
Java Collections © 2001 D.A. Watt and D.F. Brown 11-1

Solutions to Exercises in Chapter 11

 11.2 Figure S11.1 shows how the maps Roman, NAFTA, and EC would be
represented by arrays with maxcard = 10, and how the maps of Figure 12.3
would be represented by arrays with maxcard = 12.

 11.3 Figure S11.2 shows how the maps of Exercise 11.2 would be represented by
SLLs.

Figure S11.1 Representation of maps using arrays (with maxcard = 10 or 12).

Figure S11.2 Representation of maps using SLLs.

 11.3 Figure S11.3 shows how the maps of Exercise 11.2 might be represented by
BSTs. (The exact shape of each BST depends on the order in which the entries
were added.)

6 card=70 1 2 3 4 5
L
50

M
1000

V
5

X
10

 I
1

D
500

C
100

8

9

6 7 0 1 2 card=3 4 5
 US

dollar
MX
peso

CA
dollar

8

9

card=6 7 0 1 2 3 4 5
IT
lira

LU
franc

NL
guilder

 FR
franc

DE
mark

BE
franc

8

9

Roman

NAFTA

EC

6 7 0 1 2 3 4 5
F
9

I
53

Kr
36

Ne
10

Xe
54

Cl
17

Br
35

Ar
18

card=8

9

10

11

6 7 0 1 2 3 4 5
Cs
55

H
1

He
2

K
19

Li
3

Ca
20

Be
4

Ba
56

8
Mg
12

9
Na
11

10
Rb
37

11
Sr
38

card=12

Fig.12.3(a)

Fig.12.3(b)

C
100

D
500

X
10

I
1

L
50

M
1000

V
5

CA
dollar

MX
peso

US
dollar

BE
franc

DE
mark

FR
franc

IT
lira

LU
franc

NL
g’der

Roman

NAFTA

EC

Xe
54

Ar
18

Br
35

Ne
10

Cl
17

F
9

I
53

Kr
36

Li
3

Ba
56

Be
4

K
19

Ca
20

Cs
55

H
1

He
2

Mg
12

Na
11

Rb
37

Sr
38

Fig.12.3(a)

Fig.12.3(b)

Java Collections © 2001 D.A. Watt and D.F. Brown 11-2

Figure S11.3 Representation of maps using BSTs.

C
100

I
1

V
5

D
500

L
50

X
10

M
1000

Roman

CA
dollar

US
dollar

MX
peso

NAFTA

BE
franc

DE
mark

FR
franc

IT
lira

NL
guilder

LU
franc

EC

Xe
54

Cl
17

F
9

Ne
10

Kr
36

I
53

Br
35

Ar
18

Fig.12.3(a)

Li
3

Be
4

H
1

He
2

K
19

Cs
55

Ba
56

Ca
20

Na
11

Mg
12

Rb
37

Sr
38

Fig.12.3(b)

Java Collections © 2001 D.A. Watt and D.F. Brown 11-3

 11.5 Alternative Map interface in which mutative transformers are replaced by
applicative transformers:

public interface Map {

// Each Map object is a map in which the keys and values are
// arbitrary objects.

//////////// Accessors ////////////

…

//////////// Transformers ////////////

…

public Map remove (Object key);
// Return the new map obtained by removing the entry with key
// (if any) from this map.

public Map overlay1 (Object key, Object val);
// Return the new map obtained by overlaying this map with the
// single entry ‹key, val›. (Throw a ClassCastException if
// this map cannot contain a key with the class of key.)

public Map overlay (Map that);
// Return the new map obtained by overlaying this map with that.

}

Implement the remove operation in the ArrayMap class as follows:

public Map remove (Object key) {
ArrayMap that = this.clone();
if (key instanceof Comparable) {

int pos = that.search((Comparable) key);
if (key.equals(that.entries[pos].key)) {

for (int i = pos+1; i < that.card; i++)
that.entries[i-1] = that.entries[i];

that.entries[--that.card] = null;
}

}
return that;

}

This assumes that ArrayMap is made to implement the Cloneable interface.
Implement the overlay1 and overlay operations similarly by first creating a
clone of this map and then updating the clone accordingly.

Implement the applicative transformers in the LinkedMap and BSTMap classes
in similar fashion.

 11.6 The complete implementation of the IntKeyMap class can be found at the
companion Web site.

 11.7 If bounded maps were represented by unsorted arrays, the modifications to the
Java implementation would be straightforward.

The algorithms and their complexities are summarized in Table S11.4.

Java Collections © 2001 D.A. Watt and D.F. Brown 11-4

Table S11.4 Implementation of bounded maps using unsorted arrays: summary of algorithms
(where n, n1, and n2 are the cardinalities of the maps involved).

Operation Algorithm Time complexity

get linear search O(n)
remove linear search plus deletion O(n)
put linear search plus insertion O(n)
equals repeated linear search O(n1n2)
putAll repeated insertions O(n1n2)

 11.10 An array or SLL representation would be suitable for a map of font names to
fonts, since the number of entries is likely to be small.

If a font is identified by a font name, a size, and a style, we could introduce a
simple class Typeface containing this information:

public class Typeface {
public String fontName;
public int size;
public String style;

}

and then create a map whose keys are Typeface objects and whose values are
fonts.

Alternatively, we could create a map whose keys are font names and whose
values are themselves maps; in each of these maps the keys are sizes and the
values are again maps; in each of the latter maps the keys are styles and the
values are fonts.

 11.11 The java.util.Set and java.util.TreeSet classes share the same
tree representation, in which each node has a key field and a value field. In the
representation of a set, the key fields contain the members and the value fields
are ignored. The set operations are implemented in terms of map operations as
shown in Table S11.5. (Some trivial operations are omitted.)

The main advantage is to avoid duplication of (rather complex) code.

The main disadvantage is waste of space in the representation of a set: the value
fields are redundant.

Table S11.5 Set operations implemented in terms of map operations
(where set s is represented by map m).

Set operation Map operation
s.contains(x) m.containsKey(x)

s.equals(s2) m.equals(m2)

s.containsAll(s2) Traverse m2, and for each key x test m.containsKey(x).
s.add(x) m.put(x, null)

s.remove(x) m.remove(x)

s.addAll(s2) m.putAll(m2)

s.removeAll(s2) Traverse m2, and for each key x call m.remove(x).
s.retainAll(s2) Traverse m, and for each key x such that m2.containsKey(x)

returns false call m.remove(x).
s.iterator() m.keySet().iterator()

Java Collections © 2001 D.A. Watt and D.F. Brown 11-5

 11.12 We can represent a list of length n by a map whose keys are Integer objects,
ranging from Integer(0) through Integer(n–1). The list operations are
then implemented by map operations as shown in Table S11.6.

The time complexities of the list operations depend on the underlying map
representation. Table S11.6 assumes a well-balanced BST representation. Even
with that optimistic assumption, this is clearly a very inefficient representation of
lists.

Table S11.6 List operations implemented in terms of map operations
(where list l is represented by map m).

 11.13 Enhanced Map interface:

public interface Map {

// Each Map object is a map in which the keys and values are
// arbitrary objects.

//////////// Accessors ////////////

…

public boolean containsKey (Object key);
// Return true if and only if this map contains an entry whose key
// is key.

public boolean containsValue (Object val);
// Return true if and only if this map contains an entry whose value
// is val.

//////////// Transformers ////////////

…

}

Implementation of these operations in the ArrayMap class:

public boolean containsKey (Object key) {
return (get(key) != null);

}

List operation Map operation Time complexity
(well-balanced
BST)

l.get(i) m.get(new Integer(i)) O(log n)
l.equals(l2) m.equals(m2) O(n2 log n)
l.set(i, x) m.put(new Integer(i), x) O(log n)
l.add(i, x) for (int k = m.size()-1; k>=i; k--)

m.put(new Integer(k+1),
m.remove(new Integer(k)));

m.put(new Integer(i), x)

O(n)

l.add(x) m.put(new Integer(m.size()), x) O(log n)
l.addAll(l2) int n = m.size();

for (int k = 0; k < m2.size(); k++)
m.put(new Integer(n+k),

m2.get(new Integer(k)));

O(n2 log n)

l.remove(i) m.remove(new Integer(i)) O(log n)

Java Collections © 2001 D.A. Watt and D.F. Brown 11-6

public boolean containsValue (Object val) {
for (int p = 0; p < card; p++) {

if (val.equals(entries[p].value))
return true;

}
return false;

}

(Note: The containsKey operation can use binary search, but the
containsValue operation must use linear search.)

Implementation of these operations in the LinkedMap class:

public boolean containsKey (Object key) {
return (get(key) != null);

}

public boolean containsValue (Object val) {
for (LinkedMap.Entry curr = first;

curr != null; curr = curr.succ) {
if (val.equals(curr.value))

return true;
}
return false;

}

Implementation of these operations in the BSTMap class:

public boolean containsKey (Object key) {
return (get(key) != null);

}

public boolean containsValue (Object val) {
return subtreeContainsValue(root, val);

}

private static boolean subtreeContainsValue (
BSTMapEntry top, Object val) {

// Return true if and only if the subtree whose topmost node is top
// contains an entry whose value is val.
if (top == null)

return false;
else if (val.equals(top.value))

return true;
else

return subtreeContainsValue(top.left, val)
|| subtreeContainsValue(top.right, val);

}

 11.14 Enhanced Map interface:

public interface Map {

// Each Map object is a map in which the keys and values are
// arbitrary objects.

//////////// Accessors ////////////

…

//////////// Transformers ////////////

…

public Map subMap (Object key1, Object key2);
// Return a map containing just those entries of this map whose keys
// are not less than key1 and not greater than key2.

Java Collections © 2001 D.A. Watt and D.F. Brown 11-7

}

Implementation of this operation in the ArrayMap class:

public Map subMap (Object key1, Object key2) {
Comparable k1 = (Comparable) key1,

k2 = (Comparable) key2;
int p1 = search(k1), p2 = search(k2);
if (! k2.equals(entries[p2].key)) p2--;
Map that = new ArrayMap(p2-p1+1);
for (int p = p1; p <= p2; p++)

that.put(entries[p].key, entries[p].value);
return that;

}

Implementation of this operation in the LinkedMap class:

public Map subMap (Object key1, Object key2) {
Map that = new LinkedMap();
Comparable k1 = (Comparable) key1,

k2 = (Comparable) key2;
if (k1.compareTo(k2) >= 0) {

int comp1 = -1, comp2 = -1;
for (LinkedMap.Entry curr = first;

curr != null; curr = curr.succ) {
if (comp1 < 0)

comp1 = curr.key.compareTo(k1);
if (comp1 >= 0) {

comp2 = curr.key.compareTo(k2);
if (comp2 > 0) break;
that.put(curr.key, curr.value);

}
}

}
return that;

}

Implementation of this operation in the BSTMap class:

public Map subMap (Object key1, Object key2) {
Map that = new BSTMap();
Comparable k1 = (Comparable) key1,

k2 = (Comparable) key2;
if (k1.compareTo(k2) >= 0)

addFromSubtree(root, k1, k2, that);
return that;

}

Java Collections © 2001 D.A. Watt and D.F. Brown 11-8

private static void addFromSubtree (
BSTMapEntry top,
Comparable k1, Comparable k2
Map that) {

// In the subtree whose topmost node is top, add to that just
// those entries whose keys are not less than k1 and not greater than
// k2.
if (top == null)

return;
else {

int comp1 = top.key.compareTo(k1),
comp2 = top.key.compareTo(k2);

if (comp1 >= 0 && comp2 <= 0)
that.add(top.key, top.value);

if (comp1 > 0)
addFromSubtree(top.left, k1, k2, that);

if (comp2 < 0)
addFromSubtree(top.left, k1, k2, that);

}
}

 11.15 We can represent a multimap in the same manner as an ordinary map, except that
each key is associated with a set of values. Figures S11.7, S11.8, and S11.9
illustrate sorted array, sorted SLL, and BST representations of a multimap. In
each case the set of values associated with a particular key is represented by an
unsorted SLL, which is adequate if it can be assumed that multiple entries with
the same key will be relatively uncommon.

Figure S11.7 Representation of a multimap using a sorted array.

Figure S11.8 Representation of a multimap using a sorted SLL.

keys=6 7
BE
0 1

DE
2

FR
3
IT

4 5
LU NL country language

BE Flemish
BE French
DE German
FR French
IT Italian
LU French
NL Dutch French Flemish

Dutch
French

Italian
French

German

BE DE FR

country language
BE Flemish
BE French
DE German
FR French
IT Italian
LU French
NL Dutch

French Flemish

Dutch
French

Italian
French

German

IT LU NL

Java Collections © 2001 D.A. Watt and D.F. Brown 11-9

Figure S11.9 Representation of a multimap using a BST.

country language
BE Flemish
BE French
DE German
FR French
IT Italian
LU French
NL Dutch

French Flemish

Dutch
French

Italian
French

German

IT

DE

BE FR LU

NL

