Solutionsto Exercisesin Chapter 14

144 The class hierarchy of a Java program, reflecting the subclass relationship
between classes, can be represented by atree.

(8) The root node of the class hierarchy tree corresponds to the Obj ect class.

(b) The class hierarchy a tree because Java enforces single inheritance, i.e., each
class (except Obj ect) has exactly one superclass.

(c) The class hierarchy for Program 14.12 is:
hj ect

Expr essi on

Nurrer al Sum DifferenceProduct Quotient

(d) If Java interfaces are included, the ‘hierarchy’ no longer a tree because a
class may implement any number of interfaces.

145 Animplementation of ordered treesis outlined in Program S14.1.

public class LinkedOrderedTree inplenents Tree {

/'l EachLi nkedOr der edTr ee object is an ordered tree whose
/' elements are arbitrary objects.

/' Thistreeisrepresented by areference to its root node (r oot), whichis
/1 null if the tree is empty. Each tree node contains links to its first and last
/[children, to its parent, and to its next sibling.

private LinkedOrderedTree. Node root;

FHEEEErrrrrl Consructor /11111111111

public Li nkedOrderedTree () {
/' Construct atree, initially empty.

root = null;
}

FHEEEEEETTTTD Accessors [/ 1TTTTTTTT

FEEEEEEEEEETD Transformers 11111111

public void makeRoot (Object elem {

/1 Makethistree consist of just aroot node containing element el em
root = new Li nkedOrder edTree. Node(el em ;

}

Program S14.1 Outline implementation of ordered trees using linked data structures
(continued on next page).

Java Collections © 2001 D.A. Watt and D.F. Brown 14-1

public Tree. Node addChild (Tree. Node node,
bj ect elem {
/' Add anew node containing element el emasthelast child of node in
/| thistree, and return the new node. The new node has no children of its
/1 own.
Li nkedOr der edTr ee. Node parent =
(Li nkedOr der edTr ee. Node) node;
Li nkedOr der edTr ee. Node newChild =
new Li nkedOr der edTr ee. Node(el em) ;
newChi | d. parent = parent;
if (parent.firstChild == null)
parent.firstChild = newcChild;
el se
parent. | ast Child. nextSib = newChil d;
parent.lastChild = newChil d;
return newChild;

}

public void renmove (Tree. Node node) {
/I Remove node from thistree, together with all its descendants.
if (node == root) {
root = null;
return;

Li nkedOr der edTr ee. Node parent = node. parent;
if (node == parent.firstChild) {
parent.firstChild = node. nextSi b;
if (parent.firstChild == null)
parent.lastChild = null;
} else {
Li nkedOr der edTr ee. Node prevSib =
parent. firstChild;
while (prevSib.nextSib != node)
prevSi b = prevSib. next Si b;
prevSi b. next Si b = node. next Si b;
if (prevSib.nextSib == null)
parent.lastChild = prevSi b;
}
}

FEEEEEEEEEED \terator 11111111111

(11T Inner class definition fortreenodes / /1111111111
private static class Node inplenents Tree. Node {

/1 EachLi nkedOr der edTr ee. Node object isanode of an
/'] ordered tree, and contains a single element.

/' Thistree node consists of an element (el enent), alink to itsfirst
/1 andlast children (firstChild,|astChild)alink toits parent
/'l (parent), andalink to its next sibling (next Si b).
private oject el enent;
private LinkedOrderedTree. Node firstChild,

| ast Chil d, parent, nextSib,;

}
}

Program S14.1 Outline implementation of ordered trees using linked data structures
(continued).

Java Collections © 2001 D.A. Watt and D.F. Brown 14-2

14.6 Thefollowing methods visit, in pre-order, all of the nodesin a given tree:

static void preOrderTraverse (Tree tree) {
if (tree.root() !'= null)
preOrder Traver seSubtree(tree, tree.root());

}

static void preOrderTraverseSubtree (Tree tree,
Tree. Node parent) {
/1 Viditparent.

Iterator children = tree.children(parent);
whil e (children.hasNext()) {

Tree. Node child =

(Tree. Node) chi I dren. next ();
preOrder TraverseSubtree(tree, child);

}
}

14.8 Methods to visit, in post-order, all of the nodes in a given tree would be similar
to the methods of Exercise 14.6, except that the code to visit par ent must
follow the while-loop that traverses the children.

14.10 To visit the nodes of tree in depth order:

1. Make node-queue contain only the root node of tree.
2. While node-queue is nonempty, repeat:
2.1. Remove the front element of node-queue into node.
2.2. Visit node.
2.3. Add al the children of node to the rear of node-queue.
3. Terminate.

Implementation (using the j ava. util . Li nkedLi st representation of the
node queue):

static void depthOrderTraverse (Tree tree) {
Li nkedLi st nodeQueue = new Li nkedLi st ();
nodeQueue. addLast (tree.root ());
while (! nodeQueue.isEmpty()) {
Tree. Node node =
(Tree. Node) nodeQueue. renoveFirst ();
/1 Visitnode.
Iterator children = tree.children(node);
whil e (children.hasNext()) {
Tree. Node child =
(Tree. Node) chi I dren. next ();
nodeQueue. addLast (chi |l d);

}
}
}

14.11 Animplementation of unordered trees using arraysis outlined in Program S14.2.

The addChi | d operations has time complexity O(1). If c is the maximum
number of children per node, the r emov e operation has time complexity O(c).

Java Collections © 2001 D.A. Watt and D.F. Brown 14-3

public class ArrayUnorderedTree inplenments Tree {

/1 Each ArrayUnor der edTr ee object isan unordered tree whose
/| elements are arbitrary objects.

/| Thistreeisrepresented by areference to its root node (r oot), whichis
/1 null if the tree is empty. Each tree node contains an array of children.
private ArrayUnorderedTree. Node root;

FHEEEErrrrD Consructor /11111111111

public ArrayUnorderedTree () {
/' Construct atree, initially empty.
root = null;

}
FEEEEEETTTTTD Accessors [T 1TTTTTTTT

public Tree. Node root () {
/' Return the root node of thistree, or null if thistreeis empty.
return root;

}

public Tree. Node parent (Tree.Node node) {
/' Return the parent of node in thistree, or null if node isthe root node.
return node. parent;

}

public int childCount (Tree.Node node) {
/1 Return the number of children of node inthistree.
ArrayUnor der edTr ee. Node parent =
(ArrayUnor der edTr ee. Node) node;
return parent.chil dCount;

}
FEEEEEEEEEET Transformers 111111

public void makeRoot (Object elem {

/1 Makethistree consist of just aroot node containing element el em
root = new ArrayUnorderedTree. Node(el em;

}

public Tree. Node addChild (Tree. Node node,
bj ect elem {
/1 Add anew node containing element el emas achild of node in this
/'] tree, and return the new node. The new node has no children of its own.
ArrayUnor der edTr ee. Node parent =
(ArrayUnor der edTr ee. Node) node;
ArrayUnor der edTr ee. Node newChild =
new ArrayUnorder edTree. Node(el en);
newChi | d. parent = parent;
if (parent.childCount == parent.children.|ength)
par ent . expand() ;
parent. chil dren[parent. chil dCount ++] = newChi | d;
return newChild;

}

Program S14.2 Outline implementation of unordered trees using arrays
(continued on next page).

Java Collections © 2001 D.A. Watt and D.F. Brown 14-4

public void renove (Tree. Node node) {
/I Remove node from thistree, together with all its descendants.
if (node == root) {
root = null;
return;
}
ArrayUnor der edTr ee. Node parent = node. parent;
parent. chi | dCount - -;
int i =0;
while (parent.children[i] != node) i ++;
while (i < parent.childCount) {
parent.children[i] = parent.children[i+1];
i ++;
}
}

FEEEEEEEEEED \terator /111111111

[1TTTTTETTTT Inner class definition fortreenodes / /1111111111
private static class Node inplenments Tree. Node {

/'l Each ArrayUnor der edTr ee. Node object isanode of an
/1 unordered tree, and contains a single element.

/' Thistree node consists of an element (el enent), alink to its parent
/'l (parent), anarray of linksto itschildren (chi | dr en), and the
/1 number of children (chi | dCount).

private oject el enent;

private ArrayUnorderedTree. Node parent;

private ArrayUnorderedTree. Node[] children;
private int childCount;

private Node (Cbject elem {
/' Construct atree node, containing element el em that has no parent
/1 and no children.
this.element = elem
this.parent = null;
this.children = new ArrayUnor deredTree. Node[4] ;
this.childCount = 0;

public void expand () {
/'l Increase the length of this node’s array of linksto children.

}

}
}

Program S14.2 Outline implementation of unordered trees using arrays (continued).

14.14 In the linked (or array) implementation of an unordered tree, the explicit
reference to a node's parent could be removed, but the par ent operation must
then search the tree to find the node’s parent. This search can be done by a pre-
order traversal, terminating when the parent is found:

Java Collections © 2001 D.A. Watt and D.F. Brown 14-5

14.20

public Tree. Node parent (Tree.Node node) {
/' Return the parent of node in thistree, or null if node istheroot
/'l node.
if (root == node)
return null;
el se
return findParent(node, root);

}

private Tree. Node findParent (
Tree. Node node,
Tree. Node ancestor) {
/' Return the parent of node in thistree, assuming that ancest or
/'l isaparent or grandparent or ... of node.
Iterator children = tree.children(ancestor);
whil e (children. hasNext()) {
Tree. Node child =
(Tree. Node) chi | dren. next ();
if (child == node) return ancestor;
Tree. Node parent =
fi ndPar ent (node, child);
if (parent !'= null) return parent;

}

return null;

}

The par ent operation now has time complexity O(n), as does any other
operation that must call the par ent operation.

In the drawing of a tree, let each subtree's bounding rectangle be the smallest
rectangle that encloses all that subtree’s nodes. The following example shows a
family tree and some of the bounding rectangles:

Archy yelem
ygap

H H

xgap xgap
Here is one simple idea for drawing a tree. Consider a node N and its subtrees.
Place the subtrees bounding rectangles side by side, with their tops aligned,
leaving a small gap (xgap above) between neighboring rectangles. Draw node
N's element centered above these rectangles, leaving a small gap (ygap above).
Then the bounding rectangle for the tree whose top node is N is the smallest
rectangle that encloses node N's element and all the subtrees rectangles.

To draw tree;

1. Draw the subtree whose topmost node is tre€’ s root, with the top left
of its bounding rectangle at (0, 0).
2. Terminate.

To draw the subtree whose topmost node is N, with the top left of its bounding
rectangle at (X, y):

Java Collections © 2001 D.A. Watt and D.F. Brown 14-6

1. Let c be the number of children of node N.
2. Ifc=0:
2.1. Set width to the width of node N's element when drawn.
3.4. Set xtop to x+width/2.
2.2. Draw node N's element centered at (xtop, V).
3. Ifc>0:
3.1. Set xleft to x, and set ychild to y+yelem+ygap.
3.2. Fori=1, ..., ¢, repeat:
3.2.1. Draw the subtree whose topmost node is the ith child
of N, with the top left of its bounding rectangle at
(Kl eft, ychild), and let its width be w.
3.2.2. Set xchild[i] to xleft+w/2.
3.2.3. Increment xleft by w+xgap.
3.3. Set width to xleft—-xgap—x.
3.4. Set xtop to x+width/2.
3.5. Draw node N's element centered at (xtop, y).
3.6. Fori=1, ..., ¢, repeat:
3.6.1. Draw adtraight line from (xtop, y+yelem) to
(xchild[i], ychild).
4. Terminate with answer width.

Java Collections © 2001 D.A. Watt and D.F. Brown 14-7

