
Java Collections © 2001 D.A. Watt and D.F. Brown 14-1

Solutions to Exercises in Chapter 14

 14.4 The class hierarchy of a Java program, reflecting the subclass relationship
between classes, can be represented by a tree.

(a) The root node of the class hierarchy tree corresponds to the Object class.

(b) The class hierarchy a tree because Java enforces single inheritance, i.e., each
class (except Object) has exactly one superclass.

(c) The class hierarchy for Program 14.12 is:

(d) If Java interfaces are included, the ‘hierarchy’ no longer a tree because a
class may implement any number of interfaces.

 14.5 An implementation of ordered trees is outlined in Program S14.1.

public class LinkedOrderedTree implements Tree {

 // Each LinkedOrderedTree object is an ordered tree whose
 // elements are arbitrary objects.

 // This tree is represented by a reference to its root node (root), which is
 // null if the tree is empty. Each tree node contains links to its first and last
 // children, to its parent, and to its next sibling.
 private LinkedOrderedTree.Node root;

 //////////// Constructor ////////////

 public LinkedOrderedTree () {
 // Construct a tree, initially empty.
 root = null;
 }

 //////////// Accessors ////////////

 …

 //////////// Transformers ////////////

 public void makeRoot (Object elem) {
 // Make this tree consist of just a root node containing element elem.
 root = new LinkedOrderedTree.Node(elem);
 }

Program S14.1 Outline implementation of ordered trees using linked data structures
(continued on next page).

Object

Expression

Numeral Sum DifferenceProduct Quotient

Java Collections © 2001 D.A. Watt and D.F. Brown 14-2

 public Tree.Node addChild (Tree.Node node,
 Object elem) {
 // Add a new node containing element elem as the last child of node in
 // this tree, and return the new node. The new node has no children of its
 // own.
 LinkedOrderedTree.Node parent =
 (LinkedOrderedTree.Node)node;
 LinkedOrderedTree.Node newChild =
 new LinkedOrderedTree.Node(elem);
 newChild.parent = parent;
 if (parent.firstChild == null)
 parent.firstChild = newChild;
 else
 parent.lastChild.nextSib = newChild;
 parent.lastChild = newChild;
 return newChild;
 }

 public void remove (Tree.Node node) {
 // Remove node from this tree, together with all its descendants.
 if (node == root) {
 root = null;
 return;
 }
 LinkedOrderedTree.Node parent = node.parent;
 if (node == parent.firstChild) {
 parent.firstChild = node.nextSib;
 if (parent.firstChild == null)
 parent.lastChild = null;
 } else {
 LinkedOrderedTree.Node prevSib =
 parent.firstChild;
 while (prevSib.nextSib != node)
 prevSib = prevSib.nextSib;
 prevSib.nextSib = node.nextSib;
 if (prevSib.nextSib == null)
 parent.lastChild = prevSib;
 }
 }

 //////////// Iterator ////////////

 …

 //////////// Inner class definition for tree nodes ////////////

 private static class Node implements Tree.Node {

 // Each LinkedOrderedTree.Node object is a node of an
 // ordered tree, and contains a single element.

 // This tree node consists of an element (element), a link to its first
 // and last children (firstChild, lastChild) a link to its parent
 // (parent), and a link to its next sibling (nextSib).
 private Object element;
 private LinkedOrderedTree.Node firstChild,
 lastChild, parent, nextSib;

 …

 }
}

Program S14.1 Outline implementation of ordered trees using linked data structures
(continued).

Java Collections © 2001 D.A. Watt and D.F. Brown 14-3

 14.6 The following methods visit, in pre-order, all of the nodes in a given tree:

static void preOrderTraverse (Tree tree) {
 if (tree.root() != null)
 preOrderTraverseSubtree(tree, tree.root());
}

static void preOrderTraverseSubtree (Tree tree,
 Tree.Node parent) {
 … // Visit parent.
 Iterator children = tree.children(parent);
 while (children.hasNext()) {
 Tree.Node child =
 (Tree.Node)children.next();
 preOrderTraverseSubtree(tree, child);
 }
}

 14.8 Methods to visit, in post-order, all of the nodes in a given tree would be similar
to the methods of Exercise 14.6, except that the code to visit parent must
follow the while-loop that traverses the children.

 14.10 To visit the nodes of tree in depth order:

1. Make node-queue contain only the root node of tree.
2. While node-queue is nonempty, repeat:
 2.1. Remove the front element of node-queue into node.
 2.2. Visit node.
 2.3. Add all the children of node to the rear of node-queue.
3. Terminate.

Implementation (using the java.util.LinkedList representation of the
node queue):

static void depthOrderTraverse (Tree tree) {
 LinkedList nodeQueue = new LinkedList();
 nodeQueue.addLast(tree.root());
 while (! nodeQueue.isEmpty()) {
 Tree.Node node =
 (Tree.Node)nodeQueue.removeFirst();
 … // Visit node.
 Iterator children = tree.children(node);
 while (children.hasNext()) {
 Tree.Node child =
 (Tree.Node)children.next();
 nodeQueue.addLast(child);
 }
 }
}

 14.11 An implementation of unordered trees using arrays is outlined in Program S14.2.

The addChild operations has time complexity O(1). If c is the maximum
number of children per node, the remove operation has time complexity O(c).

Java Collections © 2001 D.A. Watt and D.F. Brown 14-4

public class ArrayUnorderedTree implements Tree {

 // Each ArrayUnorderedTree object is an unordered tree whose
 // elements are arbitrary objects.

 // This tree is represented by a reference to its root node (root), which is
 // null if the tree is empty. Each tree node contains an array of children.
 private ArrayUnorderedTree.Node root;

 //////////// Constructor ////////////

 public ArrayUnorderedTree () {
 // Construct a tree, initially empty.
 root = null;
 }

 //////////// Accessors ////////////

 public Tree.Node root () {
 // Return the root node of this tree, or null if this tree is empty.
 return root;
 }

 public Tree.Node parent (Tree.Node node) {
 // Return the parent of node in this tree, or null if node is the root node.
 return node.parent;
 }

 public int childCount (Tree.Node node) {
 // Return the number of children of node in this tree.
 ArrayUnorderedTree.Node parent =
 (ArrayUnorderedTree.Node)node;
 return parent.childCount;
 }

 //////////// Transformers ////////////

 public void makeRoot (Object elem) {
 // Make this tree consist of just a root node containing element elem.
 root = new ArrayUnorderedTree.Node(elem);
 }

 public Tree.Node addChild (Tree.Node node,
 Object elem) {
 // Add a new node containing element elem as a child of node in this
 // tree, and return the new node. The new node has no children of its own.
 ArrayUnorderedTree.Node parent =
 (ArrayUnorderedTree.Node)node;
 ArrayUnorderedTree.Node newChild =
 new ArrayUnorderedTree.Node(elem);
 newChild.parent = parent;
 if (parent.childCount == parent.children.length)
 parent.expand();
 parent.children[parent.childCount++] = newChild;
 return newChild;
 }

Program S14.2 Outline implementation of unordered trees using arrays
(continued on next page).

Java Collections © 2001 D.A. Watt and D.F. Brown 14-5

 public void remove (Tree.Node node) {
 // Remove node from this tree, together with all its descendants.
 if (node == root) {
 root = null;
 return;
 }
 ArrayUnorderedTree.Node parent = node.parent;
 parent.childCount--;
 int i = 0;
 while (parent.children[i] != node) i++;
 while (i < parent.childCount) {
 parent.children[i] = parent.children[i+1];
 i++;
 }
 }

 //////////// Iterator ////////////

 …

 //////////// Inner class definition for tree nodes ////////////

 private static class Node implements Tree.Node {

 // Each ArrayUnorderedTree.Node object is a node of an
 // unordered tree, and contains a single element.

 // This tree node consists of an element (element), a link to its parent
 // (parent), an array of links to its children (children), and the
 // number of children (childCount).
 private Object element;
 private ArrayUnorderedTree.Node parent;
 private ArrayUnorderedTree.Node[] children;
 private int childCount;

 private Node (Object elem) {
 // Construct a tree node, containing element elem, that has no parent
 // and no children.
 this.element = elem;
 this.parent = null;
 this.children = new ArrayUnorderedTree.Node[4];
 this.childCount = 0;
 }

 …

 public void expand () {
 // Increase the length of this node’s array of links to children.
 …
 }

 }
}

Program S14.2 Outline implementation of unordered trees using arrays (continued).

 14.14 In the linked (or array) implementation of an unordered tree, the explicit
reference to a node’s parent could be removed, but the parent operation must
then search the tree to find the node’s parent. This search can be done by a pre-
order traversal, terminating when the parent is found:

Java Collections © 2001 D.A. Watt and D.F. Brown 14-6

public Tree.Node parent (Tree.Node node) {
// Return the parent of node in this tree, or null if node is the root
// node.
 if (root == node)
 return null;
 else
 return findParent(node, root);
}

private Tree.Node findParent (
 Tree.Node node,
 Tree.Node ancestor) {
// Return the parent of node in this tree, assuming that ancestor
// is a parent or grandparent or … of node.
 Iterator children = tree.children(ancestor);
 while (children.hasNext()) {
 Tree.Node child =
 (Tree.Node)children.next();
 if (child == node) return ancestor;
 Tree.Node parent =
 findParent(node, child);
 if (parent != null) return parent;
 }
 return null;
}

The parent operation now has time complexity O(n), as does any other
operation that must call the parent operation.

 14.20 In the drawing of a tree, let each subtree’s bounding rectangle be the smallest
rectangle that encloses all that subtree’s nodes. The following example shows a
family tree and some of the bounding rectangles:

Here is one simple idea for drawing a tree. Consider a node N and its subtrees.
Place the subtrees’ bounding rectangles side by side, with their tops aligned,
leaving a small gap (xgap above) between neighboring rectangles. Draw node
N’s element centered above these rectangles, leaving a small gap (ygap above).
Then the bounding rectangle for the tree whose top node is N is the smallest
rectangle that encloses node N’s element and all the subtrees’ rectangles.

To draw tree:

1. Draw the subtree whose topmost node is tree’s root, with the top left
 of its bounding rectangle at (0, 0).
2. Terminate.

To draw the subtree whose topmost node is N, with the top left of its bounding
rectangle at (x, y):

Fred

Archy

Frank George

David Maggie Ann

Emma Jon

Joe

Susie Jeff

ygap

xgapxgap

yelem

Java Collections © 2001 D.A. Watt and D.F. Brown 14-7

1. Let c be the number of children of node N.
2. If c = 0:
 2.1. Set width to the width of node N’s element when drawn.
 3.4. Set xtop to x+width/2.
 2.2. Draw node N’s element centered at (xtop, y).
3. If c > 0:
 3.1. Set xleft to x, and set ychild to y+yelem+ygap.
 3.2. For i = 1, …, c, repeat:
 3.2.1. Draw the subtree whose topmost node is the ith child
 of N, with the top left of its bounding rectangle at
 (xleft, ychild), and let its width be w.
 3.2.2. Set xchild[i] to xleft+w/2.
 3.2.3. Increment xleft by w+xgap.
 3.3. Set width to xleft–xgap–x.
 3.4. Set xtop to x+width/2.
 3.5. Draw node N’s element centered at (xtop, y).
 3.6. For i = 1, …, c, repeat:
 3.6.1. Draw a straight line from (xtop, y+yelem) to
 (xchild[i], ychild).
4. Terminate with answer width.

