

Java Collections © 2001 D.A. Watt and D.F. Brown 2-1

Solutions to Exercises in Chapter 2

 2.1 In the test case b = 2, n = 11, the simple power algorithm performs 11
multiplications, while the smart power algorithm performs 7 multiplications.

 2.2 Algorithm 1.1 has time complexity O(1).

 2.4 The matrixAdd method performs n2 additions. Its time complexity is O(n2).

The matrixMult method performs n3 additions and n3 multiplications. Its time
complexity is O(n3).

 2.5 To analyze Algorithm 2.16, count the number of characters required to render i to
base r. If i is positive, the number of characters is logr i + 1. If i is negative, the
number of characters is logr(abs(i)) + 2 (the extra character being ‘–’). The time
complexity is O(log(abs(i))).

 2.6 To print a given integer i to base r:

1. Set s to the empty string “”.
2. Set p to the absolute value of i.
3. Repeat the following until p = 0:
 3.1. Let d be the digit corresponding to (p modulo r).
 3.2. Prepend d to s.
 3.3. Divide p by r.
4. If i < 0, prepend ‘–’ to s.
5. Print s.
6. Terminate.

This algorithm’s time complexity is O(log(abs(i))).

 2.7 To find the GCD of positive integers m and n (recursive version):

1. Let p be the greater and q the lesser of m and n.
2. If p is a multiple of q:
 2.1. Terminate with answer q.
3. If p is not a multiple of q:
 3.1. Let g be the GCD of q and (p modulo q).
 3.2. Terminate with answer g.

 2.8 Algorithm 2.21 performs n multiplications. Its time complexity is O(n).

Method to calculate the factorial of n (recursive version):

static int factorial (int n) {
if (n == 0)

return 1;
else

return n * factorial(n-1);
}

To calculate the factorial of n (non-recursive version):

1. Set f to 1.
2. For i = 1, …, n, repeat:
 2.1. Multiply f by i.
3. Terminate with answer f.

Method to calculate the factorial of n (non-recursive version):

Java Collections © 2001 D.A. Watt and D.F. Brown 2-2

static int factorial (int n) {
int f = 1;
for (int i = 1; i <= n; i++)

f *= i;
return f;

}

 2.9 Let the Fibonacci function be fib(n). Tabulate the first few Fibonacci numbers,
and the ratios of consecutive numbers:

n 0 1 2 3 4 5 6 7 8
fib(n) 1 1 2 3 5 8 13 21 34
fib(n)/fib(n–1) 1.00 2.00 1.50 1.67 1.60 1.63 1.62 1.62

Thus we can see that fib(n) ≈ cbn, where b ≈ 1.62 and c ≈ 0.72.

Suppose that Algorithm 2.22 performs adds(n) additions. It is easy to see that
adds(n) = fib(n) – 1 ≈ cbn – 1. The algorithm’s time complexity is therefore
O(bn).

To calculate the Fibonacci number of n (non-recursive version):

1. If n ≤ 1:
 1.1. Terminate with answer 1.
2. If n > 1:
 2.1. Set oldfib to 1, and set fib to 1.
 2.2. For i = 2, …, n, repeat:
 2.2.1. Set oldfib and fib to fib and oldfib+fib, respectively.
 2.3. Terminate with answer fib.

Method to calculate the Fibonacci number of n (recursive version):

static int fibonacci (int n) {
if (n <= 1)

return 1;
else

return fibonacci(n-1) + fibonacci(n-2);
}

Method to calculate the Fibonacci number of n (non-recursive version):

static int fibonacci (int n) {
if (n <= 1)

return 1;
else {

int oldfib = 1, fib = 1;
for (int i = 2; i <= n; i++) {

int newfib = oldfib + fib;
oldfib = fib; fib = newfib;

}
return fib;

}

 2.10 Outline of program:

Java Collections © 2001 D.A. Watt and D.F. Brown 2-3

static void moveTower (int n,
int source, int dest) {

if (n == 1)
moveDisk(source, dest);

else {
int spare = 6 - source - dest;
moveTower(n-1, source, spare);
moveDisk(source, dest);
moveTower(n-1, spare, dest);

}
}

static void moveDisk (int source, int dest) {
System.out.println("Move disk from " + source

+ " to " + dest);
}

To make the program count the moves, modify moveTower to return the
required number of moves, as follows:

static int moveTower (int n,
int source, int dest) {

if (n == 1) {
moveDisk(source, dest);
return 1;

} else {
int spare = 6 - source - dest;
int moves1 = moveTower(n-1, source, spare);
moveDisk(source, dest);
int moves2 = moveTower(n-1, spare, dest);
return moves1 + 1 + moves2;

}
}

