Solutionsto Exercisesin Chapter 2

21

22

24

25

2.6

2.7

28

In the test case b = 2, n = 11, the simple power agorithm performs 11
multiplications, while the smart power algorithm performs 7 multiplications.

Algorithm 1.1 has time complexity O(1).

Themat ri xAdd method performs n® additions. Its time complexity is O(n?).

Themat ri xMul t method performs n® additions and n* multiplications. Its time
complexity is O(n).

To analyze Algorithm 2.16, count the number of characters required to render i to
baser. If i is poditive, the number of charactersislog; i + 1. If i is negative, the
number of characters is log;(abs(i)) + 2 (the extra character being ‘—'). The time
complexity is O(log(abs(i))).

To print agiven integer i to baser:

1. Set stothe empty string “”.

2. Set p to the absolute value of i.

3. Repeat the following until p = 0:
3.1. Let d bethedigit corresponding to (p modulo r).
3.2. Prependdtos.
3.3. Dividephbyr.

4. Ifi<0, prepend ‘— tos.

5. Prints.

6. Terminate.

This algorithm’ s time complexity is O(log(abs(i))).

To find the GCD of positive integers m and n (recursive version):

1. Let p bethe greater and g the lesser of mand n.
2. If pisamultiple of g:
2.1. Terminate with answer q.
3. If pisnot amultiple of g:
3.1. Let g bethe GCD of q and (p modulo q).
3.2. Terminate with answer g.

Algorithm 2.21 performs n multiplications. Its time complexity is O(n).
Method to calculate the factorial of n (recursive version):

static int factorial (int n) {
if (n==0)
return 1,
el se
return n * factorial (n-1);

}

To calculate the factoria of n (non-recursive version):

1. Setftol.

2. Fori=1, ..., n, repeat:
2.1. Multiply fbyi.

3. Terminate with answer f.

Method to calculate the factorial of n (non-recursive version):

Java Collections © 2001 D.A. Watt and D.F. Brown 2-1



static int factorial (int n) {

int f =1;

for (int i =1; i <=n; i++)
f*=1i;

return f;

}

2.9 Let the Fibonacci function be fib(n). Tabulate the first few Fibonacci numbers,
and the ratios of consecutive numbers:

n 0 1 2 3 4 5 6 7 8
fib(n) 1 1 2 3 5 8 13 21 34
fib(n)/fib(n-1) 100 200 150 167 160 163 162 162

Thus we can see that fib(n) = cb", where b= 1.62 and ¢ = 0.72.

Suppose that Algorithm 2.22 performs adds(n) additions. It is easy to see that
adds(n) = fib(n) — 1 = cb" — 1. The agorithm's time complexity is therefore
O(b").

To calculate the Fibonacci number of n (non-recursive version):

1 Ifn<si:
1.1. Terminate with answer 1.
2. Ifn>1:
2.1. Setoldfibto 1, and set fibto 1.
22. Fori=2,...,n,repeat:
2.2.1. Setoldfib and fib to fib and oldfib+fib, respectively.
2.3. Terminate with answer fib.

Method to calculate the Fibonacci number of n (recursive version):

static int fibonacci (int n) {

if (n<=1)
return 1,
el se

return fibonacci(n-1) + fibonacci(n-2);

}

Method to calculate the Fibonacci number of n (non-recursive version):

static int fibonacci (int n) {

if (n<=1)
return 1,
el se {
int oldfib =1, fib = 1;
for (int i =2; i <=n; i++) {
int newfib = oldfib + fib;
oldfib = fib; fib = newfib;
}

return fib;

}

2.10 Outline of program:

Java Collections © 2001 D.A. Watt and D.F. Brown 2-2



static void noveTower (int n,
int source, int dest) {

if (n==1)
nmoveDi sk(source, dest);
el se {

int spare = 6 - source - dest;
moveTower (n-1, source, spare);
nmoveDi sk(source, dest);
nmoveTower (n-1, spare, dest);
}
}

static void noveDi sk (int source, int dest) {
Systemout. println("Mve disk from" + source
+ " to " + dest);

}

To make the program count the moves, modify noveTower to return the
required number of moves, as follows:

static int noveTower (int n,
int source, int dest) {

if (n==1) {
nmoveDi sk(source, dest);
return 1,

} else {
int spare = 6 - source - dest;
int novesl = noveTower(n-1, source, spare);
nmoveDi sk(source, dest);
int noves2 = noveTower(n-1, spare, dest);
return novesl + 1 + noves2,

Java Collections © 2001 D.A. Watt and D.F. Brown 2-3



