Solutionsto Exercisesin Chapter 12

121 Figure S12.1(a) shows the effect of successively adding student identifiers to a

A WO DN PP O

[p[e[e[e[e[//[e]e[e]e]e]|Z

95
96
97
98
99

CBHT.

The number of comparisons when the CBHT is searched for each key is:

000014 990021 990019 970036 000015 970012 970023
2 2 1 3 1 2 1

The average number of comparisonsis (2+2+1+3+1+2+1)/7 = 1.7.

Figure S12.1(b) shows the effect of deleting 000014 from the CBHT.

(b)
1000015 ¢—-000014 | o[e]
1| @
2] @]
)
a[e]
N
95(e]|
96| e
—~{970023 ¢|—-{970012¢|—-{970036 ¢| 97| ®1-#-{970023 o|—»-{9700126]—>-[070036¢|
98| e
990019 ¢}—-l000021 ¢| 99 | &—-090019¢|—»-/990021 o]

Figure S12.1 Effect of (a) successive insertions, and (b) adeletion, in a CBHT
(m =100, hash(id) = value of first two digits of id).

(€Y ()

0 000014 0| former
1]970012 1]970012
2 2
3| 970023 3| 970023
4 4
5| 000015 5| 000015
6 6
7 7
8| 990019 8| 990019
9 9

§ §
95 95
96 96
971 970036 971 970036
98 98
991990021 991990021

Figure S12.2 Effect of (a) successive insertions, and (b) adeletion, in a doubly-hashed OBHT

(m =100, hash(id) = value of first two digits of id, step(id) = value of last digit of id).

12.2 Figure S12.2(a) shows the effect of successively adding student identifiers to a

doubly-hashed OBHT.

Java Collections © 2001 D.A. Watt and D.F. Brown 12-1

The number of comparisons when the OBHT is searched for each key is:

000014 990021 990019 970036 000015 970012 970023
1 1 2 1 2 3 3

The average number of comparisonsis (1+1+2+1+2+3+3)/7 = 1.9.
Figure S12.2(b) shows the effect of deleting 000014 from the OBHT.

12.3 If the keys are flight codes, and up to 200 entries are expected, we could choose a

CBHT with:
m = 269
hash(code) = (weighted sum of characters of code) modulo 269

The chosen number of buckets is prime. The load factor is up to 200/269 = 0.74.
The chosen hash function will distribute the keys quite uniformly among the
buckets.

(Note: A hash function that used only the serial number would be inferior, since
there are likely to be patterns in the serial numbers used. A hash function that
used only the airline code would be even worse, since the hash table might
contain entries for few airlines, or even only one airline!)

A doubly-hashed OBHT would also be suitable. The second hash function could
be step(code) = value of last digit of code + 2.

124 In an analysis of the CBHT search algorithm, if we assume that no bucket is
occupied by more than five entries, the maximum number of comparisonsis 5.

If instead we assume that all the entries are distributed (evenly) over ten buckets,
the maximum number of comparisonsis n/10.

The algorithm’s best-case and worst-case time complexities are still O(1) and
O(n), respectively.

12,5 If the keys are Web server names, a hash function that used only the first six
characters would be bad because there is a strong pattern in server names. nearly
all have the prefix “www.”.

A more suitable hash function would be;
hash(name) = (weighted sum of characters of name) modulo m

This could be further improved by ignoring the prefix of name.

12.6 Theauxiliary expand method in the OBHT class can be implemented as follows.
First make bucket s refer to a new and longer array, in which every bucket is
never-occupied. Then take every occupied entry in the old array, and re-insert
that entry using the i nsert method. (This works correctly because both the
i nsert method and the auxiliary hash method access bucket s, which now
refersto the new array.)

private void expand () {
/1 Expand the number of buckets, rehashing all existing entries.
Bucket Entry[] ol dBuckets = buckets;
i nt newLength = ol dBuckets. | ength*3/2;
buckets = new Bucket Entry[newLengt h] ;
| oad = O;
for (int b = 0; b < oldBuckets.length; b++) {
Bucket Entry ol dEntry = ol dBucket s[b];
if (oldEntry !'= null
&% ol dEntry ! = Bucket Entry. FORVER)
insert(ol dEntry. key, ol dEntry. val ue);
}
}

(Note: The above implementation simply multiplies the number of buckets by

Java Collections © 2001 D.A. Watt and D.F. Brown 12-2

3/2. The resulting number of buckets might be nonprime. A possible
improvement would be to find the smallest prime number not less than 3/2 times
the old number of buckets.)

Thei nsert method in the OBHT class is easily modified to make it limit the
load factor to 0.75, as follows (change from Program 12.18 italicized):

public void insert (Object key, Object val) {
/'l Insert theentry <key, val > into this OBHT.
Bucket Entry newkntry =
new Bucket Entry(key, val);
int b = hash(key);
for (;;) {
Bucket Entry ol dEntry = bucket s[b];
if (oldEntry == null) {
if (++load > buckets.length*3/4) {
expand();
b = hash(key);
conti nue;

}
buckets[b] = newEntry;
return;

} else if (oldEntry == Bucket Entry. FORMVER

| | key.equal s(ol dEntry. key)) {

buckets[b] = newEntry;
return;

} else
b = (b + 1) % buckets.|ength;

}

}

12.7 1t makes sense to seek a perfect hash function only when the set of keys is fixed
and known by the programmer. (The idea of a perfect function was invented by a
compiler writer, who wanted a hash table to contain the set of keywords of the C
programming language.)

A perfect hash function guarantees no collisions, so we can simplify the hash
table algorithms (and code) by eliminating collision resolution.

A perfect hash function for {CA, MX, US} is:

m =3

hash(ctry) = (first letter of ctry—"A’) /9
A perfect hash function for { AT, BE, DE, DK, ES, FI, FR, GR, IE, IT, LU, NL,
PT, SE, UK} is:

m =19

hash(ctry) = (3 x (first letter of ctry —*A’)

— (second letter of ctry —‘A’) / 10) modulo 19

12.8 The CBHT class augmented by an unordered iterator is outlined in Program
S12.3.

12.9 The OBHT class augmented by an unordered iterator is outlined in Program
S12.4.

Java Collections © 2001 D.A. Watt and D.F. Brown 12-3

public class CBHT {
private Bucket Node[] buckets;

public Iterator iterator () {
return new CBHT. Unorderedlterator();

}
1111111 Innerclassfor CBHT unordered iterators /////1///

private class Unorderedlterator
i npl enents lterator {

/1 A CBHT. Unor der edl t er at or object isan iterator that
/1 will visit al entries of this CBHT, in no particular order.

/I Thisiterator is represented by alink to the node containing the
/'l next entry to be visited, pl ace, together with the index of

/I the bucket containing that node, b.

private Bucket Node pl ace;

private int b;

public Unorderedliterator () {
fi ndNext Cccupi edBucket (0);
}

publ i c bool ean hasNext () {
return (b < buckets.|ength);
}

public Object next () {
if (b == buckets.|ength)
t hrow new NoSuchEl enent Excepti on();
oj ect nextEntry = pl ace;
pl ace = pl ace. succ;
if (place == null)
fi ndNext Cccupi edBucket (b+1);
return nextEntry;

}

private void findNextQccupi edBucket (
int from {
for (b = from b < buckets.length; b++) {
pl ace = buckets[b];
if (place !'= null) break;
}
}

Program S12.3 A CBHT unordered iterator.

Java Collections © 2001 D.A. Watt and D.F. Brown 12-4

public class OBHT {
private BucketEntry[] buckets;

public Iterator iterator () {
return new OBHT. Unorderedlterator();

}
1111111 Innerclassfor OBHT unordered iterators //////1/

private class Unorderedlterator
i mpl enents lterator {

/1 AnOBHT. Unor der edl t er at or object isan iterator that
/1 will visit all entries of this OBHT, in no particular order.

/I Thisiterator is represented by the bucket index of the next
/1 entry to bevisited, b.
private int b;

public Unorderedliterator () {
fi ndNext Cccupi edBucket (0);
}

publ i c bool ean hasNext () {
return (b < buckets.|ength);
}

public Object next () {
if (b == buckets.|ength)
t hrow new NoSuchEl enment Excepti on();
oj ect nextEntry = buckets[b];
fi ndNext Cccupi edBucket (b+1);
return nextEntry;

}

private void findNextQccupi edBucket (
int from {
for (b =from b < buckets.length; b++) {
Bucket Entry entry = buckets[b];
if (entry !'= null
&% entry ! = Bucket Ent ry. FORVER)
br eak;

Program S12.4 An OBHT unordered iterator.

12.11 The OBHT class augmented by an ascending iterator is outlined in Program
S12.5.

An important disadvantage of this implementation is that the iterator will visit the
entries that were in the hash table at the time the iterator was created. The
iterator will fail to ‘notice’ any subsequent insertions or deletions.

Java Collections © 2001 D.A. Watt and D.F. Brown 12-5

public class OBHT {
private BucketEntry[] buckets;

public Iterator iterator () {
return new OBHT. Ascendi nglterator();

}
[111111] Innerclassfor OBHT ascending iterators ////1//]

private class Ascendi nglterator
i mpl enents lterator {

/1 AnOBHT. Ascendi ngl t er at or object isan iterator that
/1 will visit all entries of this OBHT, in ascending order.

/I Thisiterator is represented by a sorted array of entries,

/1 entries[0...count —1], together with the index of the next
/'] entry to bevisited, pl ace.

private BucketEntry[] entries;

private int count, place;

public Ascendinglterator () {
entries = new Bucket Entry[buckets.|ength];
count = O;
for (int b =0; b < buckets.length; b++) {
Bucket Entry entry = buckets[b];
if (entry !'= null
&% entry ! = Bucket Entry. FORVER) {
count ++;
... Il Insertentry intoentries[0...count —1],
/1 keeping the subarray sorted.
}
}
pl ace = 0;

}

public bool ean hasNext () {
return (place < count);
}

public Object next () {
if (place == count)
t hrow new NoSuchEl enment Excepti on();
return entries[place++];

}

Program S12.5 An OBHT ascending iterator.

Java Collections © 2001 D.A. Watt and D.F. Brown 12-6

