

Java Collections © 2001 D.A. Watt and D.F. Brown 7-1

Solutions to Exercises in Chapter 7

 7.2 Implementation of the auxiliary method to expand the array representing a queue:

private void expand () {
// Make the elems array longer.
 Object[] newElems = new Object[2*elems.length];
 int j = front;
 for (int i = 0; i < length; i++) {
 newElems[i] = elems[j++];
 if (j == elems.length) j = 0;
 }
 elems = newElems;
 front = 0; rear = length;
}

 7.3 We could drop instance variable rear, since its value can be computed from
front and length whenever required, using Equation 7.1. Modify the
addLast operation as follows:

public void addLast (Object elem) {
// Add elem as the rear element of this queue.
 if (length == elems.length) expand();
 int rear = (front + length) % elems.length;
 elems[rear] = elem;
 length++;
}

Also, remove all occurrences of rear in other operations.

(Note: We could similarly drop instance variable front. But we cannot drop
instance variable length, since it would be impossible to tell whether the queue
is empty or full when front and rear are equal.)

 7.4 It would be pointless to implement the queue ADT using a DLL, since none of
the operations needs to access any node’s predecessor.

 7.6 A UNIX pipe connecting process P1 to process P2 can be implemented by a queue
of bytes, q. Initially q is empty. Whenever P1 writes a byte to the pipe, that byte
is added to the rear of q. Whenever P2 reads a byte from the pipe, that byte is
removed from the rear of q.

(Note: Since processes P1 and P2 are concurrent, we must synchronize the queue
operations, i.e., ensure that only one operation is called at a time. If the
addLast and removeFirst operations were called at the same time, the
instance variables representing the queue would be left in an unpredictable state.)

 7.7 The keyboard driver can communicate with the application program via a queue
whose elements are characters. The driver adds characters to the rear of the
queue, and the application removes them from the front.

(Note: As in Exercise 7.6, we must synchronize the queue operations.)

To handle a keyboard (version that ignores all control characters):

Java Collections © 2001 D.A. Watt and D.F. Brown 7-2

1. Make character queue q empty.
2. Repeat indefinitely:
 2.1. Accept a character char from the keyboard.
 2.2. If char is a graphic character:
 2.2.1. Echo char to the screen.
 2.2.2. Add char to the rear of q.
 2.3. If char is a control character:
 2.3.1. Do nothing.

To handle a keyboard (version that handles DELETE but ignores all other control
characters):

1. Make character queue q empty.
2. Repeat indefinitely:
 2.1. Accept a character char from the keyboard.
 2.2. If char is a graphic character:
 2.2.1. Echo char to the screen.
 2.2.2. Add char to the rear of q.
 2.3. If char is DELETE:
 2.3.1. Backspace the screen cursor, blanking out the character
 there.
 2.3.2. Remove the rearmost character of q.
 2.4. If char is a control character other than DELETE:
 2.4.1. Do nothing.

(Note: Step 2.3.2 removes the rearmost (last) element of the queue. But that is
not an operation of the standard queue ADT, so we must instead use a special
kind of queue, namely the double-ended queue of Exercise 7.8.)

 7.8 A contract for a deque ADT is shown in Program S7.1.

A DLL implementation of deques is outlined in Program S7.2. With this
implementation, all deque operations have time complexity O(1).

 7.9 The algorithm to reorder a train from input to output, using siding, is essentially
the same as the algorithm of Exercise 6.13 (to reorder a train from input to
output, using spur). The difference is that siding is a queue, so the step “Move
car c′ from input to siding” should be interpreted as moving a car to the rear of
siding, whereas “Move car c′ from siding to input” should be interpreted as
moving a car from the front of siding.

 7.10 Suppose that we have s sidings, numbered 0, …, s–1. Then we can assign cars to
sidings according to their car numbers. For example, we can assign car c to the
siding numbered (c modulo s). On average, each siding will contain only about
1/s times as many cars as in Exercise 6.13, and the excess number of car
movements will be reduced by about 1/s.

public interface Deque {

 // Each Deque object is a deque (double-ended queue) whose elements are
 // objects.

 //////////// Accessors ////////////

 public boolean isEmpty ();
 // Return true if and only if this deque is empty.

 public int length ();
 // Return this deque’s length.

 public Object getFirst ();
 // Return the element at the front of this deque. Throw a
 // NoSuchElementException if this deque is empty.

Java Collections © 2001 D.A. Watt and D.F. Brown 7-3

 public Object getLast ();
 // Return the element at the rear of this deque. Throw a
 // NoSuchElementException if this deque is empty.

 //////////// Transformers ////////////

 public void clear ();
 // Make this deque empty.

 public void addFirst (Object elem);
 // Add elem as the front element of this deque.

 public void addLast (Object elem);
 // Add elem as the rear element of this deque.

 public Object removeFirst ();
 // Remove and return the front element from this deque. Throw a
 // NoSuchElementException if this deque is empty.

 public Object removeLast ();
 // Remove and return the rear element from this deque. Throw a
 // NoSuchElementException if this deque is empty.

}

Program S7.1 A contract for a deque ADT.

public class LinkedDeque implements Deque {

 // Each LinkedDeque object is a deque (double-ended queue) whose
 // elements are objects.

 // This deque is represented as follows: its length is held in length;
 // front and rear are links to the first and last nodes of a DLL
 // containing its elements.
 private DLLNode front, rear;
 private int length;

 //////////// Constructor ////////////

 public LinkedDeque () {
 // Construct a deque, initially empty.
 front = rear = null;
 length = 0;
 }

 //////////// Accessors ////////////

 …

 public Object getLast () {
 // Return the element at the rear of this deque. Throw a
 // NoSuchElementException if this deque is empty.
 if (rear == null)
 throw new NoSuchElementException();
 return rear.element;
 }

Program S7.2 Outline of implementation of unbounded deques using DLLs
(continued on next page).

Java Collections © 2001 D.A. Watt and D.F. Brown 7-4

 //////////// Transformers ////////////

 …

 public void addFirst (Object elem) {
 // Add elem as the front element of this deque.
 DLLNode newest = new DLLNode(elem, null, null);
 if (front != null)
 front.pred = newest;
 else
 rear = newest;
 front = newest;
 length++;
 }

 public Object removeLast () {
 // Remove and return the rear element of this deque. Throw a
 // NoSuchElementException if this deque is empty.
 if (rear == null)
 throw new NoSuchElementException();
 Object rearElem = rear.element;
 rear = rear.pred;
 if (rear == null) front = null;
 length--;
 return rearElem;
 }

}

Program S7.2 Outline of implementation of unbounded deques using DLLs (continued).

