Solutions to Exercises in Chapter 1

1.1 The GCD of 6 and 9 is 3 ; the GCD of 12 and 18 is 6 ; the GCD of 15 and 21 is 3 ; the GCD of 11 and 15 is 1 .
1.2 Using Newton's algorithm to calculate the square root of a number accurate to two decimal places, the square root of 4 is 2.00 ; the square root of 6 is 2.45 ; the square root of 8 is 2.83 ; and the square root of 9 is 3.00 .

Method to calculate the square root of a :

```
static float squareRoot (float a) {
    float r = (1 + a)/2;
    while (Math.abs(r*r - a) > 0.01)
        r = (r + a/r)/2;
    return r;
}
```

If step 2 of the algorithm continued until $r^{2}=a$, the algorithm would be unlikely to terminate, since two approximately-computed numbers are unlikely to be exactly equal.
1.6 To find the roots of the general quadratic equation $a x^{2}+b x+c=0$:

1. Let r be the square root of $\left(b^{2}-4 a c\right)$.
2. Let rootl be $(-b+r) / 2 a$, and let root 2 be $(-b-r) / 2 a$.
3. Terminate with answers rootl and root2.
