Solutionsto Exercisesin Chapter 7

7.2 Implementation of the auxiliary method to expand the array representing a queue:

private void expand () {
/'l Maketheel ens array longer.
bj ect[] newkEl ems = new Obj ect[2*el ens. | engt h];

int j = front;
for (int i =0; i <length; i++) {
newkl ens[i] = elens[j++];
if (j == -elens.length) | = 0;
}
el ems = newkEl ens;
front = 0; rear = length;

}

7.3 We could drop instance variable r ear , since its value can be computed from
front and | ength whenever required, using Equation 7.1. Modify the
addLast operation asfollows:

public void addLast (Ohject elem {
/1 Add el emastherear element of this queue.
if (length == elenms.length) expand();
int rear = (front + length) % el ens. | ength;
elems[rear] = elem
| engt h++;

}

Also, remove all occurrences of r ear in other operations.

(Note: We could similarly drop instance variable f r ont . But we cannot drop
instance variable | engt h, since it would be impossible to tell whether the queue
isempty or full whenf ront and r ear areequal.)

7.4 It would be pointless to implement the queue ADT using a DLL, since none of
the operations needs to access any node's predecessor.

7.6 A UNIX pipe connecting process P; to process P, can be implemented by a queue
of bytes, ¢. Initially ¢ is empty. Whenever P; writes a byte to the pipe, that byte
is added to the rear of q. Whenever P, reads a byte from the pipe, that byte is
removed from the rear of g.

(Note: Since processes P; and P, are concurrent, we must synchronize the queue
operations, i.e., ensure that only one operation is called at a time. If the
addLast and renpveFi rst operations were called at the same time, the
instance variables representing the queue would be left in an unpredictable state.)

7.7 The keyboard driver can communicate with the application program via a queue
whose elements are characters. The driver adds characters to the rear of the
gueue, and the application removes them from the front.

(Note: Asin Exercise 7.6, we must synchronize the queue operations.)

To handle akeyboard (version that ignores all control characters):

Java Collections © 2001 D.A. Watt and D.F. Brown 7-1

7.8

7.9

7.10

1. Make character queue g empty.
2. Repeat indefinitely:
2.1. Accept acharacter char from the keyboard.
2.2. If charisagraphic character:
2.2.1. Echo char to the screen.
2.2.2. Add char to therear of ¢.
2.3. If char isacontrol character:
2.3.1. Do nothing.

To handle a keyboard (version that handles DELETE but ignores all other control
characters):

1. Make character queue g empty.
2. Repeat indefinitely:
2.1. Accept acharacter char from the keyboard.
2.2. If charisagraphic character:
2.2.1. Echo char to the screen.
2.2.2. Add char totherear of ¢.
2.3. If char isDELETE:
2.3.1. Backspace the screen cursor, blanking out the character
there.
2.3.2. Remove the rearmost character of g.
2.4. If char isacontrol character other than DELETE:
2.4.1. Do nothing.

(Note: Step 2.3.2 removes the rearmost (last) element of the queue. But that is
not an operation of the standard queue ADT, so we must instead use a special
kind of queue, namely the double-ended queue of Exercise 7.8.)

A contract for adeque ADT is shown in Program S7.1.

A DLL implementation of deques is outlined in Program S7.2. With this
implementation, all deque operations have time complexity O(1).

The agorithm to reorder a train from input to output, using siding, is essentially
the same as the algorithm of Exercise 6.13 (to reorder a train from input to
output, using spur). The difference is that siding is a queue, so the step “Move
car ¢’ from input to siding” should be interpreted as moving a car to the rear of
siding, whereas “Move car ¢’ from siding to input” should be interpreted as
moving a car from the front of siding.

Suppose that we have s sidings, numbered O, ..., s—1. Then we can assign carsto
sidings according to their car numbers. For example, we can assign car ¢ to the
siding numbered (¢ modulo s). On average, each siding will contain only about
1/s times as many cars as in Exercise 6.13, and the excess number of car
movements will be reduced by about 1/s.

public interface Deque {

/1 Each Deque object is adeque (double-ended queue) whose elements are
/] objects.

FHEEEEEETTTD Accessors [/ TTTTTTTTT

public bool ean isEnmpty ();
/' Returntrueif and only if this deque is empty.

public int length ();
/' Return this deque’s length.

public Object getFirst ();
/' Return the element at the front of this deque. Throw a
/1 NoSuchEl ement Except i on if thisdequeis empty.

Java Collections © 2001 D.A. Watt and D.F. Brown 7-2

public Object getlLast ();
/' Return the element at the rear of this deque. Throw a
/1 NoSuchEl ement Except i on if thisdequeis empty.

FEEEEEEEEEETD Transformers 11111111

public void clear ();
/' Make this deque empty.

public void addFirst (Cbject elem;
/1 Add el emasthe front element of this deque.

public void addLast ((bject elen;
/1 Add el emastherear element of this deque.

public Object renmoveFirst ();
/I Remove and return the front element from this deque. Throw a
/1 NoSuchEl ement Except i on if thisdequeis empty.

public Object renovelLast ();
/I Remove and return the rear element from this deque. Throw a
/1 NoSuchEl ement Except i on if thisdequeis empty.

Program S7.1 A contract for adeque ADT.

public class LinkedDeque inpl ements Deque {

/1 EachLi nkedDeque object is adeque (double-ended queue) whose
/'l elements are objects.

/'l Thisdegueisrepresented asfollows: itslengthisheld inl engt h;
/1 front andrear arelinksto thefirst and last nodes of aDLL
/'] containing its elements.

private DLLNode front, rear;

private int |ength;

FHEEEErrrrl Consructor /11111111111

public Li nkedDeque () {

/' Construct adeque, initially empty.
front = rear = null;
| ength = 0;

}

FHEEEEEETTTD Accessors [T 1TTTTTTTT

public Object getLast () {
/' Return the element at the rear of this deque. Throw a
/1 NoSuchEl ement Except i on if thisdequeis empty.
if (rear == null)
t hrow new NoSuchEl enent Excepti on();
return rear. el enent;

}

Program S7.2 Outline of implementation of unbounded deques using DLLs
(continued on next page).

Java Collections © 2001 D.A. Watt and D.F. Brown 7-3

FEEEEEEEEEETD Transformers 11111111

public void addFirst (Object elem {
/1 Add el emasthe front element of this deque.
DLLNode newest = new DLLNode(elem null, null);

if (front !'= null)
front.pred = newest;
el se

rear = newest;
front = newest;
| engt h++;

}

public Object renovelLast () {
/I Remove and return the rear element of this deque. Throw a
/1 NoSuchEl enment Except i on if thisdequeis empty.

if (rear == null)

t hrow new NoSuchEl enent Excepti on();

bj ect rearElem = rear. el enent;

rear = rear.pred,

if (rear == null) front = null;

| engt h--;

return rearEl em

}

Program S7.2 Ouitline of implementation of unbounded deques using DLLS (continued).

Java Collections © 2001 D.A. Watt and D.F. Brown

