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Abstract

The Stable Marriage Problem and its many variants have been widely
studied in the literature [6, 20, 14], partly because of the inherent appeal of
the problem, partly because of the elegance of the associated structures and
algorithms, and partly because of important practical applications, such as
the National Resident Matching Program [18] and similar large-scale match-
ing schemes. Here, we present the first comprehensive study of variants of the
problem in which the preference lists of the participants are not necessarily
complete and not necessarily totally ordered. We show that, under surpris-
ingly restrictive assumptions, a number of these variants are hard, and hard
to approximate. The key observation is that, in contrast to the case where
preference lists are complete or strictly ordered (or both), a given problem
instance may admit stable matchings of different sizes. In this setting, exam-
ples of problems that are hard are: finding a stable matching of maximum
or minimum size, determining whether a given pair is stable — even if the
indifference takes the form of ties on one side only, the ties are at the tails of
lists, there is at most one tie per list, and each tie has length 2; and finding, or
approximating, both an ‘egalitarian’ and a ‘minimum regret’ stable matching.
However, we give a 2-approximation algorithm for the problems of finding a
stable matching of maximum or minimum size, and we give a polynomial-time
algorithm for constructing a stable matching of size k, given stable matchings
of sizes i and j, for any i < k < j. We also discuss the significant implications
of our results for practical matching schemes.

Keywords: Stable Marriage Problem; Indifference; Ties; NP-completeness; Inap-
proximability
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1 Introduction

An instance I of the classical Stable Marriage Problem (SM) involves n men and
n women, each of whom ranks all the members of the opposite sex in strict order
of preference. Given a complete matching M of the men and women, we say that
a (man,woman) pair (x, y) is a blocking pair for M if x prefers y to pM(x), and y
prefers x to pM(y), where pM(q) denotes the partner of q in M , for any person q in
I. A matching that admits no blocking pair is said to be stable. It is known that
every instance of SM admits at least one stable matching, and that such a matching
can be found in O(n2) time using the Gale/Shapley algorithm [3].

Incomplete preference lists

A generalisation of SM occurs when the preference lists of those involved can be
incomplete. In this case, we say that person p is acceptable to person q if p appears
on the preference list of q, and unacceptable otherwise. We use SMI to stand for
this variant of SM where preference lists may be incomplete. The revised notion
of stability may be defined as follows: given an instance of SMI, a matching M
is stable if there is no pair (x, y), each of whom is either unmatched in M and
finds the other acceptable, or prefers the other to his/her partner in M . (It follows
from this definition that, from the point of view of finding stable matchings, we
may assume, without loss of generality, that p is acceptable to q if and only if q is
acceptable to p.) A stable matching for an instance of SMI need not be a complete
matching. However, all stable matchings for a given instance have the same size,
and involve exactly the same men and exactly the same women [4]. It is a simple
matter to extend the Gale/Shapley algorithm to cope with preference lists that may
be incomplete (see [6, Section 1.4.2]).

We shall refer to the classical many-one generalisation of the (one-one) problem
SMI, which is relevant in a number of important applications, as the Hospitals /
Residents problem (HR) [6, 20]. An instance of HR involves a set of residents and
a set of hospitals, each resident seeking a post at one hospital, and the ith hospital
having ci posts. Each resident strictly ranks a subset of the hospitals, and each
hospital strictly ranks its applicants. A matching is an assignment of each resident
to at most one hospital so that, for each i, at most ci residents are assigned to the
ith hospital. A matching M for an instance of HR is stable if there is no resident r
and hospital h such that (i) r, h find each other acceptable, (ii) r is either unassigned
or prefers h to his assigned hospital, and (iii) h either has an unfilled post or prefers
r to at least one of the residents assigned to it. Again, the Gale/Shapley algorithm
may easily be extended to find a stable matching for a given instance of HR [6,
Section 1.6.3]. Also, analogous to the SMI case, every stable matching has the same
size, matches exactly the same set of residents, and fills exactly the same number of
posts at each hospital. (This is known as the ‘Rural Hospitals Theorem’ [18, 4, 19].)
Note that, in an instance of HR, it is not necessary for the numbers of residents and
hospital posts to be equal; however, for simplicity we assume in this paper that the
numbers of men and women are equal in an SMI instance.
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Ties in the preference lists

An alternative natural extension of the original stable marriage problem arises when
each person need not rank all members of the opposite sex in strict order. Some
of those involved might be indifferent among certain members of the opposite sex,
so that preference lists may involve ties1. We use SMT to stand for the variant of
SM in which preference lists are complete but may include ties. In this context, a
matching M is stable if there is no couple (x, y), each of whom strictly prefers the
other to his/her partner in M . Note that this stability criterion is referred to as
weak stability in [10], where two other notions of stability are formulated for SMT.
However, of the three definitions, it is weak stability which has received the most
attention in the literature [18, 16, 17, 13]. We are concerned exclusively with weak
stability in this paper, and henceforth for brevity, the term stability will be used to
indicate weak stability when ties are present.

By breaking the ties arbitrarily, an instance I of SMT becomes an instance I ′

of SM, and it is clear that a stable matching for I ′ is also a stable matching for I.
Thus a stable matching for I can be found using the Gale/Shapley algorithm.

Ties and incomplete preference lists

In this paper, we focus on the variant of the stable marriage problem, denoted SMTI,
which incorporates both extensions described above. Thus an instance of SMTI
comprises preference lists, each of which may involve ties and/or be incomplete. A
combination of the earlier definitions indicates that matching M for an instance of
SMTI is stable if there is no pair (x, y), each of whom is either unmatched in M and
finds the other acceptable, or strictly prefers the other to his/her partner in M .

As observed above, all stable matchings for a given instance of SMI are of the
same size, and all stable matchings for a given instance of SMT are complete (and
therefore of the same size). However, for a given instance of SMTI, it is no longer the
case that all stable matchings need be of the same size. This fact does not appear
to have been noted explicitly in the literature previously. We give a simple example
to illustrate this in Section 2. Analogous observations apply if we introduce the
possibility of ties into HR — we refer to this problem as HRT (Hospitals / Residents
with Ties). The stability criterion for HRT may be defined by substituting ‘strictly
prefers’ for ‘prefers’ in parts (ii) and (iii) of the stability criterion for HR. Clearly
SMTI is a special case of HRT (in which every hospital has one post, and the
numbers of posts and residents are equal).

The practical setting

As stable matchings in an SMTI instance may be of different sizes, the question
arises as to whether there exists an efficient algorithm to find a maximum cardinal-
ity stable matching for a given instance of SMTI and/or HRT. This question has
particular significance within the context of matching residents to hospitals. As is
current practice in the National Resident Matching Program [18] in the U.S. and the

1In this paper, we restrict attention to the case where the indifference takes the form of ties in
the preference lists, but it may be verified that all results are extendable to the general case where
the preference lists are arbitrary partial orders.
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Canadian Resident Matching Service [1], hospitals must rank a possibly large num-
ber of applicants in strict order of preference. However, it is unrealistic to expect
large and popular hospitals to provide a strict ranking of all of their applicants; they
might be happier, say, to rank their favourite applicants, and then group together
the remainder at the tail of their list. In the SPA (Scottish Pre-registration house
officer Allocations) matching scheme soon to be introduced [11, 15], any hospital
may indeed include a tie at the tail of its preference list, but all ties are broken arbi-
trarily by the matching program so that the preference lists become strict. However,
the previous observation indicates that breaking the ties in different ways can affect
the sizes of the subsequent stable matchings. Since a prime objective is to match as
many residents as possible, it would be desirable to have a strategy to break the ties
so as to maximise the cardinality of the consequent stable matchings. In fact, as we
shall show in this paper, the existence of a polynomial-time algorithm for this prob-
lem is unlikely, since a related decision problem turns out to be NP-complete, and
the result holds for the restrictions corresponding to this practical setting that we
have described. However, we give a 2-approximation algorithm for the maximisation
problem.

Egalitarian and minimum regret stable matchings

Related stable matching problems which also have applications to centralised match-
ing schemes involve finding ‘fair’ stable matchings which maximise the overall ‘hap-
piness’ of the participants in some sense. To be more precise, let I be an instance
of SMT and let M be a stable matching in I. For a person q in I, define cM(q),
the cost of M for q, to be the ranking (possibly joint ranking, if ties are involved)
of pM(q) in q’s preference list. For example, if some woman w has preference list2

m2 (m1 m3) m4 in I, then cM(w) = 1, 2, 2, 4 if w’s partner in M is m2, m1, m3, m4

respectively3. Let U and W denote the set of men and women in I respectively, and

denote by w(M) the weight of M , where w(M) =
∑

q∈U∪W

cM(q); similarly denote by

r(M) the regret of M , where r(M) = max
q∈U∪W

cM(q). Define an egalitarian (respec-

tively minimum regret) stable matching to be one whose weight (respectively regret)
is minimum, taken over all stable matchings.

It is known that if I contains no ties (and is therefore an instance of SM), then
each of the problems of finding an egalitarian stable matching and a minimum regret
stable matching is polynomial-time solvable [12, 5]. However in this paper we show
that, for an arbitrary instance of SMT, both of these problems are NP-hard, and
are hard to approximate.

Related work

Ronn [16, 17] was possibly the first to investigate the algorithmic effect of intro-
ducing ties into the preference lists of instances of various stable matching prob-

2In a preference list throughout this paper, persons within round brackets are tied.
3For the egalitarian and minimum regret stable matching problems, the cost of a matching for

a person q whose preference list is partially ordered may be defined as follows. Assume that ≺q

denotes q’s list, where r ≺q s if and only if q strictly prefers r to s. Then cM (q) is 1 plus the
number of predecessors in ≺q of pM (q).
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lems. Among other things, he proved that the Stable Roommates problem (the
non-bipartite extension of Stable Marriage), although solvable in polynomial time
when all preference lists are strict [8], becomes NP-complete when ties are permit-
ted. As previously mentioned, Irving [10] studied SMT, but primarily under two
alternative definitions of stability to the one used here. Recently, Iwama et al.
[13] have also investigated SMT and SMTI, and present two reductions proving the
NP-completeness of the problem of deciding whether a given SMTI instance has a
complete stable matching. However, both reductions introduce instances containing
ties of length at least three, and ties on both sides. Also, it is shown that, for an
SMT instance of size n, it is hard to approximate an egalitarian stable matching
within a factor of n1−ε, for any ε > 0. But again, the constructed instance contains
ties of length at least three, and ties on both sides.

Summary of results

In this section, we outline the organisation of the remainder of this paper. The
following list indicates the main results that we establish, some of which have already
been discussed in greater detail. (In what follows, the reader should bear in mind
that SMT is a special case of SMTI, which in turn is a special case of HRT.)

1. In contrast to the case where preference lists are strictly ordered or complete
(or both), a single instance of SMTI may admit stable matchings of different
sizes (Section 2).

2. For a given instance of SMTI, finding a stable matching of maximum, or
minimum, size is NP-hard, even in the highly constrained case where the ties
occur at the tails of lists and on one side only, and each tie is of length 2
(Section 2).

3. There is a polynomial-time 2-approximation algorithm to find a stable match-
ing of maximum, or minimum, size for a given instance of HRT; indeed, the
maximum size cannot exceed the minimum size by more than a factor of 2
(Section 2).

4. A given instance of SMTI contains stable matchings of all sizes between the
minimum and maximum, and such matchings can be constructed in polynomial
time given the minimum and maximum (Section 2).

5. For a given instance of SMT, determining whether a given (man, woman) pair
is stable, i.e. whether they can be paired in a stable matching, is NP-complete,
even if the ties occur at the tails of lists and on one side only, and each tie is
of length 2 (Section 3).

6. For a given instance I of SMT, each of the problems of finding an egalitarian
and a minimum regret stable matching is NP-hard, and not approximable
within n1−ε, for any ε > 0, unless P=NP, where n is the number of participants
in I. Each of these results holds even if the ties occur on one side only and
are of length 2 (Section 4).
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2 Cardinality of stable matchings in SMTI

As a simple illustration of the fact that an SMTI instance can have stable matchings
of different sizes, consider the following instance involving two men, m1, m2, and
two women, w1, w2. Man m1 finds only woman w1 acceptable, and man m2 strictly
prefers woman w1 to woman w2. Woman w1 is indifferent between man m1 and man
m2, and woman w2 finds only man m2 acceptable. There are two stable matchings
for this instance, namely {(m2, w1)} and {(m1, w1), (m2, w2)}.

In this section, we prove that the existence of algorithms to find a stable matching
of maximum or minimum cardinality for a given instance of SMTI is unlikely, under
several simultaneous restrictions. We also give an upper bound for how closely such
matchings can be efficiently approximated for HRT, and prove an interpolation result
for stable matchings in SMTI.

Define the following decision problems:

Name: max (resp. min) cardinality smti.
Instance: n men and n women, preference list of women for each man, preference
list of men for each woman, and integer K ∈ Z

+.
Question: Does the given instance admit a stable matching M with |M | ≥ K
(resp. |M | ≤ K)?

Name: minimum (resp. exact) maximal matching.
Instance: Graph G = (V,E) and integer K ∈ Z

+.
Question: Does G have a maximal matching M with |M | ≤ K (resp. |M | = K)?

minimum maximal matching is NP-complete4, even for subdivision graphs5 [7].

Maximum cardinality stable matchings

We begin by proving that max cardinality smti is hard when the ties are on one
side only. The transformation begins from exact maximal matching, the NP-
completeness of which clearly follows from the corresponding result for minimum

maximal matching.

Lemma 2.1 max cardinality smti is NP-complete, even if the ties occur on one
side only.

Proof: Clearly max cardinality smti is in NP. To show NP-hardness, we trans-
form from exact maximal matching for subdivision graphs. Let G = (V,E) and
K ∈ Z

+ be an instance of this problem. Then G is the subdivision graph of some
graph G′ = (V ′, E ′), so that V = V ′ ∪ E ′ and

E = {{e, v} : e ∈ E ′ ∧ v ∈ V ′ ∧ v is incident to e in G′}.

4In fact Horton and Kilakos proved that minimum edge dominating set is NP-complete for
this class of graphs. The minimum edge dominating set problem is to determine, given a graph
G = (V,E) and an integer K ∈ Z

+, whether G contains an edge dominating set of size at most
K. A set of edges S is an edge dominating set in G if every edge in E\S is adjacent to some edge
in S. It is known that minimum maximal matching and minimum edge dominating set are
polynomially equivalent; indeed the size of a minimum maximal matching of a given graph G is
equal to the size of a minimum edge dominating set of G [21].

5A subdivision graph G is a graph obtained from another graph G′ by replacing every edge in
G′ by a path of length 2 in G.
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Also G has a bipartition (U,W ), where U = E ′ and W = V ′. Thus every vertex in
U has degree 2 in G. Without loss of generality we may assume that G′ is connected
and is not a forest, so that |E ′| ≥ |V ′|, i.e., |U | ≥ |W |. Again without loss of
generality, we may assume that |U | = |W |. For if |U | = |W |+r for some r > 0, then
we may add r vertices a1, . . . , ar to U , and 2r vertices b1, . . . , br, c1, . . . , cr to W ,
where ai is adjacent to bi and ci for each i (1 ≤ i ≤ r). Clearly every vertex in the
new set U has degree 2 in the new graph, and G has a maximal matching of size K
if and only if the transformed graph has a maximal matching of size K + r. Finally,
without loss of generality, we may assume that K ≤ n, where n = |U | = |W |.

Let U = {m1, m2, . . . , mn} and W = {w1, w2, . . . , wn}. We construct an instance
I of max cardinality smti as follows: let U∪U ′∪X be the set of men, and letW∪
Y ∪ Z be the set of women, where U ′ = {m′

1, m
′
2, . . . , m

′
n}, X = {x1, x2, . . . , xn−K},

Y = {y1, y2, . . . , yn}, and Z = {z1, z2, . . . , zn−K}. Assume that ji and ki are two
sequences such that ji < ki, {mi, wji} ∈ E and {mi, wki} ∈ E (1 ≤ i ≤ n). For any
wj (1 ≤ j ≤ n), let Mj contain the men mi such that {mi, wj} ∈ E, and let M ′

j

contain the men m′
i such that {mi, wj} ∈ E and j = ki. Create a preference list for

each person as follows:

mi : yi wji wki [women in Z] (1 ≤ i ≤ n)
m′

i : yi wki (1 ≤ i ≤ n)
xi : [women in W ] (1 ≤ i ≤ n−K)
wj : (men in Mj ∪M ′

j) (x1 . . . xn−K) (1 ≤ j ≤ n)
yj : (mj m′

j) (1 ≤ j ≤ n)
zj : (m1 . . .mn) (1 ≤ j ≤ n−K)

In a preference list throughout this paper, persons within square brackets are listed
in arbitrary strict order at the point where the symbol appears. Clearly the ties
occur in the women’s preference lists only. To complete the construction of the
instance, we set the target value to be K ′ = 3n−K. Clearly the maximum size of
stable matching for this instance is K ′. We claim that G has a maximal matching of
size exactly K if and only if the stable marriage instance admits a stable matching
of size K ′.

For, suppose that G has a maximal matching M , where |M | = K. We construct
a matching M ′ in I as follows. For each edge {mi, wj} in M , if j = ji, then we
add (mi, wji) and (m′

i, yi) to M ′ 6. If j = ki, then we add (m′
i, wki) and (mi, yi) to

M ′. There remain 2(n − K) men of the form mpi , m
′
pi

(1 ≤ i ≤ n − K) who are
as yet unmatched. Add (mpi, zi) and (m′

pi
, ypi) to M ′ (1 ≤ i ≤ n −K). Similarly

there remain n − K women of the form wqi (1 ≤ i ≤ n − K) who are as yet
unmatched. Add (xi, wqi) to M ′ (1 ≤ i ≤ n−K). Clearly M ′ is a matching of size
2K + 2(n−K) + (n−K) = K ′.

It is straightforward to verify that no person in X ∪Y ∪Z, and hence no man in
U ′, can be involved in a blocking pair ofM ′. Also, no unmatched pair (mi, wj) blocks
M ′. For if this occurs, then (mi, zk) ∈ M ′ for some zk ∈ Z, and (xl, wj) ∈ M ′ for
some xl ∈ X . Thus no edge ofM is incident to mi or wj in G. Hence M∪{{mi, wj}}
is a matching in G, contradicting the maximality of M . Thus M ′ is stable.

6Note that, in this paper, we use (m,w) to denote a (man,woman) pair in a stable marriage
instance, and {m,w} to denote an edge connecting vertices m and w in a graph.
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Conversely, suppose that M ′ is a stable matching for I, where |M ′| = K ′. Then
everybody has a partner in M ′. For each i (1 ≤ i ≤ n), at most one of mi and m′

i

is matched in M ′ to a woman in W , for otherwise yi is unmatched, a contradiction.
Thus

M = {{mi, wj} ∈ E : 1 ≤ i, j ≤ n ∧ ((mi, wj) ∈ M ′ ∨ (m′
i, wj) ∈ M ′)}

is a matching in G. There are exactly n−K men mri (1 ≤ i ≤ n−K) who have a
partner from Z in M ′. Since pM ′(m′

ri
) = yri (1 ≤ i ≤ n−K), then |M | = K.

To complete the proof, it remains to show that M is maximal. For, suppose
not. Then there is some edge {mi, wj} in G such that no edge of M is incident to
either mi or wj. Thus (mi, zk) ∈ M ′ for some zk ∈ Z, and (xl, wj) ∈ M ′ for some
xl ∈ X . But then (mi, wj) blocks M

′, for mi strictly prefers wj to zk, and wj strictly
prefers mi to xl. This contradiction to the stability of M ′ implies that M is indeed
maximal.

Thus max cardinality smti is NP-complete if each man’s preference list contains
no ties, and each woman’s preference list comprises either one tie or two ties. We
now demonstrate NP-completeness for max cardinality smti in the case that the
ties are at the tails of the lists and on one side only, and of length 2. Our exposition is
made simpler if we transform from max cardinality smti when restricted to the
case that each man’s preference list contains no ties, and each woman’s preference
list comprises two ties (a ‘tie’ can be of length 1 for this purpose). To see that
the problem remains NP-complete for this restriction, consider the instance of max
cardinality smti as constructed in the proof of Lemma 2.1. Clearly the preference
list of each woman in W comprises two ties, and the preference list of each woman
in Y ∪ Z comprises one tie. If ej is any woman in Y ∪ Z, then we append a new
man aj to her list. Create, in addition, a new man bj and two new women cj, dj.
The preference lists of the new persons are as follows:

aj : cj dj ej cj : aj bj
bj : dj cj dj : bj aj

Clearly (aj , cj) ∈ M and (bj , dj) ∈ M , for any stable matching M in the transformed
instance. In addition, every woman’s preference list in the transformed instance
comprises two ties (where a tie can be of length 1 in this case).

Theorem 2.2 max cardinality smti is NP-complete, even if the ties are at the
tails of the lists and on one side only, and of length 2.

Proof: Membership in NP was established in Lemma 2.1. To show NP-hardness, we
transform from the restricted version of max cardinality smti as discussed above,
in which each man’s preference list contains no ties, each woman’s preference list
comprises two ties (where a tie can be of length 1), and the target value is equal to the
number of men. Let I be an instance of this problem, in which U = {m1, m2, . . . , mn}
is the set of men, and W = {w1, w2, . . . , wn} is the set of women. For each woman
wj ∈ W , let Mh

j (resp. M t
j ) be the set of men tied at the head (resp. tail) of wj ’s

list. Assume that

Mh
j = {mkj,1, mkj,2 , . . . , mkj,hj

} and M t
j = {mlj,1 , mlj,2 , . . . , mlj,tj

}
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for some hj > 0 and tj > 0. We form an instance I ′ of max cardinality smti as

follows. Let U ∪
(

⋃i=n

i=1 Xi

)

be the set of men in I ′, and let
(

⋃j=n

j=1 Wj

)

∪ Y be the

set of women in I ′, where

Wj = {wj,r : 1 ≤ r ≤ hj + tj} (1 ≤ j ≤ n),
Xi = {xi,r : 1 ≤ r ≤ hi + ti} (1 ≤ i ≤ n),

and Y = {yj : 1 ≤ j ≤ n}.

For each j (1 ≤ j ≤ n), let W t
j =

⋃r=hj+tj
r=hj+1 {wj,r}. We form the preference lists of

the persons in I ′ as follows. Each man in U initially has the same preference list in
I ′ as in I. Let mi (1 ≤ i ≤ n) be given, and let wj be any woman who appears in
mi’s list in I. If mi ∈ Mh

j , then mi = mkj,a for some a (1 ≤ a ≤ hj). We replace
wj by the women in {wj,a} ∪W t

j in any strict order in mi’s preference list in I ′. If
mi ∈ M t

j , then mi = mlj,b for some b (1 ≤ b ≤ tj). We replace wj by wj,b+hj
in mi’s

preference list in I ′. The other preference lists in I ′ are as follows:

xi,r : (wi,r yi) (1 ≤ i ≤ n, 1 ≤ r ≤ hi + ti)
wj,r : xj,r mkj,r (1 ≤ j ≤ n, 1 ≤ r ≤ hj)

wj,r+hj
: xj,r+hj

[men in Mh
j ] mlj,r (1 ≤ j ≤ n, 1 ≤ r ≤ tj)

yj : [men in Xj] (1 ≤ j ≤ n)

Clearly the ties occur in the men’s preference lists only, any tie forms the whole of
the list in which it appears, and each tie is of length 2. We claim that I has a stable
matching in which everybody is matched if and only if I ′ does (implicitly we set the
target value in I ′ to be the number of men in I ′).

For, suppose that I has such a matching M . Let mi (1 ≤ i ≤ n) be given, and
let wj = pM(mi). If mi ∈ Mh

j , then mi = mkj,a for some a (1 ≤ a ≤ hj). If mi ∈ M t
j ,

then mi = mlj,b for some b (1 ≤ b ≤ tj); let a = b+ hj. In both cases, add the pairs
(mi, wj,a), (xj,r, wj,r) (for 1 ≤ r ≤ hj + tj , r 6= a), and (xj,a, yj) to M ′. Clearly M ′

is a complete matching in I ′.
It is straightforward to verify that no man in Xi (1 ≤ i ≤ n), and consequently

no woman in Y , can be involved in a blocking pair of M ′ in I ′. Now suppose that
(mi, wj,a) blocks M ′ in I ′. Then a > hj and mi ∈ Mh

j . Let mp = pM ′(wj,a); then
mp = mlj,b , where b = a− hj . Clearly (mi, wj,a) /∈ M ′, and also (mi, wj,r) /∈ M ′ (for
1 ≤ r ≤ hj + tj , r 6= a), since (xj,r, wj,r) ∈ M ′. Thus pM ′(mi) 6∈ Wj, so that in I,
mi strictly prefers wj to pM(mi). Also, in I, wj strictly prefers mi to mp. Hence
(mi, wj) blocks M in I, a contradiction. Thus M ′ is stable in I ′.

Conversely, suppose that M ′ is a stable matching in I ′ in which everybody is
matched. Let j (1 ≤ j ≤ n) be given. Then pM ′(yj) = xj,a for some a (1 ≤ a ≤
hj + tj), and hence pM ′(wj,a) = mi, for some mi ∈ U . Since pM ′(xj,r) = wj,r (for
1 ≤ r ≤ hj + tj , r 6= a), then M ′ ∩ (U ×Wj) = {(mi, wj,a)}. Let mi be the partner
of wj in M . Clearly M is a complete matching in I.

Suppose that (mi, wj) blocks M in I. Let mp = pM(wj). Then in I, wj strictly
prefers mi to mp, so that mi ∈ Mh

j and mp ∈ M t
j . Thus mp = mlj,b for some b

(1 ≤ b ≤ tj), so that wj,a = pM ′(mp), where a = b + hj . Now in I ′, wj,a strictly
prefers mi to mp. Also in I ′, mi strictly prefers wj,a to pM ′(mi) (since pM(mi) 6= wj

implies that pM ′(mi) /∈ Wj). Thus (mi, wj,a) blocks M
′ in I ′, a contradiction. Hence

M is stable in I.
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Minimum cardinality stable matchings

It is also possible to establish the NP-completeness of min cardinality smti, in
the case that ties are at the tails of lists and on one side only, and of length 2.
We begin by demonstrating NP-completeness for the first two restrictions holding
simultaneously, using a similar transformation to the one in Lemma 2.1.

Lemma 2.3 min cardinality smti is NP-complete, even if the ties are at the
tails of lists and on one side only.

Proof: Clearly min cardinality smti is in NP. To show NP-hardness, we trans-
form from minimum maximal matching for subdivision graphs. Let G = (V,E)
and K ∈ Z

+ be an instance of this problem. Then G is the subdivision graph of
some graph G′ = (V ′, E ′), so that V = V ′ ∪ E ′ and

E = {{e, v} : e ∈ E ′ ∧ v ∈ V ′ ∧ v is incident to e in G′}.

Also G has a bipartition (U,W ), where U = E ′ and W = V ′. Thus every vertex in
U has degree 2 in G. As in Lemma 2.1, we may assume, without loss of generality,
that |U | = |W | = n, and K ≤ n.

Let U = {m1, m2, . . . , mn} and W = {w1, w2, . . . , wn}. We construct an instance
I of min cardinality smti as follows: let U∪U ′ be the set of men, and letW∪Y be
the set of women, where U ′ = {m′

1, m
′
2, . . . , m

′
n} and Y = {y1, y2, . . . , yn}. Assume

that ji and ki are two sequences such that ji < ki, {mi, wji} ∈ E and {mi, wki} ∈ E
(1 ≤ i ≤ n). For any wj (1 ≤ j ≤ n), let Mj (resp. M ′

j) contain the men mi (resp.
m′

i) such that {mi, wj} ∈ E. Create a preference list for each person as follows:

mi : yi wji wki (1 ≤ i ≤ n)
m′

i : yi wki wji (1 ≤ i ≤ n)
wj : (members of Mj and M ′

j) (1 ≤ j ≤ n)
yj : (mj m′

j) (1 ≤ j ≤ n)

Clearly the ties occur in the women’s preference lists only. To complete the con-
struction of I, we set the target value to be K ′ = n + K. We claim that G has a
maximal matching of size at most K if and only if I admits a stable matching of
size at most K ′.

For, suppose that G has a maximal matching M , where |M | = k ≤ K. We
construct a matching M ′ in I as follows. For each edge {mi, wj} in M , if j = ji,
then we add (mi, wji) and (m′

i, yi) to M ′. If j = ki, then we add (m′
i, wki) and

(mi, yi) to M ′. There remain n− k men of the form m′
pi
(1 ≤ i ≤ n− k) who are as

yet unmatched. Add (m′
pi
, ypi) to M ′ (1 ≤ i ≤ n− k). Clearly M ′ is a matching of

size 2k + (n− k) ≤ K ′. It remains to show that M ′ is stable.
No woman in Y can be involved in a blocking pair of M ′, since every such

woman is matched in M ′. Additionally, no unmatched pair (mi, wj) blocks M
′. For

if this occurs, then each of mi and wj is unmatched in M ′, and thus no edge of
M is incident to either vertex in G. Hence M ∪ {{mi, wj}} is a matching in G,
contradicting the maximality of M . Finally, no unmatched pair (m′

i, wj) blocks M
′,

for either (m′
i, yi) ∈ M ′ or (m′

i, wki) ∈ M ′ holds. Thus M ′ is stable.
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Conversely, suppose that M ′ is a stable matching for I, where |M ′| = k′ ≤ K ′.
For each i (1 ≤ i ≤ n), yi is matched in M ′, for otherwise (mi, yi) blocks M ′, a
contradiction. Thus at most one of mi and m′

i is matched in M ′ to a woman in W .
Hence

M = {{mi, wj} ∈ E : 1 ≤ i, j ≤ n ∧ ((mi, wj) ∈ M ′ ∨ (m′
i, wj) ∈ M ′)}

is a matching in G, and |M | = |M ′| − n = k′ − n ≤ K.
To complete the proof, it remains to show that M is maximal. For, suppose not.

Then there is some edge {mi, wj} in G such that no edge ofM is incident to either mi

or wj. Thus m
∗
i and wj are both unmatched in M ′, where m∗

i ∈ {mi, m
′
i}. Since each

of m∗
i , wj finds the other acceptable, then (m∗

i , wj) blocks M
′. This contradiction to

the stability of M ′ implies that M is indeed maximal.

By transforming from the NP-complete problem minimum maximal matching

for the subdivision graphs of graphs of maximum degree 3 [7], it may be verified
that the length of any tie in the instance of min cardinality smti constructed
in Lemma 2.3 is either 2, 4 or 6. We now show how to eliminate the ties of length
greater than 2.

Theorem 2.4 min cardinality smti is NP-complete, even if the ties occur at
the tails of lists and on one side only, and each tie is of length 2.

Proof: Membership in NP was established in Lemma 2.3. To show NP-hardness, we
transform from the restricted version of min cardinality smti as discussed above,
in which each man’s preference list contains no ties, and each woman’s preference
list comprises a tie of length either 2, 4 or 6. Let I be an instance of this problem,
in which U = {m1, m2, . . . , mn} is the set of men, W = {w1, w2, . . . , wn} is the set
of women, and K ∈ Z

+ is the target value. Without loss of generality, suppose
that W ′ = {w1, w2, . . . , wt} is the set of women, each of whom has a preference list
comprising a tie of length 6. Let W ′′ = W\W ′. For each woman wj ∈ W ′, let Mj

be the set of men tied in wj ’s list. Assume that

Mj = {mkj,1 , mkj,2, . . . , mkj,6}.

We now form an instance I ′ of min cardinality smti. Let U ∪
(

⋃j=t

j=1(Pj ∪Rj)
)

be the set of men in I ′, and let W ′′ ∪
(

⋃j=t

j=1(Wj ∪Qj ∪ {sj})
)

be the set of women

in I ′, where Pj = {pj,l : 1 ≤ l ≤ 6}, Qj = {qj,l : 1 ≤ l ≤ 5}, Rj = {rj,l : 1 ≤ l ≤ 5},
and Wj = {wj,l : 1 ≤ l ≤ 6}. We form the preference lists of the persons in I ′ as
follows. Each woman in W ′′ has the same preference list in I ′ as in I. Each man
in U initially has the same preference list in I ′ as in I. Now let mi (1 ≤ i ≤ n) be
given, and suppose that some woman wj ∈ W ′ appears in mi’s list in I. Replace wj

by all the women in Wj in arbitrary (strict) order in mi’s preference list in I ′. The
other preference lists in I ′ are as follows, for each j (1 ≤ j ≤ t):

pj,l : qj,l wj,l (1 ≤ l ≤ 5)
pj,6 : [women in Qj ] wj,6

qj,l : rj,l (pj,l pj,6) (1 ≤ l ≤ 5)
rj,l : sj qj,l (1 ≤ l ≤ 5)
sj : (rj,1 rj,2 rj,3 rj,4 rj,5)

wj,l : pj,l mkj,l [men in Mj\{mkj,l}] (1 ≤ l ≤ 6)
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Clearly the ties occur in the women’s preference lists only, any tie is at the tail of
some woman’s list, and each tie has length 2, 4 or 5 (we discuss in due course how
to eliminate ties of length 4 and 5). Set K ′ = K+11t. We claim that I has a stable
matching of size at most K if and only if I ′ has a stable matching of size at most
K ′.

For, suppose that M is a stable matching in I, where |M | = k ≤ K. We
construct a matching M ′ in I ′ as follows. Each woman in W ′′ is unmatched in M ′ if
she is unmatched in M , otherwise she is given the same partner in M ′ as in M . Now
let wj ∈ W ′. If wj is unmatched in M , then add the pairs (pj,l, wj,l) (1 ≤ l ≤ 5),
(pj,6, qj,5), (rj,l, qj,l) (1 ≤ l ≤ 4) and (rj,5, sj) to M ′. Now suppose that wj is matched
in M , to mi say. Then mi = mkj,a for some a (1 ≤ a ≤ 6). Add (mi, wj,a) to M ′.
For each l (1 ≤ l 6= a ≤ 6), add the pair (pj,l, wj,l) to M ′. Add the pair (pj,a, qj,b)
to M ′, where b = min{a, 5}. For each l (1 ≤ l 6= b ≤ 5), add the pairs (rj,l, qj,l)
to M ′. Finally, add the pair (rj,b, sj) to M ′. Clearly M ′ is a matching in I ′, and
|M ′| = k + 11t ≤ K ′.

It may be verified that, for each j (1 ≤ j ≤ t), no person in Pj∪Qj∪Rj∪{sj} can
be involved in a blocking pair of M ′ in I ′, since every such person is matched in M ′.
Clearly, if (mi, wj) blocks M

′ in I ′, where wj ∈ W ′′, then (mi, wj) blocks M in I, a
contradiction. Now suppose that (mi, wj,l) blocks M

′ in I ′, where 1 ≤ l ≤ 6. Then
wj,l is unmatched in M ′, so that l = 6 and wj is unmatched in M . Since mi is not
matched to any member of Wj in M ′, then (mi, wj) blocks M in I, a contradiction.
Hence M ′ is stable in I ′.

Conversely, suppose that M ′ is a stable matching in I ′, where M ′ = k′ ≤ K ′. It
is easy to see that, for every j (1 ≤ j ≤ t), each member of Pj ∪Qj ∪Rj ∪{sj} must
be matched in M ′. We construct a matching M in I as follows. Each woman in
W ′′ is unmatched in M if she is unmatched in M ′, otherwise she is given the same
partner in M as in M ′. Now let wj ∈ W ′. If every member of Wj is matched in M ′,
then some woman wj,l (1 ≤ l ≤ 6) has a man mi ∈ Mj as her partner in M ′: let mi

be the partner of wj in M . Otherwise, let wj be unmatched in M . Clearly M is a
matching in I, and |M | = k′ − 11t ≤ K.

Now suppose that (mi, wj) blocks M in I. If wj ∈ W ′′, then (mi, wj) blocks M
′

in I ′, a contradiction, so suppose that wj ∈ W ′. Since wj’s list in I comprises a
single tie, then wj is unmatched in M . Thus some wj,l (1 ≤ l ≤ 6) is unmatched in
M ′. But then mi is not matched to any member of Wj in M ′. Thus (mi, wj,l) blocks
M ′ in I ′, a contradiction. Hence M is stable in I.

Clearly I ′ contains ties of length 4 and 5. However, the construction of I ′ does
not rely on any special properties of the ties of length 6, and thus a similar reduction
can be used in order to replace the ties of length 5 in I ′ by ties of length 2 and 4
occupying different women’s lists. (This method is applicable, since a woman in I ′

who has a tie of length 5 in her list does not find any other men acceptable apart
from the five tied men.) Similarly, a further iteration will replace the ties of length 4
by ties of length 2 and 3 occupying different women’s lists, and a final iteration will
give an instance with ties of length 2 only. Since the additional ties of length 2 that
are generated at each stage appear only at the tails of women’s lists, and there is at
most one tie per list, then it is clear that we end up with an instance which satisfies
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the restrictions of the statement of the theorem, and furthermore, this instance can
be constructed in polynomial time from I.

Approximability results

It turns out that, for a given instance I of HRT, each of the problems of finding
stable matching of minimum or maximum size is approximable within 2. This follows
immediately by choosing an arbitrary stable matching, and from the following result:

Theorem 2.5 For an arbitrary instance of HRT, the size of the largest stable match-
ing is at most twice the size of the smallest.

Proof: Let I be an instance of HRT, and let M be a stable matching in I of
maximum cardinality. Suppose that M ′ is any stable matching in I, and suppose
that |M ′| < |M |

2
. Then there is a set r1, . . . , rp of residents in I such that, for each

j (1 ≤ j ≤ p), rj is unmatched in M ′ but matched in M , where p > |M ′|. As rj is
matched in M (1 ≤ j ≤ p), then there are p hospitals hi1 , . . . , hip (not necessarily
distinct), such that rj is assigned to hij in M (1 ≤ j ≤ p). Let k = |{hi1 , . . . , hip}|
and let t be the sum of the capacities of the k distinct hospitals. Each of the hospitals
must be fully subscribed in M ′, for otherwise some hospital hij (1 ≤ j ≤ p) has a
vacancy in M ′, so that (rj, hij ) blocks M ′, a contradiction. Thus |M ′| ≥ t. But
t ≥ p, so |M ′| ≥ p, a contradiction.

Stable matchings interpolate

We now give an interpolation result for stable matchings: we show that, given an
SMTI instance and stable matchings of sizes i, j, we may find in polynomial time a
stable matching of size k, for each i < k < j. Our starting point is the following
lemma. Henceforth, we denote by s(I) the size of the stable matchings in an SMI
instance I.

Lemma 2.6 Let I, I ′ be two instances of SMI, such that one person’s preference list
in I differs in I ′. Then |s(I)− s(I ′)| ≤ 1.

Proof: Let p be the person whose preference list in I is not the same in I ′. Let M,M ′

be stable matchings in I, I ′ respectively. Construct an edge-coloured bipartite graph
G on the set of men and women, where

• {m,w} is a red edge if (m,w) ∈ M and (m,w) /∈ M ′.

• {m,w} is a blue edge if (m,w) /∈ M and (m,w) ∈ M ′.

and these are all the edges in G.
The connected components of G are paths and cycles with edges of alternating

colours. Suppose that G has a component that is an odd-length path which does
not contain person p – say it is {m1, w1}, {w1, m2}, . . . , {mr, wr}, where the edges
{mi, wi} are red (1 ≤ i ≤ r) and the edges {wi, mi+1} (1 ≤ i ≤ r − 1) are blue. (A
similar argument applies if the colours are interchanged.)

Clearly, because of the way in which G was constructed, both m1 and wr are
unmatched in M ′. If w1 prefers m1 to m2 then the pair (m1, w1) blocks M ′, so w1
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prefers m2 to m1. If m2 prefers w1 to w2 then the pair (m2, w1) blocks M . Similarly,
for each i (1 ≤ i ≤ r − 1), wi prefers mi+1 to mi, and mi+1 prefers wi+1 to wi. It
follows that the pair (mr, wr) blocks M

′, a contradiction.
Hence G contains at most one alternating path of odd length, and an easy

counting argument establishes the lemma.

A matching M that is stable in an SMTI instance I is also stable in a particular
SMI instance I ′ derived from I, and vice versa, as the following result demonstrates.

Lemma 2.7 Let I be an instance of SMTI, and let M be a stable matching in I.
Then there is an instance I ′ of SMI, obtained from I by breaking the ties in I, such
that M is also stable in I ′.

Proof: Let m1, . . . , mn be the men in I, and let w1, . . . , wn be the women in I.
Let Pi, Qi be the preference lists of mi, wi respectively (1 ≤ i ≤ n). We construct
preference lists P ′

i , Q
′
i for mi and wi in I ′ respectively (1 ≤ i ≤ n) by breaking the

ties in I.
For each man mi (1 ≤ i ≤ n), if mi is matched in M to some woman w involved

in a tie in Pi, then in P ′
i we break the tie in any way so that w is preferred to all

other women in this tie. Any other ties in Pi are broken arbitrarily in P ′
i . If mi is

not matched in M to some woman involved in a tie in Pi, then any ties in Pi are
broken arbitrarily in P ′

i . Similarly, we form the lists Q′
i from Qi by considering the

partner of each women wi.
Clearly M is stable in I ′.

Lemmas 2.6 and 2.7 may be used to demonstrate our interpolation result.

Theorem 2.8 Stability is an interpolating invariant, i.e., if a given instance I of
SMTI has stable matchings of sizes i and j, and i < k < j, then I also has a stable
matching of size k, and such a matching can be constructed in polynomial time.

Proof: Let M,M ′ be stable matchings of sizes i and j respectively, and let IM , IM ′ be
instances of SMI obtained by resolving the ties in I so that M is a stable matching
in IM , and M ′ is a stable matching in IM ′ (this is possible by Lemma 2.7). Suppose
that the preference lists of t people in IM differ in IM ′. Let p1, . . . , pt be these people,
and let Pi be the preference list of pi in IM ′ (1 ≤ i ≤ t).

There exists a sequence IM = I0, I1, I2, . . . , It = IM ′ of instances of SMI such
that, for each i (1 ≤ i ≤ t), Ii is obtained from Ii−1 by giving person pi the
preference list Pi, and by giving every other person the same preference list as in
Ii−1. Then by Lemma 2.6, successive entries in the sequence s0, s1, . . . , st of stability
numbers of the instances I0, I1, . . . , It differ by at most 1, and hence there is some r
(1 ≤ r ≤ t− 1) such that sr = k.

Note that t ≤ 2n, so that a stable matching in I of size k can be found in
O(n2 log n) time using a binary search.

3 Testing whether a (man,woman) pair is stable

in SMT

In this section, we show that the problem of testing whether a given (man,woman)
pair is stable in an instance of SMT is NP-complete. Note that, when ties are absent,
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this problem is polynomial-time solvable [5].

Theorem 3.1 For a given instance of SMT and a given (man,woman) pair (m,w),
the problem of determining whether (m,w) is a stable pair is NP-complete, even if
the ties occur at the tails of lists and on one side only, and are of length 2.

Proof: Clearly this problem is in NP. To show NP-hardness, we transform from the
NP-complete problem max cardinality smti when ties are at the tails of lists
and on the women’s side only, and of length 2: let U = {m1, m2, . . . , mn} be the set
of men and let W = {w1, w2, . . . , wn} be the set of women in a given instance I of
this problem. We may assume that the given target value in I is equal to n. Let
Pi (resp. Qi) denote the preference list of man mi (resp. woman wi) for 1 ≤ i ≤ n.
We construct an instance I ′ of SMT as follows: let {m0}∪U be the set of men, and
let {w0} ∪W be the set of women. Create a preference list in I ′ for each person as
follows:

m0 : w0 . . . w0 : . . . m0

mi : Pi w0 . . . (1 ≤ i ≤ n) wi : . . . Qi (1 ≤ i ≤ n)

The symbol ‘. . .’ in a person p’s preference list denotes all people in I ′ of the opposite
sex to p who are not explicitly listed elsewhere in p’s preference list, listed in arbitrary
strict order at the point where the symbol appears. Clearly the ties in I ′ occur at
the tails of lists and on the women’s side only, all ties are of length 2, and all lists are
complete. We claim that I has a complete stable matching if and only if (m0, w0) is
a stable pair in I ′.

For, suppose that M is a complete stable matching for I. Let M ′ = M ∪
{(m0, w0)}. We claim that M ′ is stable in I ′. For, if some pair (m,w) blocks M ′

then either m = m0 or w = w0, as M is stable in I. But m 6= m0, since m0

has his first-choice partner in M ′. Hence w = w0, so that m = mi for some i
(1 ≤ i ≤ n), and mi strictly prefers w0 to pM(mi). But pM(mi) appears on the list
Pi, a contradiction.

Conversely, suppose thatM ′ is a stable matching for I ′, such that (m0, w0) ∈ M ′.
Clearly M ′ is a complete matching for I ′. Also, for any i (1 ≤ i ≤ n), we claim
that pM ′(mi) appears on the list Pi. For if not, then mi strictly prefers w0 to
pM ′(mi). Since w0 strictly prefers mi to m0 = pM ′(w0), then (mi, w0) blocks M

′, a
contradiction. Hence, for any i (1 ≤ i ≤ n), pM ′(wi) appears on the list Qi. Thus
M = M ′\{(m0, w0)} is a complete matching in I. Clearly M is stable in I.

It is straightforward to alter the above transformation in order to prove that de-
termining whether a given person has a stable partner (i.e. has a partner in some
stable matching) in a given SMTI instance is also NP-complete.

4 Egalitarian and minimum regret stable match-

ings in SMT

In this section, we prove that each of the problems of finding an egalitarian and
a minimum regret stable matching for a given instance of SMT is NP-hard and
difficult to approximate.
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Given an SMT instance I, denote by w(I) the weight of an egalitarian stable
matching in I, and denote by r(I) the regret of a minimum regret stable matching in
I. Let egalitarian smt (respectively minimum regret smt) denote the problem
which, given an instance I of SMT as its input, requires to output w(I) (respectively
r(I)) as a solution. We begin by proving that egalitarian smt is NP-hard and
hard to approximate.

Theorem 4.1 egalitarian smt is not approximable within N1−ε, for any ε > 0,
unless P=NP, where N is the number of men in a given instance of the problem,
even if the ties are on one side only and of length 2.

Proof: Let ε > 0 be given, and let c = 3
ε
. We consider the NP-complete problem

max cardinality smti when ties occur on the women’s side only, and each tie is of
length 2: let U = {m1, m2, . . . , mn} be the set of men and let W = {w1, w2, . . . , wn}
be the set of women in a given instance I of this problem. We may assume that the
given target value in I is equal to n. Let Pi (resp. Qi) denote the preference list
of man mi (resp. woman wi) for 1 ≤ i ≤ n. We construct an instance I ′ of SMT
as follows: let U0 ∪ (

⋃C

j=1U
j) be the set of men, and let W 0 ∪ (

⋃C

j=1W
j) be the

set of women, where C = nc−1, U0 = {m0
1, m

0
2, . . . , m

0
nc}, U j = {mj

1, m
j
2, . . . , m

j
n}

(1 ≤ j ≤ C), W 0 = {w0
1, w

0
2, . . . , w

0
nc}, and W j = {wj

1, w
j
2, . . . , w

j
n} (1 ≤ j ≤ C).

Thus I ′ comprises 2nc men and 2nc women, so that N = 2nc. For each i (1 ≤ i ≤ n)
and j (1 ≤ j ≤ C), let P j

i denote the preference list that is obtained from Pi by
replacing woman wk in Pi by the corresponding woman wj

k, for any k (1 ≤ k ≤ n).
Let us refer to the women in P j

i as the proper women for mj
i . Define Qj

i and the
proper men for wj

i similarly. Create a preference list in I ′ for each person as follows:

m0
i : w0

i . . . (1 ≤ i ≤ nc)

mj
i : P j

i [women in W 0] . . . (1 ≤ i ≤ n, 1 ≤ j ≤ C)
w0

i : m0
i . . . (1 ≤ i ≤ nc)

wj
i : Qj

i [men in U0] . . . (1 ≤ i ≤ n, 1 ≤ j ≤ C)

Note that the symbol ‘. . .’ in the above preference lists has a similar meaning to its
usage in Theorem 3.1. Clearly the only ties featuring in I ′ occur in the preference
lists of women of the form wj

i , and each tie is of length 2.

Suppose that M is a stable matching in I, where |M | = n. We form a matching
M ′ in I ′ as follows: for each i (1 ≤ i ≤ nc), add the pair (m0

i , w
0
i ) to M ′, and for

each i (1 ≤ i ≤ n), add the pair (mj
i , w

j
k) to M ′ (1 ≤ j ≤ C), where (mi, wk) ∈ M .

Clearly M ′ is stable in I ′, and it may be verified that

w(M ′) ≤ 2(nc + nc−1. n2) ≤ 2

(

nc+2

2

)

since we may choose n ≥ 4, without loss of generality. Hence w(I ′) ≤ nc+2.

Now suppose that I does not have a stable matching of cardinality n. Let M ′ be
any stable matching in I ′. Then it may be verified that, for each j (1 ≤ j ≤ C), there
is some i (1 ≤ i ≤ n) such that mj

i cannot be matched in M ′ to one of his proper
women. But in M ′, m0

k and w0
k must be partners, for each k (1 ≤ k ≤ nc), and hence

cM ′(mj
i ) > nc. Similarly, for each j (1 ≤ j ≤ C), there is some i (1 ≤ i ≤ n) such
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that wj
i cannot be matched in M ′ to one of her proper men, and hence cM ′(wj

i ) > nc.
Thus w(M ′) > 2n2c−1, so that w(I ′) > 2n2c−1.

Hence the existence of a polynomial-time approximation algorithm for egali-

tarian smt whose approximation ratio is as good as (2n2c−1)/nc+2 = 2nc−3 would
give a polynomial-time algorithm for determining whether I has a stable matching
in which everybody is matched. Finally, 2nc−3 = 2

21−
3
c
N1− 3

c > N1− 3

c = N1−ε, which

concludes the proof.

Note that in general, the hardness of finding an egalitarian stable matching in no way
implies the hardness of finding a minimum regret stable matching: for example, in
the case of Stable Roommates, although the problem of finding an egalitarian stable
matching is NP-hard [2], the problem of finding a minimum regret stable matching
is polynomial-time solvable [9]. Nevertheless, it turns out that minimum regret

smt has similar behaviour to egalitarian smt. In fact, the transformation of The-
orem 4.1 can be adapted in a straightforward fashion to prove a result analogous to
Theorem 4.1 for minimum regret smt, as we now demonstrate.

Theorem 4.2 minimum regret smt is not approximable within N1−ε, for any
ε > 0, unless P=NP, where N is the number of men in a given instance of the
problem, even if the ties are on one side only and of length 2.

Proof: Let ε > 0 be given. We consider the SMT instance I ′ constructed in Theorem
4.1 from the max cardinality smti instance I. In order to prove the inapprox-
imability result for minimum regret smt, it suffices to take c = 2

ε
and C = 1 in

the construction of I ′. Hence there are n+ nc men and n+ nc women in I ′, so that
N = n+ nc.

Suppose that M is a stable matching in I, where |M | = n. We construct a
matching M ′ in I ′ as follows: for each i (1 ≤ i ≤ nc), add the pair (m0

i , w
0
i ) to

M ′, and for each i (1 ≤ i ≤ n), add the pair (m1
i , w

1
k) to M ′, where (mi, wk) ∈ M .

Clearly M ′ is stable in I ′, and r(M ′) ≤ n. Hence r(I ′) ≤ n.
Now suppose that I does not have a stable matching of cardinality n. Let M ′

be any stable matching in I ′. Then as in Theorem 4.1, there is some i (1 ≤ i ≤ n)
such that cM ′(m1

i ) > nc. Thus r(M ′) > nc, so that r(I ′) > nc.
Hence the existence of a polynomial-time approximation algorithm for minimum

regret smt whose approximation ratio is as good as nc/n = nc−1 would give a
polynomial-time algorithm for determining whether I has a stable matching in which
everybody is matched. Finally, nc−1 > n(c+1)(1−ε) ≥ (n + nc)(1−ε) = N1−ε (without
loss of generality, n ≥ 2), which concludes the proof.

Note that, for a given instance I of HRT and a stable matching M in I, a more
suitable definition of cM(h) for a hospital h might be the sum of the (possibly joint)
rankings of each resident designated to h in h’s list, divided by the capacity of h.
Clearly each of the inapproximability results of Theorems 4.1 and 4.2 carries over to
this revised definition, by considering the restriction of HRT in which each hospital
has capacity one, and the numbers of posts and residents are equal.
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5 Conclusion and open problems

In this paper, we have established the hardness of various problems involving stable
matchings in the case where the preference lists of the participants may be incom-
plete and may involve ties. Among these is the important practical problem of
finding a stable matching of maximum cardinality for an HRT instance in which all
of the ties are on one side (the hospitals’ side), and are at the tails of lists, and there
is at most one tie per list (and even if the ties are of length 2).

A number of interesting open problems remain. These include:

• Is there an approximation algorithm for finding a stable matching of maximum
cardinality in SMTI (and HRT) with a guarantee better than 2? Perhaps some
special cases, say with restrictions on the positions or size of ties, may be more
accessible.

• Is the problem of finding a stable matching of maximum size APX-complete?

• Is there a reasonable algorithm to generate all of the stable matchings for a
given instance of SMTI (and HRT)? For each of SM and HR, such an algorithm
can be derived by exploiting the underlying lattice structure [5], but there
appears to be no such useful mathematical structure present in SMTI or HRT:
Roth [18] constructs an instance of SMT, comprising three men and three
women, which admits no man-optimal or woman-optimal stable matching.
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