Solutions to Exercises in Chapter 3

3.1 To return the greatest integer in the array a[left...right]:

1. Set greatest to $a[$ left $]$.
2. For $p=$ left $+1, \ldots$, right, repeat:
2.1. If $a[p]>$ greatest, set greatest to $a[p]$.
3. Terminate with answer greatest.

To return the position of the greatest integer in the array a[left...right]:

1. Set greatest to a[left], and set pos to left.
2. For $p=l e f t+1, \ldots$, right, repeat:
2.1. If $a[p]<$ greatest, set greatest to $a[p]$, and set pos to p.
3. Terminate with answer pos.

To sum the integers in the array $a[l e f t \ldots$...ight $]$:

1. Set sum to 0 .
2. For $p=$ left, \ldots, right, repeat:
2.1. Increment sum by $a[p]$.
3. Terminate with answer sum.

To count the number of odd and even integers in the array $a[l e f t \ldots r i g h t]$:

1. Set odd to 0 , and set even to 0 .
2. For $p=l e f t, \ldots$, right, repeat:
2.1. If $a[p]$ is odd, increment odd.
2.2. If $a[p]$ is even, increment even.
3. Terminate with answers odd and even.

To reverse the order of the integers in the array $a[$ left ...right $]$:

1. Set l to left, and set r to right.
2. While $l<r$, repeat:
2.1. Swap $a[l]$ with $a[r]$.
2.2. Increment l, and decrement r.
3. Terminate with answer true.
3.2 To test whether the array $a[l e f t \ldots r i g h t]$ is sorted in ascending order:
4. For $p=l e f t+1, \ldots$, right, repeat:
1.1. If $a[p-1]$ is greater than $a[p]$, terminate with answer false.
5. Terminate.

The number of comparisons is between 1 and $n-1$, i.e., $n / 2$ on average.
Method to test whether the array a[left...right] is sorted in ascending order:

```
static boolean isSorted (Comparable[] a,
    int left, int right) {
    for (int p = left+1; p <= right; p++) {
        if (a[p-1].compareTo(a[p]) > 0)
            return false;
    }
    return true;
}
```

3.3 To test whether the character array $a[l e f t \ldots$..right $]$ is a palindrome:

1. Set l to left, and set r to right.
2. While $l<r$, repeat:
2.1. If $a[l] \neq a[r]$, terminate with answer false.
2.2. Increment l, and decrement r.
3. Terminate with answer true.

The number of comparisons is between 1 and $n / 2$, i.e., about $n / 4$ on average. Therefore the algorithm's time complexity is $O(n)$. Its space complexity is $O(1)$.
Method to test whether the character array a[left...right] is a palindrome:

```
static boolean isPalindrome (char[] a,
                int left, int right) {
    int l = left, r = right;
    while (l < r) {
        if (a[l] != a[r]) return false;
        l++; r--;
    }
    return true;
}
```

3.4 To test whether the character array a[left...right $]$ is a palindrome, ignoring spaces and punctuation:

1. Set l to left, and set r to right.
2. While $l<r$, repeat:
2.1. If $a[l]$ is a space or punctuation, increment l.
2.2. If $a[r]$ is a space or punctuation, decrement r.
2.3. Otherwise (if neither $a[l]$ nor $a[r]$ is a space or punctuation):
2.3.1. If $a[l] \neq a[r]$, terminate with answer false.
2.3.2. Increment l and decrement r.
3. Terminate with answer true.
3.5 To be able to insert a value of any Java primitive type T into an array of type T [], we need eight different methods (since Java has eight primitive types). To be able to insert an object into an object array, we need one further method. In total we need nine methods.
3.6 If step 1 of Algorithm 3.6 were implemented by a for statement that scanned from left to right copying each component, the leftmost component would be copied into all other components.
3.7 The exact number of comparisons performed by Algorithm 3.18 depends on what step 2.1 does. If the subarray $a[l \ldots r]$ has an even number of components, step 2.1 cannot set mid to a value exactly midway between l and r; instead it must choose a value either (i) slightly closer to l than to r, or (ii) slightly closer to r than to l.

Target	banana	grape	plum	lychees	strawberry
No. of comparisons (i)	2	3	4	4	4
No. of comparisons (ii)	3	2	3	4	3

3.9 In linear search of a sorted array, it would be advantageous to search from right to left in circumstances when it is known that the target lies closer to the right than to the left of the array.
3.10 To delete val from the unsorted array a[left...right]:

1. For $p=l e f t, \ldots$, right, repeat:
1.1. If $v a l$ is equal to $a[p]$:
1.1.1. Copy $a[p+1 \ldots r i g h t]$ into $a[p \ldots r i g h t-1]$.
1.1.2. Make $a[r i g h t]$ unoccupied.
1.1.3. Terminate.
2. Terminate.

To delete $v a l$ from the sorted array $a[l e f t \ldots$...ight $]$:

1. For $p=$ left,\ldots, right, repeat:
1.1. If $v a l$ is equal to $a[p]$:
1.1.1. Copy $a[p+1 \ldots r i g h t]$ into $a[p \ldots r i g h t-1]$.
1.1.2. Make $a[r i g h t]$ unoccupied.
1.1.3. Terminate.
1.2. If $v a l$ is less than $a[p]$, terminate.
2. Terminate.

To insert val in the sorted array $a[$ left ...right $]$:

1. For $p=$ right,\ldots, left, repeat:
1.1. If val is less than $a[p]$:
1.1.1. Copy $a[p]$ into $a[p+1]$.
1.2. If $v a l$ is greater than or equal to $a[p]$:
1.2.1. Copy val into $a[p+1]$.
1.2.2. Terminate.
2. Copy val into $a[l e f t]$.
3. Terminate.
(Note: This algorithm overwrites $a[$ right +1$]$, assuming that it exists.)
To find the least component of the unsorted array a[left...right]:
4. Set least to a[left].
5. For $p=$ left $+1, \ldots$, right, repeat:
1.1. If $a[p]$ is less than least, set least to $a[p]$.
6. Terminate with answer least.

All these algorithms have time complexity $O(n)$.
3.11 The directory should be sorted by name, allowing the most frequently-called method searchByName to be implemented using binary search. Methods:

```
static String searchByName
                (DirectoryEntry[] dir,
                String targetName) {
    int l = 0, r = dir.length - 1;
    while (l <= r) {
        int m = (l + r)/2;
        int comp =
                targetName.compareTo(dir[m].name);
        if (comp == 0)
            return dir[m].number;
        else if (comp < 0)
            r = m - 1;
        else // comp > 0
            l = m + 1;
    }
    return null;
}
```

```
static String[] searchByNumber
                (DirectoryEntry[] dir,
                                    String targetNumber) {
    String[] names1 = new String[dir.length];
    int count = 0;
    for (int p = 0; p < dir.length; p++) {
        if (targetNumber.equals(dir[p].number))
                names1[count++] = dir[p].name;
    }
    if (count == 0)
        return null;
    else {
        String[] names2 = new String[count];
        System.arraycopy(names1, 0, names2, 0,
            count);
        return names2;
    }
}
```

3.13 To compute the union of $s 1[l e f t 1 \ldots$ right 1$]$ and $s 2[$ left $2 \ldots$..right 2$]$ in $s 3[$ left $3 \ldots]$:

1. Set i to left1, set j to left2, and set k to left.
2. While $i \leq$ rightl and $j \leq$ right 2 , repeat:
2.1. If $s 1[i]$ is equal to $s 2[j]$:
2.1.1. Copy $s l[i]$ into $s 3[k]$.
2.1.2. Increment i, j, and k.
2.2. Otherwise, if $s l[i]$ is less than $s 2[j]$:
2.2.1. Copy $s l[j]$ into $s 3[k]$.
2.2.2. Increment i and k.
2.3. Otherwise, if $s l[i]$ is greater than $s 2[j]$:
2.3.1. Copy $s 2[j]$ into $s 3[k]$.
2.3.2. Increment j and k.
3. While $i \leq$ right 1 , repeat:
3.1. Copy $s l[i]$ into $s 3[k]$.
3.2. Increment i and k.
4. While $j \leq$ right2, repeat:
4.1. Copy $s 2[j]$ into $s 3[k]$.
4.2. Increment j and k.
5. Terminate.

To compute the intersection of $s 1[l e f t 1 \ldots$ right 1$]$ and $s 2[l e f t 2 \ldots r i g h t 2]$ in s3[left3...]:

1. Set i to leftl, set j to left2, and set k to left.
2. While $i \leq$ rightl and $j \leq$ right 2 , repeat:
2.1. If $s 1[i]$ is equal to $s 2[j]$:
2.1.1. Copy $s l[i]$ into $s 3[k]$.
2.1.2. Increment i, j, and k.
2.2. Otherwise, if $s l[i]$ is less than $s 2[j]$: 2.2.1. Increment i.
2.3. Otherwise, if $s 1[i]$ is greater than $s 2[j]$:
2.3.1. Increment j.
3. Terminate.
3.15 To read values from the unsorted file f into a sorted array $a[0 \ldots]$ (version 1):
4. Set m to 0 .
5. While not at end of file f, repeat:
2.1. Read value val from f.
2.2. Copy val into $a[m]$.
2.3. Increment m.
6. Sort $a[0 \ldots m-1]$.
7. Terminate.

Step 2 performs 0 comparisons. If step 3 uses selection sort, it performs about $n^{2} / 2$ comparisons. Version 1 therefore performs about $n^{2} / 2$ comparisons.

To read values from the unsorted file f into a sorted array $a[0 \ldots]$ (version 2):

1. Set m to 0 .
2. While not at end of file f, repeat:
2.1. Read value val from f.
2.2. Insert val in the sorted array $a[0 \ldots m-1]$.
2.3. Increment m.
3. Terminate.

Step 2.2 would use the sorted-array insertion algorithm of Exercise 3.10 (above) This performs about $m / 2$ comparisons. Since m ranges from 0 to $n-1$, the total number of comparisons is $0+1 / 2+\ldots+(n-1) / 2=n(n-1) / 4 \approx n^{2} / 4$.

Both versions have time complexity $O\left(n^{2}\right)$, but version 2 is about twice as fast as version 1.
3.16 To sort an array of colors $a[$ left...right $]$ into the order red-white-blue:

1. Set r to left, set w to left, and set b to left.
2. While $b \leq$ right, repeat:
2.1. If $a[b]$ is blue:
2.1.1. Increment b.
2.2. If $a[b]$ is white:
2.2.1. If $b>w$, swap $a[b]$ with $a[w]$.
2.2.2. Increment w and b.
2.3. If $a[b]$ is red:
2.3.1. If $b>r$, swap $a[b]$ with $a[r]$.
2.3.2. If $b>w$, swap $a[b]$ with $a[w]$.
2.3.3. Increment r, w, and b.
3. Terminate

The loop invariant is:

This algorithm performs 1 color comparison and at most 4 copies per iteration, i.e., n color comparisons and at most $4 n$ copies in total. Its time complexity is $O(n)$.
3.17 Let $n_{1}=$ right $1-$ left $1+1, n_{2}=$ right $2-$ left $2+1$, and $n=n_{1}+n_{2}$.

To copy all values from unsorted arrays $a 1[$ left $1 \ldots$..rightl] and $a 2[$ left $2 \ldots$..right 2$]$ into sorted array $a 3[l e f t 3 \ldots]$ (version 1):

1. Concatenate al[left1 ...right1] and a2[left2...right2] into a3[left3...].
2. Sort a3[left $3 \ldots$...].
3. Terminate.

Step 1 performs 0 comparisons. If step 2 uses (say) selection sort, it performs about $n^{2} / 2$ comparisons. The total number of comparisons is therefore about $n^{2} / 2$ $=\left(n_{1}+n_{2}\right)^{2} / 2=n_{1}^{2} / 2+n_{2}^{2} / 2+n_{1} n_{2}$.

To copy all values from unsorted arrays $a 1[$ left $1 \ldots$ right 1$]$ and $a 2[$ left $2 \ldots$..right 2$]$
into sorted array $a 3[$ left $3 \ldots$...] (version 2):

1. Sort al[left $1 .$. right 1$]$.
2. Sort $a 2$ [left $2 \ldots$ right 2].
3. Merge $a 1[$ left $1 \ldots$ right 1$]$ and $a 2[$ left $2 \ldots$ right 2$]$ into $a 3[$ left $3 \ldots]$.
4. Terminate.

If steps 1 and 2 use selection sort, they perform about $n_{1}^{2} / 2$ and $n_{2}^{2} / 2$ comparisons, respectively. Step 3 performs about $n=n_{1}+n_{2}$ comparisons. The total number of comparisons is therefore about $n_{1}^{2} / 2+n_{2}^{2} / 2+n_{1}+n_{2}$.

For all but small values of n_{1} and $n_{2}, n_{1}+n_{2}<n_{1} n_{2}$. Therefore version 2 is faster than version 1 .
3.18 To find the position of the leftmost subarray of $a[0 \ldots n-1]$ that matches $b[0 \ldots m-$ 1] (assuming that $m \leq n$):

1. For $p=0, \ldots, n-m$, repeat:
1.1. If $a[p \ldots p+m-1]$ matches $b[0 \ldots m-1]$, terminate with answer p.
2. Terminate with answer none.

To determine whether $a[p \ldots p+m-1]$ matches $b[0 \ldots m-1]$:

1. For $d=0, \ldots, m-1$, repeat:
1.1. If $a[p+d]$ is unequal to $b[d]$, terminate with answer false.
2. Terminate with answer true.

The auxiliary algorithm performs between 1 and m comparisons, i.e., $(m+1) / 2$ comparisons on average. The main algorithm performs between 1 and n iterations, i.e., $(n+1) / 2$ iterations on average. Therefore it performs $(m+1)(n+1) / 4$ comparisons on average. Its time complexity is $O(m n)$.
3.20 Bubble sort method:

```
static void bubbleSort (Comparable[] a,
                int left, int right) {
    for (int i = 0; i <= right-left-1; i++) {
        for (int j = left+1; j <= right-i; j++) {
            int comp = a[j-1].compareTo(a[j]);
            if (comp > 0) {
                Comparable temp = a[j-1];
                a[j-1] = a[j]; a[j] = temp;
            }
        }
    }
}
```

The bubble-sort algorithm performs about $n^{2} / 2$ comparisons and (on average) about $n^{2} / 2$ copies (counting a swap as 2 copies). Thus it is slower than either selection sort or insertion sort, although all three have time complexity is $O\left(n^{2}\right)$.
3.21 Shell sort method:

```
static void shellSort (Comparable[] a,
                            int left, int right) {
    int gap = right - left + 1;
    do {
        gap = gap / 2;
        if (gap % 2 == 0) gap++;
        for (int i = gap; i <= right; i++) {
            Comparable current = a[i];
            int j = i - gap;
            while (j > left &&
                current.compareTo(a[j]) < 0) {
                a[j+gap] = a[j];
                j -= gap;
            }
            a[j+gap] = current;
        }
    } while (gap != 1);
}
```

