Solutions to Exercises in Chapter 2

2.1 In the test case $b=2, n=11$, the simple power algorithm performs 11 multiplications, while the smart power algorithm performs 7 multiplications.
2.2 Algorithm 1.1 has time complexity $O(1)$.
2.4 The matrixAdd method performs n^{2} additions. Its time complexity is $O\left(n^{2}\right)$.

The matrixMult method performs n^{3} additions and n^{3} multiplications. Its time complexity is $O\left(n^{3}\right)$.
2.5 To analyze Algorithm 2.16, count the number of characters required to render i to base r. If i is positive, the number of characters is $\log _{r} i+1$. If i is negative, the number of characters is $\log _{r}(\operatorname{abs}(i))+2$ (the extra character being ' - '). The time complexity is $O(\log (\operatorname{abs}(i)))$.
2.6 To print a given integer i to base r :

1. Set s to the empty string "".
2. Set p to the absolute value of i.
3. Repeat the following until $p=0$:
3.1. Let d be the digit corresponding to (p modulo r).
3.2. Prepend d to s.
3.3. Divide p by r.
4. If $i<0$, prepend ' - ' to s.
5. Print s.
6. Terminate.

This algorithm's time complexity is $O(\log (\operatorname{abs}(i)))$.
2.7 To find the GCD of positive integers m and n (recursive version):

1. Let p be the greater and q the lesser of m and n.
2. If p is a multiple of q :
2.1. Terminate with answer q.
3. If p is not a multiple of q :
3.1. Let g be the GCD of q and (p modulo q).
3.2. Terminate with answer g.
2.8 Algorithm 2.21 performs n multiplications. Its time complexity is $O(n)$.

Method to calculate the factorial of n (recursive version):

```
static int factorial (int n) {
    if (n == 0)
        return 1;
    else
        return n * factorial(n-1);
}
```

To calculate the factorial of n (non-recursive version):

1. Set f to 1 .
2. For $i=1, \ldots, n$, repeat:
2.1. Multiply f by i.
3. Terminate with answer f.

Method to calculate the factorial of n (non-recursive version):

```
static int factorial (int n) {
    int f = 1;
    for (int i = 1; i <= n; i++)
        f *= i;
    return f;
}
```

2.9 Let the Fibonacci function be $f i b(n)$. Tabulate the first few Fibonacci numbers, and the ratios of consecutive numbers:

n	0	1	2	3	4	5	6	7	8
fib(n)	1	1	2	3	5	8	13	21	34
fib(n)/fib(n-1)		1.00	2.00	1.50	1.67	1.60	1.63	1.62	1.62

Thus we can see that $f i b(n) \approx c b^{n}$, where $b \approx 1.62$ and $c \approx 0.72$.
Suppose that Algorithm 2.22 performs adds(n) additions. It is easy to see that $\operatorname{adds}(n)=\operatorname{fib}(n)-1 \approx c b^{n}-1$. The algorithm's time complexity is therefore $O\left(b^{n}\right)$.

To calculate the Fibonacci number of n (non-recursive version):

1. If $n \leq 1$:
1.1. Terminate with answer 1.
2. If $n>1$:
2.1. Set oldfib to 1 , and set $f i b$ to 1 .
2.2. For $i=2, \ldots, n$, repeat: 2.2.1. Set oldfib and fib to $f i b$ and oldfib+fib, respectively.
2.3. Terminate with answer $f i b$.

Method to calculate the Fibonacci number of n (recursive version):

```
static int fibonacci (int n) {
    if (n <= 1)
            return 1;
    else
        return fibonacci(n-1) + fibonacci(n-2);
}
```

Method to calculate the Fibonacci number of n (non-recursive version):

```
static int fibonacci (int n) {
    if (n <= 1)
        return 1;
    else {
        int oldfib = 1, fib = 1;
        for (int i = 2; i <= n; i++) {
            int newfib = oldfib + fib;
                oldfib = fib; fib = newfib;
        }
        return fib;
}
```

2.10 Outline of program:

```
static void moveTower (int n,
    int source, int dest) {
        if (n == 1)
        moveDisk(source, dest);
    else {
        int spare = 6 - source - dest;
        moveTower(n-1, source, spare);
        moveDisk(source, dest);
        moveTower(n-1, spare, dest);
    }
}
static void moveDisk (int source, int dest) {
    System.out.println("Move disk from " + source
        + " to " + dest);
}
```

To make the program count the moves, modify moveTower to return the required number of moves, as follows:

```
static int moveTower (int n,
            int source, int dest) {
    if (n == 1) {
        moveDisk(source, dest);
        return 1;
    } else {
        int spare = 6 - source - dest;
        int moves1 = moveTower(n-1, source, spare);
        moveDisk(source, dest);
        int moves2 = moveTower(n-1, spare, dest);
        return moves1 + 1 + moves2;
    }
}
```

