Solutionsto Exercisesin Chapter 13

13.2 The effect of successive additions to a priority queue represented by a sorted
SLL, an unsorted SLL, and a heap are shown in Figures S13.1, S13.2, and S13.3,
respectively.

13.3 The effect of successive additions to a priority queue represented by a sorted

SLL, an unsorted SLL, and a heap are shown in Figures S13.1, S13.2, and S13.3,
respectively.

After adding D: E_>
After adding G: E»@_,

After addingA: [e]—{ Ae]l—{ De}»[G

After adding E: E|_>| Ael—»l Dol Eol»] Go]

Afteradding B: [e]—»] Ae}—[B[Del—»] Ee]»{ Go|

After addingC: [e]—»[Ae]—[Be}—»] Cel»[Dol Eo]» Go]
AfteraddingF: (e pef—{ Be}—>] Col] Dol Ee}>] Fol > GJ

After removing the E_>| Bel»[Cel»] Del»] Eol»{ Fel > Go]

|east element:

After removing the E_>| cel—»] Del»[Eol»] Fe]»] G

|east element:

After removingtheE_>| Del—»{ Eol—»] Fol—»| Gol

|east element:

Figure S13.1 Effect of successive additions and removals on a priority queue represented by a
sorted SLL.

Java Collections © 2001 D.A. Watt and D.F. Brown 13-1

After adding D:
After adding G: E m
._
After adding A: [e}—{ De}—] G"';:I Ae
After adding E: (e} De}—>{ Ge}— Ao—|;'>| Ee
After addingB: [e}—[De}—>{ Ge}—>[Ael > Eo—l;;{ Be|
AfteraddingC: [e}{ De}—{ Gel-»[Ael>] Ee} > BO-I;'>| ce|
After addingF: - [e1—>{ Dej—»{ Gej-»{ Ae}—>] Eel>] Bej>] ol 5] Fol
After removingthe [e1—] De}—{ Ge}—»[Ee]—»{ Be}>{ Ce}>[Fo
least element: Ka ad
After removingthe [} Do} Ge}—»[Ee}—>| C‘-I;;I Fe|
least element: Ka
After removingthe [e}—{ De}—{ Ge}—>| Ee]>»[Fo
least element: Ka v
Figure S13.2 Effect of successive additions and removals on a priority queue represented by an
unsorted SLL.
After adding D: 0 1 2 3 4 5
(o[[[[[[|
After adding G: 0 1 2 3 4 5
[ple| [[[[|
After adding A: 0 1 2 3 4 5
lAlecf[o] [[[|
After adding E: 0 1 2 3 4 5
lAlefofe|l [[|
After adding B: 0 1 2 3 4 5
[Ale[pfele] [|
After adding C: 0 1 2 3 4 5
[aleflclelelo| |
After adding F: 0 1 2 3 4 5
[Alef[cleclelp[F]
After removing the 0 1 2 3 4 5
least element: [BlefclelFlD[|
After removing the 0 1 2 3 4 5
least element: lcleloflele] [|
After removing the 0 1 2 3 4 5
least element: ol e[F]c] | | |

Figure S13.3 Effect of successive additions and removals on a priority queue represented by a
heap (with maxlength = 7).

13.4 An implementation of priority queue using unsorted SLLs is shown in Program
S13.4. This implementation does achieve the time complexities shown in Table

13.7.

Java Collections © 2001 D.A. Watt and D.F. Brown

13-2

public class UnsortedLi nkedPriorityQueue
i mpl ements PriorityQueue {

/1 EachUnsortedLi nkedPri orityQueue objectisapriority queue
/' whose elements are Conpar abl e objects.

/' Thispriority queueisrepresented as follows: | engt h isthe number of
/'l elements; first andl ast arelinksto thefirst and last nodes of an
/1 SLL containing the elements in order of addition.

private SLLNode first, |ast;

private int |ength;

FHEEEErrrll Consructor /11111111111

public UnsortedLi nkedPriorityQueue () {
/' Construct apriority queue, initially empty.

first = last = null;

l ength = 0;
}

FHEEEEEETETD Accessors [T 1TTTTTTTT

public bool ean isEmpty () {

/' Returntrueif and only if this priority queue is empty.
return (length == 0);

}

public int size () {

/' Return this priority queuge’s length.
return | ength;

}

public Conparabl e getlLeast () {
/' Return the least element in this priority queue, or throw a
/'l NoSuchEl enent Except i on if thispriority queue is empty.
/'l (If there are several equal |east elements, return any one of them.)
if (first == null)
t hrow new NoSuchEl enent Exception();
Conpar abl e | east El em = (Conpar abl e)first. el enent;
for (SLLNode curr = first.succ; curr != null;
curr = curr.succ) {
Conpar abl e currEl em = (Conparabl €)curr. el enent;
int conp = currEl em conpareTo(l east El en);
if (conmp < 0) |leastElem= currElem
}

return | east El em

}
FEEEEEEEEEET Transformers /11111111

public void clear () {
/'l Makethis priority queue empty.

first = last = null;
| ength = 0;
}
Program S13.4 Implementation of priority queues using unsorted SLLs (continued on next
page).

Java Collections © 2001 D.A. Watt and D.F. Brown 13-3

public void add (Conparable elenm {
/1 Add el emto this priority queue.

}

SLLNode newNode = new SLLNode(elem null);
if (first == null)
first = newNode;
el se
| ast.succ = newNode;
| ast = newNode;
| engt h++;

publ i c Conparabl e renoveLeast () {

/I Remove and return the least element in this priority queue, or throw
/1 aNoSuchEl enent Except i on if this priority queueis empty.
/1 (If there are several equal |east elements, remove the same element
/| that would bereturned by get Least .)

if (first == null)
t hrow new NoSuchEl enent Exception();
Conpar abl e | east El em = (Conpar abl e)first. el enent;
SLLNode | eastPred = nul | ;
for (SLLNode curr = first. succ,
curr !'= null;
pred = curr, curr = curr.succ) {
Conpar abl e currEl em = (Conparabl €)curr. el enent;
int conp = currEl em conpareTo(l eastEl en);
if (comp < 0) {
| east El em = curr El em
| east Pred = pred;

pred = first;

}
if (leastPred == null) {
first = first. succ;
if (first == null) last == null
} else {
| east Pred. succ = | east Pred. succ. succ;
if (leastPred.succ == null) last = |eastPred;
}
| engt h--;

return | east El em

}

Program S13.4 Implementation of priority queues using unsorted SLLs (continued).

13.6 Modified interface for extended priority queues:

Java Collections © 2001 D.A. Watt and D.F. Brown

public interface ExtendedPriorityQueue {

/'l EachExt endedPri orityQueue objectisapriority queue
/' whose elements are Conpar abl e objects, with the property that
/1 both least and greatest elements can be accessed..

FHEEEEEETETD Accessors [T 1TTTTTTTT

publ i c Conparabl e getlLeast ();

/' Return the least element in this priority queue, or throw a

/1 NoSuchEl enent Except i on if thispriority queue is empty.
/'l (If there are several equal |east elements, return any one of them.)

13-4

public Conparable getGeatest ();

/' Return the greatest element in this priority queue, or throw a

/1 NoSuchEl enent Except i on if this priority queue is empty.
/1 (If there are several equal greatest elements, return any one of
/[them.)

FEEEEEEEEEETD Transformers 1111111111

}

In an implementation using sorted SLLS, the get Gr eat est operation must
return the last element in the SLL. It is convenient to maintain links to both first
and last nodes.

In an implementation using unsorted SLLs, the get Gr eat est operation must
visit al nodes of the SLL, just liketheget Least operation.

In an implementation using heaps, the get G- eat est operation need visit only
the leaf nodes. If the heap has size n, the leaf nodes are those in positions n/2
through n-1. The number of leaf nodes is a most (n+1)/2. Therefore
get Gr eat est hastime complexity O(n).

The time complexities of get Least and get Gr eat est are summarized in
Table S13.5.

Table S13.5 Implementation of extended priority queues using sorted SLLs, unsorted SLLs, and
heaps. summary of time complexities (where n is the length of the priority queue).

Operation Time complexity Time complexity Time complexity
(sorted SLL) (unsorted SLL) (heap)

get Least 0o(1) O(n) o)

get G eat est 0o(1) O(n) O(n)

13.7 A priority queue could be used (inefficiently!) to implement a last-in-first-out
sequence as follows. Attach a timestamp to each element as it is added. Use the
negated timestamp as the element’s priority. Thus the element with the latest
timestamp will be the first to be removed.

13.8 A priority queue could be used (inefficiently!) to implement a first-in-first-out
sequence as follows. Attach a timestamp to each element as it is added. Use the
timestamp itself as the element’s priority. Thus the element with the earliest
timestamp will be the first to be removed.

13.14 Modified interface for dynamic priority queues:

public interface Dynam cPriorityQueue {

/1 EachDynami cPri orityQueue objectisapriority queue
/' whose elements are Conpar abl e objects, with the property
/1 that elements can be changed dynamically.

FEEEEEEETTTD Accessors [T 1TTTTTTTT

FHEEEEEEEEETD Transformers 11111111

Java Collections © 2001 D.A. Watt and D.F. Brown 13-5

public void setEl enent (Conparable ol dEl em
Conpar abl e newEl en) ;

/' Replace the element in this priority queue equal to ol dEI emby

/'l newEl em Throw aNoSuchEl enent Excepti on if this

/I priority queue contains no such element.

}

An implementation using heaps is outlined in Program S13.7. The set El enent
operation first searches the heap for ol dEI em and then finds a suitable position
for newkEl em

To search the heap for ol dEI em the simplest algorithm is a linear search of the
array representing the heap. A better algorithm traverses the heap in pre-order,
terminating when it finds an element either equal to ol dEI em (successful
search) or greater than ol dEI em (unsuccessful search). In the latter case, there
is no point in searching the subtrees, since they must contain only elements that
are also greater than ol dEI em

To find a suitable position for newEl em proceed as follows. If newEl emisless
than ol dEI em repeatedly swap newEl emwith its parent element aslong asthe
latter is greater than newEl em (This can be implemented by code taken from
the add operation.) If newEl em is greater than ol dEI em repeatedly swap
newEl emwith its child element (or the lesser of the two child elements) as long
as the child element is less than newEl em and there is at least one child to
compare. (This can be implemented by code taken from the r enoveleast
operation.) If newEl emisequal to ol dEI em thereis nothing to be done.

The set El enent operation’s two stages have time complexity O(n) and O(log
n), respectively, so the operation as a whole has time complexity O(n).

The other priority queue operations are unaffected. The time complexities are
summarized in Table S13.6.

Table S13.6 Implementation of dynamic priority queues using sorted SLLs, unsorted SLLs, and
heaps. summary of time complexities (where n is the length of the priority queue).

Operation Time complexity Time complexity Time complexity
(sorted SLL) (unsorted SLL) (heap)

add O(n) 0o(1) O(log n)

renovelLeast 0o(1) O(n) O(log n)

set El ement O(n) O(n) O(n)

get Least 0o(1) O(n) o)

Java Collections © 2001 D.A. Watt and D.F. Brown 13-6

public class HeapDynani cPriorityQueue
i mpl ements Dynam cPriorityQueue {

/'l EachHeapDynam cPri orityQueue objectisapriority queue
/' whose elements are Conpar abl e objects, with the property that
/I elements can be changed dynamically.

/I Thispriority queueis represented as follows: the subarray

/'l el ens[0... engt h—1] contains the priority queue's elements,
/I arranged in such away that el ens[(p—1)/2] islessthan or equal
/'l toel ens[p] foreveryp >0.

private Conparable[] el ens;

private int |ength;

FHEEEErrrrl Consructor /11111111111
FEEEEEETTTTTD Accessors [T TTTTTTTTT
FHEEEEEEEEETD Transformers 1111111

public void add (Conparable elem {

/1 Add el emto this priority queue.
if (length == elens.length) expand();
| engt h++;
| ocat eAt Or Above(l ength-1, elem;

}

publ i c Conparabl e renoveLeast () {
/I Remove and return the least element in this priority queue, or throw
/1 aNoSuchEl enent Except i on if this priority queueis empty.
/1 (If there are several equal least elements, remove the same element
/| that would bereturned by get Least .)

if (length == 0)

t hrow new NoSuchEl enent Excepti on();

Conparabl e | east = el ens[0];

Conparabl e last = elens[--1ength];

| ocat eAt Or Bel ow(0, |ast);

return | east;

}

public void setEl enent (Conparable ol dEl em
Conpar abl e newEl enm) {
/'l Replace the element in this priority queue equal to ol dEI emby
/'l newEl em Throw aNoSuchEl enent Excepti on if this
/I priority queue contains no such element.
int hole = search(ol dElem 0);
if (hole < 0)
t hrow new NoSuchEl enent Exception();
int conp = newkl em conpar eTo(ol dEl em) ;
if (comp < 0)
| ocat eAt Or Above(hol e, newEl en);
} else if (comp > 0)
| ocat eAt Or Bel ow hol e, newEl en);
}

}

Program S13.7 Outline implementation of dynamic priority queues using heaps (continued on
next page).

Java Collections © 2001 D.A. Watt and D.F. Brown 13-7

FHEEEEEEEETT Auxiliary methods /77111111111

private void | ocat eAt Or Above (int hole,
Conpar abl e newEl enm) {
/1 Find aposition for newEl em in position hol e or initsparent orina
/1 grandparentor
for (;;) {
if (hole == 0) {
el enms[hol e] = newEl em
return;
}
int parent = (hole-1)/2;
if (elens[parent].conpareTo(newEl em) <= 0) {
el enms[hol e] = newEl em
return;
} else {
el ens[hol e] = el ens[parent];
hol e = parent;
}
}
}

private void | ocateAt OrBel ow (int hole,

Conpar abl e newEl enm) {
/1 Find aposition for newEl em in position hol e orinachildorina
/1 grandchildor

for (;;) {

int left = 2*hole + 1, right = 2*hole + 2;

int child;

if (left > length) { /' hol e hasno child
el enms[hol e] = newEl em
return;

}

else if (right > length) // hol e hasnoright child
child = left;

el se /'l hol e hastwo children
child =

(elens[left].conpareTo(el ens[right])
<=0 ? left : right);
i f (newkl em conpareTo(el ens[child]) <= 0) {
el ens[hol e] = newEl em

return;

} else {
el ens[hol e] = el ens[child];
hole = child;

}

}
}
Program S13.7 Outline implementation of dynamic priority queues using heaps (continued on

next page).

Java Collections © 2001 D.A. Watt and D.F. Brown 13-8

private int search (Conparabl e target,

int top) {

/' Return the position of an element that isequal tot ar get in the subtree
/I of this heap whose topmost nodeis at positiont op. Return -1 if thereis

/1 no such element.

int conp = target.conpareTo(el ens[top]);

if (conmp == 0)
return top;

else if (conmp < 0)
return -1;

else { // comp >0

int left = 2*hole + 1,
int pos = search(target,
search(target,

if (pos < 0) pos =
return pos;

}

= 2*hole + 2;

Program S13.7 Outline implementation of dynamic priority queues using heaps (continued).

Java Collections © 2001 D.A. Watt and D.F. Brown

13-9

