets V1 ⊆ V and V2 ⊆ V , every vertex in V1 has degree 3 and every vertex in V2

has degree 2. Let V1 = {m1, ...,ms} and let V2 = {w1, ..., wt}. For each vertex mi ∈ V1,

there are three edges incident on mi. Let {mi, wk3i−2
}, {mi, wk3i−1

} and {mi, wk3i
} be

those edges, and let Wi = {wk3i−2
, wk3i−1

, wk3i
}. For each vertex wj ∈ V2, there are two
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edges incident on wj . Let {mpj
, wj} and {mqj

, wj} be those two edges, and assume pj < qj

(1 ≤ j ≤ t). We construct an instance I of Maximum Cardinality SML-SMTI as follows:

let V1 ∪ X ∪ Z be the set of men in I, and let V2 ∪ V ′
2 ∪ Y be the set of women, where

X = {x1, ..., xt}, Z = {z1, ..., zt}, V ′
2 = {w′

1, ..., w
′
t}, and Y = {y1, ..., ys}. Further, let

W ′
i = {w′

k3i−2
, w′

k3i−1
, w′

k3i
} (1 ≤ i ≤ s). The preference lists in I are as follows:

mi : (Wi ∪ W ′
i ) yi (1 ≤ i ≤ s)

xi : wi (1 ≤ i ≤ t)

zi : (wi w′
i) (1 ≤ i ≤ t)

wj : zj (mpj
mqj

) xj (1 ≤ j ≤ t)

w′
j : zj (mpj

mqj
) (1 ≤ j ≤ t)

yj : mj (1 ≤ j ≤ s)

It is straightforward to verify that

z1 z2...zt (m1...ms) x1 x2...xt

is a master list of the men, and

(w1 w2...wt w′
1 w′

2...w
′
t) y1 y2...ys

is a master list of the women in I. Theorem 6 of [16] shows that if G has a maximal

matching of size β−
1 (G)2, a maximum cardinality stable matching in I has size s + 2t −

β−
1 (G). For the proof that a maximum cardinality stable matching has size at most

s + 2t + β−
1 (G), it can be verified that the changes to the lists of wj and w′

j do not

invalidate the proof, because no strict preferences have been added to the instance. For

the reverse proof, the blocking pairs that are constructed involve either wj or w′
j being

unmatched. In each case the changes to the lists of wj and w′
j do not invalidate the proof.

The result then follows from the final paragraphs of Theorem 6, and from Theorem 1 and

Proposition 4 of [16].

2Here we use the notation of Theorem 6 of [16] for ease of reference.
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8.3 Minimum Cardinality ML-SMTI

In this section we switch our attention to Minimum Cardinality ML-SMTI.

Theorem 8.3.1. It is NP-hard to approximate Minimum Cardinality SML-SMTI within

δ, for some δ > 1. The result holds even if the preference lists in the given instance are of

constant length and the only tie is at the tail of the master list.

Proof The construction is as for Theorem 8.2.3, except that the people in X ∪ Y are

not included. Theorem 7 of [16] shows that if G has a maximal matching of size β−
1 (G),

a minimum cardinality stable matching in I has size t + β−
1 (G). For the proof that

a maximum cardinality stable matching has size at most t + β−
1 (G), it can be verified

that the changes to the lists of wj and w′
j do not invalidate the proof, because no strict

preferences have been added to the instance. For the reverse proof, the blocking pairs that

are constructed involve either wj or w′
j being unmatched. In each case the changes to the

lists of wj and w′
j clearly do not invalidate the proof.

It remains open as to whether Minimum Cardinality ML-SMTI is NP-complete if the ties

occur in one master list only, and are of length 2. Minimum Cardinality SMTI is NP-

complete, even if the ties occur at the tails of the lists and are on one side only, there is at

most one tie per list, and each tie is of length 2 [40], but the proof of that result cannot

be directly extended to ML-SMTI.

8.4 Egalitarian ML-SMT

We now show that Egalitarian ML-SMT can be solved in linear time, but Egalitarian

SML-SMT is NP-complete, even if the master list is strict.

Theorem 8.4.1. Egalitarian ML-SMT can be solved in O(n) time, for an instance I of

size n.

Proof For every position i on one master list, some person from the other master list

must be matched with the person at position i. Thus every stable matching for I must

have the same weight.
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Break the ties on the master lists arbitrarily, and match the man at position i on the

master list of men with the woman at position i on the master list of women. Clearly this

matching must be stable, and can be found in O(n) time. By the foregoing it is also an

egalitarian stable matching, and the result follows.

Theorem 8.4.2. Egalitarian SML-SMT is NP-complete.

Proof Clearly Egalitarian SML-SMT is in NP. We transform from Complete SML-SMTI.

Let I be an instance of Complete SML-SMTI where there is a master Lm list of the men.

Let U = {m1, ...,mn} and V = {w1, ..., wn} be the sets of men and women in I respectively,

and let Pi be the preference list of mi in I. We construct an instance I ′ of Egalitarian

SML-SMT as follows: the set of men in I ′ is U ∪ X where X = {m′
1, ...,m

′
n2}; the set of

women in I ′ is V ∪ Y , where Y = {w′
1, ..., w

′
n2}. The preference lists for the men are as

follows:

mi : Pj [Y ] − (1 ≤ i ≤ n)

m′
i : w′

i − (1 ≤ i ≤ n2)

while the master list of men becomes:

L′
m : m′

1...m
′
n2 Lm

We give all women the same list, namely L′
m, so all lists are complete. Note also that there

are the same number of men and women in I ′, so every person must be matched in every

stable matching in I ′. We show that I admits a complete stable matching if and only if I ′

has a stable matching M ′ where the weight of M ′, w(M ′), is at most (n2+n)(n2+n+1)
2 +2n2.

Suppose I admits a complete stable matching M . We create a matching M ′ = M ∪
⋃j

i=1(m
′
i, w

′
i) in I ′. Clearly no man in X can be involved in a blocking pair for M ′.

Suppose (mj , wl) blocks M ′. Since every woman wk on Pj who strictly precedes pM (mj)

is on the list of mj in I, mj is on the list of wk in I. It follows that (mj , wl) blocks

M , a contradiction. Hence M ′ is stable. Each of the n2 men in X contributes 1 to

the weight of M ′, while each of the n men in U contributes at most n to the weight

of M ′. Finally, there are n2 + n women in I ′, so in the worst case, where there are no
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ties in L′
m, the women contribute (n2+n)(n2+n+1)

2 to the weight of M ′. It follows that

w(M ′) ≤ (n2+n)(n2+n+1)
2 + 2n2.

Now suppose I does not admit a complete stable matching. Let M ′ be an arbitrary

stable matching in I ′. Then there is some man mj who is not matched with a woman

from Pj . Suppose mj is matched with a woman w′
i ∈ Y . Then (m′

i, w
′
i) blocks M ′, a

contradiction. Hence mj must contribute at least n2 + 2 to the weight of M ′. Each of

the remaining n2 + n − 1 men must contribute at least 1 to the weight of M ′. Thus

w(M ′) ≥ (n2+n)(n2+n+1)
2 + 2n2 + n + 1. Since 2n2 + n + 1 > 2n2 for all n, the result

follows.

Recall that Complete ML-SMTI is NP-complete even if the ties are on one side only.

Complete SML-SMTI is a generalisation of this problem regardless of which side the ties

are on. It is therefore clear that the above proof holds if there are ties in the master list

only, or if there are ties only in the lists on the other side, with only minor adaptations in

the former case.

It remains open as to whether Egalitarian SML-SMT is NP-hard to approximate. Egali-

tarian SMT is NP-hard to approximate within δn, for some δ > 0, where n is the number

of men in the given instance [16], but the proof of that result cannot be readily extended

to SML-SMT. Egalitarian SMT is not approximable within N 1−ε, unless P=NP, for any

ε > 0, where N is the number of men in a given instance of the problem, even if the ties

are on one side only and of length 2 [40], but again the proof of that result cannot be

readily extended to SML-SMT. Indeed, in an instance of Egalitarian SML-SMT of size n

in which the master list is strict it is the case that, for any stable matching M ,

1

2
n2 +

3

2
n = n +

n(n + 1)

2
≤ w(M) ≤ n2 +

n(n + 1)

2
=

3

2
n2 +

1

2
n.

Hence Egalitarian SML-SMT is approximable within a factor of 3 when the master list is

strict.

8.5 Minimum Regret problems

First, we document two solvable variants of Minimum Regret (S)ML-SMT.
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Theorem 8.5.1. Minimum Regret ML-SMT can be solved in O(n) time, for an instance

of size n.

Proof Since every person must be matched in every stable matching, it follows that

the members of the final ties on the two master lists must be matched in every stable

matching. Thus every stable matching must have the same regret. Break the ties on the

master lists arbitrarily, and match the man at position i on the resolved master list of men

with the woman at position i on the resolved master list of women. Clearly this matching

must be stable, can be found in O(n) time, and is of minimum regret, by the foregoing

argument.

Theorem 8.5.2. Minimum Regret SML-SMT can be solved in O(n2) time, if there is no

tie at the tail of the master list, for an instance of size n.

Proof Every person must be matched in every stable matching. Since there is a unique

person at the end of the master list, their partner must have regret n in every stable

matching. Break all the ties arbitrarily and find a stable matching for the derived instance

of SM. This matching must be stable in the initial instance, and can be found in O(n2)

time.

So, when the master list has no tie at the tail, Minimum Regret SML-SMT can be solved

in time linear in the input size. However, if there is a tie at the tail of the master list, we

show that this problem is NP-complete, even if there are no ties on the other side.

Theorem 8.5.3. Minimum Regret SML-SMT is NP-complete if there is a tie t the tail of

the master list, even if there are no ties in the lists on the other side.

Proof Clearly Minimum Regret SML-SMT is in NP. To show the problem is NP-hard,

we transform from Complete SML-SMTI. Recall that the latter problem is NP-complete

even when the ties are on one side only. Here we assume that there is a master list of the

men, Lm say, and there are no ties in the lists on the other side. Let I be an instance

of Complete SML-SMTI, and let Lm be the master list of men. Let U = {m1, ...,mn}

and V = {w1, ..., wn} be the sets of men and women in I respectively, and let Pi be the

preference list of mi in I. We construct an instance I ′ of Minimum Regret SML-SMT as

follows: let M j = {mj
1, ...,m

j
n} (1 ≤ j ≤ n+1), and let W j = {wj

1, ..., w
j
n} (1 ≤ j ≤ n+1).

Then the set of men in I ′ is U ∪
⋃n+1

j=1 M j, and the set of women in I ′ is V ∪
⋃n+1

j=1 W j.
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The preference lists for the men are as follows (where P j
i is the list obtained by replacing

w ∈ Pi with wj):

mi : Pi − (1 ≤ i ≤ n)

mj
i : P j

i w1...wn − (1 ≤ i ≤ n) (1 ≤ j ≤ n + 1)

while the master list of men becomes:

L′
m : Lm(

n+1⋃

j=1

M j)

We give all women the same list, namely L′
m, so all lists are complete. Further, there are

no ties in the men’s lists. Note also that there are the same number of men and women

in I ′, so every person must be matched in every stable matching in I ′. We show that I

admits a complete stable matching if and only if I ′ has a stable matching of regret at most

n + 1.

Suppose I admits a complete stable matching M . We construct a matching M ′ in I ′ as

follows: suppose, without loss of generality, that wi = pM (mi). For each man mi we add

(mi, wi) to M ′ (1 ≤ i ≤ n). For each man mj
i , we add (mj

i , w
j
i ) to M ′. Clearly any blocking

pair for M ′ is of the form (mi, wk). Since every woman on Pi who strictly precedes pM(mi)

is on the list of mi in I, mi is on the list of wk in I. It follows that (mi, wk) blocks M ,

a contradiction. Hence M ′ is stable. Finally, every man has a partner in M from among

the first n women in his list, and so has regret at most n. It follows that the regret of M ′

is n + 1.

Now suppose I does not admit a complete stable matching. Let M ′ be an arbitrary stable

matching in I ′. Then, for every j (1 ≤ j ≤ n + 1), there is some mj
i who is not matched

with a woman from P j
i . Thus there are at least n+1 men mj

i who are not matched with a

woman from P j
i . At best n of these men are matched in M ′ with one of the next n women

on their list, since w1,...,wn are the next n women on the lists of every one of these men.

Thus there is some man mj
i ∈ M j for some 1 ≤ i ≤ n and 1 ≤ j ≤ n + 1 who is matched

in M ′ with a woman who appears after wn in his list. But then, since P j
i has length at

least 1, mi has regret at least n + 2, and the result follows.

We are left with one case to consider. If the master list is of men, then can we efficiently
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find a man minimum regret stable matching? The following result shows that this problem

is NP-hard, even if the master list is strictly ordered.

Theorem 8.5.4. Man Minimum Regret SML-SMT is NP-complete if the master list is of

men, even if it is strictly ordered.

Proof Clearly Man Minimum Regret SML-SMT is in NP. To show the problem is NP-

hard, we transform from Complete SML-SMTI. Recall that the latter problem is NP-

complete even when the ties are on one side only. Here we assume that there is a master

list of the men, Lm say, and the master list is strictly ordered. Let I be an instance

of Complete SML-SMTI, and let Lm be the master list of men. Let U = {m1, ...,mn}

and V = {w1, ..., wn} be the sets of men and women in I respectively, and let Pi be the

preference list of mi in I. We construct an instance I ′ of Man Minimum Regret SML-SMT

as follows: the set of men in I ′ is U ∪ U ′, and the set of women in I ′ is V ∪ V ′, where

U ′ = {m′
1, ...,m

′
n} and V ′ = {w′

1, ..., w
′
n}. The preference lists for the men are as follows:

mi : Pi w′
1...w

′
n − (1 ≤ i ≤ n)

m′
i : w′

i − (1 ≤ i ≤ n)

while the master list of men becomes:

L′
m : m′

1 m′
2...m

′
n Lm

We give all women the same list, namely L′
m, so all lists are complete. Further, there are

no ties in the master list. Note also that there are the same number of men and women

in I ′, so every person must be matched in every stable matching in I ′. We show that I

admits a complete stable matching if and only if I ′ has a stable matching in which no man

has regret greater than n.

Suppose I admits a complete stable matching M . Let M ′ = M ∪
⋃n

i=1(m
′
i, w

′
i). Clearly no

man from U ′ can be in a blocking pair. Suppose, without loss of generality, that (mi, wj)

(1 ≤ i, j ≤ n) blocks M ′. Then clearly (mi, wj) blocks M , a contradiction. Finally, it is

clear that no man has regret greater than n.

Now suppose I does not admit a complete stable matching. Let M ′ be an arbitrary stable

matching in I ′. Then some man mi (1 ≤ i ≤ n) must be matched with a woman who is not
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in Pi. Suppose mi is matched with a woman from V ′, w′
j say. Then (m′

j , w
′
j) blocks M ′, a

contradiction. Thus mi must be matched with a woman from V who does not appear in

Pi, and so mi has regret at least n + 2, since Pi must have length at least 1. The result

follows.

It remains open as to whether Minimum Regret SML-SMT is NP-hard to approximate.

Minimum Regret SMT is NP-hard to approximate within δn, for some δ > 0, where n is

the number of men in the given instance [16], but the proof of that result cannot be readily

extended to SML-SMT. Minimum Regret SMT is not approximable within N 1−ε, unless

P=NP, for any ε > 0, where N is the number of men in a given instance of the problem,

even if the ties are on one side only and of length 2 [40], but again the proof of that result

cannot be readily extended to SML-SMT.

8.6 Stable Pair problems

We start with two NP-completeness proofs, before showing that some versions of the Stable

Pair problem are solvable. First we consider Stable Pair of ML-SMTI, then we consider

Stable Pair of SML-SMT.

Theorem 8.6.1. Stable Pair of ML-SMTI is NP-complete, even if there are ties in only

one of the master lists.

Proof Clearly Stable Pair of ML-SMTI is in NP. To show the problem is NP-hard, we

transform from Complete ML-SMTI. Let I be an instance of Complete ML-SMTI, and let

Lm and Lw be the master lists of the men and women respectively. Recall that Complete

ML-SMTI is NP-complete even if the ties are on one side only, so we additionally assume

there are no ties on the men’s side. Let U = {m1, ...,mn} and V = {w1, ..., wn} be the sets

of men and women in I respectively, and let Pi and Qi be the preference lists of mi and

wi in I respectively. We construct an instance I ′ of Stable Pair of ML-SMTI as follows:

the set of men in I ′ is {m0} ∪ U , and the set of women in I ′ is {w0} ∪ V . The preference

lists for each person are as follows:



CHAPTER 8. MASTER LISTS 159

m0 : Lw w0

mi : Pi w0 (1 ≤ i ≤ n)

w0 : Lm m0

wi : Qi m0 (1 ≤ i ≤ n)

and the master lists are

L′
m : Lm m0

L′
w : Lw w0

Clearly there are no ties in the men’s lists. We show that I admits a complete stable

matching if and only if I ′ has a stable matching M ′ containing (m0, w0).

Suppose I admits a complete stable matching M . We define a matching M ′ = M ∪

{(m0, w0)} in I ′. Any pair (mi, wj) (i, j 6= 0) blocking M ′ must also block M , a contra-

diction. Finally, every man mi 6= m0 prefers his partner in M ′ to w0, and every woman

wi 6= w0 prefers her partner in M ′ to m0, so M ′ is stable.

Now suppose I does not admit a complete stable matching. Let M ′ be an arbitrary stable

matching in I ′ containing (m0, w0). Then there is at least one man mi in M ′ who is not

matched to a woman from Pi. Since mi is not matched with w0, he is unmatched in

M ′. Then w0 prefers mi to m0, her partner in M ′, and (mi, w0) blocks M ′. The result

follows.

Theorem 8.6.2. Stable Pair of SML-SMT is NP-complete.

Proof Clearly Stable Pair of SML-SMT is in NP. To show the problem is NP-hard, we

transform from Complete SML-SMTI. Let I be an instance of Complete SML-SMTI where

there is a master list Lm of the men. Let U = {m1, ...,mn} and V = {w1, ..., wn} be the

sets of men and women in I respectively, and let Pi be the preference list of mi in I. We

construct an instance I ′ of Stable Pair of SML-SMT as follows: the set of men in I ′ is

{m0} ∪U , and the set of women in I ′ is {w0} ∪ V . The preference lists for the men are as

follows:
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m0 : − w0

mi : Pi w0 − (1 ≤ i ≤ n)

while the master list of men becomes:

L′
m : Lm m0

We give every woman a complete list, namely L′
m, so all lists are complete. Note also that

there are the same number of men and women in I ′, so every person must be matched in

every stable matching in I ′. We show that I admits a complete stable matching if and

only if I ′ has a stable matching M ′ containing (m0, w0).

Suppose I admits a complete stable matching M . We define a matching M ′ = M ∪

{(m0, w0)} in I ′. Suppose (mi, wj) (i, j 6= 0) blocks M ′. Then mi prefers wj to pM ′(mi) =

pM (mi), hence wj appears on Pi and mi appears on the list of wj in I. Since wj prefers mi

to pM ′(wj) = pM (wj), it follows that (mi, wj) blocks M , a contradiction. Finally, every

man mi 6= m0 prefers his partner in M ′ to w0, and every woman wi 6= w0 prefers her

partner in M ′ to m0, so M ′ is stable.

Now suppose I does not admit a complete stable matching. Let M ′ be an arbitrary stable

matching in I ′ containing (m0, w0). Then there is at least one man mi in M ′ who is

matched to a woman who is not in Pi. Since mi is not matched with w0, he prefers w0 to

his partner in M ′. Clearly w0 prefers mi to her partner in M ′, so (mi, w0) blocks M ′, a

contradiction. The result follows.

Recall that Complete ML-SMTI is NP-complete even if the ties are on one side only. It

is therefore clear that the above proof holds if there are ties in the master list only, or if

there are only ties in the lists on the other side.

We now show that Stable Pair of ML-SMT can be solved in linear time, and that we can

find all the stable pairs in time linear in the number of such pairs and the size of the

instance. Let Lm and Lw be the master lists for a given instance of ML-SMT. Henceforth

we assume, without loss of generality, that the men on Lm are indexed so that man mi

appears before man mj if and only if i < j, and similarly for the women on Lw. Note that

this includes agents within the same tie. We say that a tie tm ∈ Lm overlaps a tie tw ∈ Lw
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if and only if there is some i such that mi ∈ tm and wi ∈ tw, and for every such i we say

that mi and wi are in the overlap between tm and tw.

Lemma 8.6.3. Let I be an instance of ML-SMT. The pair (m,w) is a stable pair in I if

and only if the master lists can be resolved so that m and w occupy the same position in

their respective master lists.

Proof Suppose the master lists can be resolved so that m and w occupy the same position

in their respective master lists. Then we match the man at position i with the woman at

position i (1 ≤ i ≤ n), where n is the size of the instance. Clearly this matching is stable.

Conversely, suppose the master lists cannot be resolved so that m and w occupy the same

position in their respective master lists. Suppose M is a stable matching containing (m,w),

and suppose, without loss of generality, that w occupies a lower position in m’s list than

m does in w’s, regardless of how the ties are resolved. Resolve the ties in the master list

of women so that w is preferred to every woman with whom she is tied, and resolve the

tie in the master list of men so that every man with whom m is tied is preferred to m. Let

W be the set of women who are strictly better than w. Then, if w occupies position i and

m occupies position j, we have i > j and |W | = i − 1. Hence there is at least one women

w′ ∈ W such that w′ is matched in M with a man who is strictly worse than m. It follows

that w′ prefers m to pM(w′). But, by definition of W , m prefers w′ to w = pM (m), and

so (m,w′) blocks M , a contradiction.

Theorem 8.6.4. Stable Pair of ML-SMT can be solved in O(n) time.

Proof By Lemma 8.6.3, a given pair (m,w) is stable if and only if the master lists can

be resolved so that m and w occupy the same position in their respective master lists.

We can find m on the master list of men and ascertain the extent of the tie in which m

appears in O(n) time, and similarly for w. Then, if there is an overlap between these ties,

which can be ascertained in constant time, (m,w) is a stable pair, otherwise it is not.

Theorem 8.6.5. For an instance I of ML-SMT we can find all the stable pairs in O(n+s)

time, where s is the number of stable pairs.

Proof Let Lm and Lw be the master lists for I. By Lemma 8.6.3, a given pair (m,w)

is stable if and only if the master lists can be resolved so that m and w occupy the same
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position in their respective master lists. Consider a tie t ∈ Lm. We can find the stable

partners of each man in t as follows: let j1 = min{l : ml ∈ t}, and let k1 = max{l :

ml ∈ t}. Let t1 ∈ Lw be such that wj1 ∈ t1, and let t2 ∈ Lw be such that wk1 ∈ t2.

Let j2 = min{l : wl ∈ t1}, and let k2 = max{l : wl ∈ t2}. Then the stable partners of

the men in t are wj2 , ..., wk2 . Finding j1 and k1 takes O(|t|) time, while finding j2 and k2

takes O(s1) time, where s1 is the number of stable partners of the men in t. If we repeat

this process for every tie in Lm then clearly we can find all the stable pairs in O(n + s)

time.

8.7 Generation of all stable matchings for an instance of

ML-SMT

We complete this chapter by showing that we can find all the weakly stable matchings

for an instance I of ML-SMT, with sublinear time between the generation of successive

matchings. As noted in Section 8.1, ML-SMT is the first version of SMTI for which we

can generate the stable matchings in time polynomial in the number of such matchings.

Let I be an instance of ML-SMT of size n, and let U = {m1, ...,mn} and V = {w1, ..., wn}

be the set of men and women in I respectively. By Theorem 8.6.5, we can list the stable

pairs for I in O(n+s) time, where s is the number of stable pairs. We construct a bipartite

graph GI , the matching graph, as follows. The set of vertices in GI is U ∪ V , and there

is an edge from mi ∈ U to wj ∈ V if and only if wj is a stable partner of mi. This

construction takes O(n + s) time. We show that there is a one-to-one correspondence

between the perfect matchings in GI and the stable matchings for I.

Lemma 8.7.1. Let I be an instance of ML-SMT. Then there is a one-to-one correspon-

dence between the perfect matchings in the matching graph GI and the stable matchings

for I.

Proof Let M = {(m1, wk1), ..., (mn, wkn
)} be a stable matching for I. Then there is an

edge in GI from mi to wki
(1 ≤ i ≤ n), and, by the definition of a matching, wki

6= wkj

(i 6= j). Hence there is a perfect matching in G corresponding to M .

Conversely, let M = {(m1, wk1), ..., (mn, wkn
)} be a perfect matching in GI , and suppose

M is not stable. Let (m,w) be a blocking pair for M . Then w prefers m to pM (w), so



CHAPTER 8. MASTER LISTS 163

m appears before pM (w) on the master list of men. Since (m, pM (m)) ∈ M , the tie on

the master list of men containing m must overlap with that on the master list of women

containing pM(m), by Lemma 8.6.3. Similarly, m prefers w to pM(m), so w appears before

pM (m) on the master list of women. Since (pM (w), w) ∈ M , the tie on the master list of

women containing w must overlap with that on the master list of men containing pM (w),

by Lemma 8.6.3. It is clear that at most three of these four conditions can be satisfied, a

contradiction. The result follows.

Uno [53] gives an algorithm which, given an initial perfect matching in a bipartite graph

G, can generate all k perfect matchings for G in O(k log |V |) time. By Lemma 8.6.3,

the matching produced by breaking the ties on the two master lists arbitrarily, and then

matching the man at position i with the woman at position i, for each 1 ≤ i ≤ n, is weakly

stable, and can be produced in O(n) time. Then, using Uno’s algorithm, the rest of the

perfect matchings in GI can be generated in O(log n) time per matching, giving overall

complexity O(n+ s+k log n) to generate the k prefect matchings in GI which, by Lemma

8.7.1 are exactly the weakly stable matchings for I. Thus we get the following theorem.

Theorem 8.7.2. Let I be an instance of ML-SMT of size n. Then we can generate all

the weakly stable matchings for I in O(n + s + log(n)k) time, where k is the number of

such matchings, and s is the number of stable pairs in I.



Chapter 9

Open Problems

9.1 Introduction

The original work in this thesis can be divided into two broad strands. In Chapters 2, 3,

4 and 5 we have presented algorithms for determining whether there is a matching which

satisfies one of the four stability criteria, and if there is the algorithms output one. On

the other hand, in Chapters 6, 7 and 8 we have presented results relating to the structure

of particular types of instance or matchings satisfying both a particular stability criterion

and some additional property. We discuss the issues relating to these two areas in Sections

9.2 and 9.3 respectively.

9.2 Algorithms

The table in Figure 9.2 gives the complexities of the best known algorithms for determining

whether an instance of each of the main variants of Stable Marriage admits a stable

matching. In every solvable case the algorithm also finds such a matching. In the table, a

is the number of acceptable pairs in an instance, k is the total number of men and women

in an SM(T)I instance, and l = |R| +
∑

h∈H ph, where R and H are the sets of residents

and hospitals in an instance of HR(T), and ph is the quota of hospital h.

As can be seen, the only one of the main variants which remains open is determining

whether an instance of SFT admits a strongly stable matching. In Chapter 5 we conjec-

164
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Problem Stability Super-Stability Strong Stability Weak Stability

SM(T)I O(a) [8] O(a) [22, 34] O(ka) [30] O(a) [10]

HR(T) O(a) [8, 15] O(a) [27] O(la) [30] O(a) [10]

SR(T)I O(a) [20] O(a) [26] O(a2) Ch.3 NP-complete [46]

SF(T) O(a) Ch.4 O(a) Ch.5 Open NP-complete [46]

Figure 9.1: Stable Marriage complexities

tured that this problem is NP-complete, which would break the pattern established thus

far.

9.2.1 Approximation algorithms

We have noted that weakly stable matchings may vary in size for instances of each of

SMTI, SRTI, HRT, and SFT, but in each case the largest is at most twice the size of the

smallest. In Section 7.3 we presented an approximation algorithm for finding a maximum

cardinality weakly stable matching in an instance of SMTI, and there are the results of

Halldórsson et al. ( [18], [17], [16], see Section 1.6), and of Iwama et al. [29]. There is,

however, still a significant gap between the best approximation algorithm, which is in any

case for a restricted set of instances, and the bound in the inapproximability result of [16],

so there is scope for approximation algorithms with improved guarantees. Additionally,

the problem of approximating a maximum cardinality weakly stable matching in HRT with

guarantee better than the trivial value of 2 remains open. In SRTI and SFT, of course,

determining whether a weakly stable matching exists is NP-complete.

9.2.2 Master Lists

A number of the results in Chapter 8 were positive. It remains open as to whether any of

these results can be extended to HRT. We also showed that we can generate all the weakly

stable matchings for an instance of ML-SMT. The next step is to ask if we can generate

all the weakly stable matchings for an instance of SML-SMT or ML-SMTI. At this time,

though, a reasonable algorithm to solve either of the problems is not in sight.
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9.3 Structure

There are many more open questions of interest when we consider structural results for

the main variants of Stable Marriage. Here we discuss a subset of these.

9.3.1 The lattice structure

It is known that the set of strongly stable matchings in an instance I of SMTI forms a finite

distributive lattice, when the matchings are partitioned into suitable equivalence classes

[38]. It is certainly possible to formulate an algorithm in the manner of Algorithm POSET2

to find all the strongly stable matchings (or possibly equivalence classes of matchings)

contained within the lattice for an instance I ′ of SMI obtained from I by breaking the

ties. However, unlike super-stability, it is not the case that a strongly stable matching is

stable in every instance of SMI obtainable from I. The next question to ask is whether

there exists an instance I ′ of SMI obtainable from I in which at least one matching from

each equivalence class of strongly stable matchings is stable? We conjecture that this is

not necessarily the case, though even if it is, there would still be the question of finding

the correct way of breaking the ties to find the appropriate instance. Also, little work has

been done on the equivalent problems in HR(T).

In contrast to the bipartite problems, the set of stable matchings, for an instance of

SR which admits a stable matching, forms a semi-lattice. It remains open to determine

whether the set of stable allocations, for an instance of SF which admits a stable allocation,

forms a semi-lattice. The same question is open for the set of super-stable (resp. strongly

stable) matchings, for an instance of SRTI which admits a super-stable (resp. strongly

stable) matching. A related open question is if we can determine in polynomial-time

whether a given pair of agents is either super-stable or strongly stable?

Finally there is SMTI under weak stability, which does not appear to admit any lattice

structure. We have shown that it is possible to find two distinct weakly stable matchings

for an instance of SMTI, if such exist. However, short of generating every possible matching

for the instance and verifying whether it is weakly stable, we do not know how to generate

all the weakly stable matchings. Is there an algorithm for doing this which has polynomial-

time between the generation of successive matchings? We touch on this problem again in
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the next paragraph.

9.3.2 Interpolating invariants

We noted in Section 1.6 that weak stability is an interpolating invariant in SMTI, i.e., for

an instance I of SMTI, there is a matching of size k, weakly stable with respect to I, for

each p ≤ k ≤ q, where p is the size of a minimum cardinality weakly stable matching in

I and q is the size of a maximum cardinality weakly stable matching in I. We could ask

the same question of weakly stable matchings in instances of SRTI, HRT and SFT. We

conjecture that the result for SMTI will extend to all of the more general cases, but at

this time the question is open for all three.

9.3.3 Some miscellaneous problems

Here we list a few open problems of interest which do not fit easily into any of the foregoing

sections.

• For an instance of SF in which the preference lists are complete, what is the smallest

possible size of a stable allocation (expressed in terms of the size of the instance, n,

and the capacities)?

• There is an algorithm for finding, in an instance of SR, a maximum cardinality

matching such that the matched agents are stable within themselves [52]. Can this

be extended to SF? Indeed we can consider these questions for SMTI under strong

stability or super-stability, or for any other variant of Stable Marriage which may

not admit a certain type of stable matching.
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