Solutionsto Exercisesin Chapter 15

15.2

154

155

15.6

In the motorway network of Figure 15.1, many paths connect any given pair of
cities. Below are just two possible paths for each pair of cities.

(a) Perthto Exeter:

«Perth, Edinburgh, Glasgow, Carlisle, Manchester, 7edges 870 km
Birmingham, Bristol, Exeter»
«Perth, Edinburgh, Glasgow, Carlisle, Manchester, Leeds, 9edges 1180 km

Rugby, London, Bristol, Exeter»

(b) Dover to Leeds:
«Dover, London, Rugby, Leeds» 3edges 440 km
«Dover, London, Birmingham, Manchester, Leeds» 4edges 510km

(c) Liverpool to Cambridge:
«Liverpool, Manchester, Birmingham, London, Cambridge» 4edges 480 km
«Liverpool, Manchester, Leeds, Rugby, London, Cambridge» 5edges 550 km

The qual i fi ed method of Example 15.1 will unnecessarily visit the same
node (and its successors) more than once, if that node contains a course that is a
prerequisite of more than one other course.

To avoid thisinefficiency, ‘mark’ nodes as suggested in Section 15.7 (page 417).
In the following, the auxiliary method qual has an extra parameter that is a set
of marked nodes. On the initial call, that set is empty.

Edge-set, adjacency-set, and adjacency-matrix representations of the directed
graph of Figure 15.3 are shown in Figures S15.2, S15.3, and S15.4, respectively.

In the edge-set representation of graphs, we can represent the node set by an SLL
(rather than a DLL). The r enoveEdge operation then has to use the SLL
deletion agorithm, which is O(e), where e is the number of edges. See Table
S15.5.

Alternatively we can represent the node set by a hash table with elements as keys
(rather than by a DLL). The addNode and r enroveNode operations then use
(more or less) the standard hash-table insertion and deletion agorithms. See
Table S15.6.

Java Collections © 2001 D.A. Watt and D.F. Brown 15-1



public static boolean qualified (
Graph. Node cour seNode,
Set cour sesPassed,
Di graph curriculum {
return qual (courseNode, coursesPassed,
new TreeSet (), curriculum;

}

private static bool ean qual (

Graph. Node cour seNode,

Set coursesPassed,

Set nodesMar ked,

Di graph curriculum {
nodesMar ked. add( cour seNode) ;
Iterator prereqs =

curricul um successor s(cour seNode) ;
whil e (preregs. hasNext()) {
Graph. Node preregNode =
(G aph. Node) preregs. next();
if (! coursesPassed. contai ns(

prer egNode. get El enent ()))
return false;

if (! nodesMarked. cont ai ns(prereqNode))
&% ! qual (preregNode, coursesPassed,

nodesMar ked, curriculum)
return fal se;

}

return true;

}

Program S15.1 Method to test whether a student is qualified to take a given course.

Java Collections © 2001 D.A. Watt and D.F. Brown

15-2



E Y
[2 eo]
Y A
\
|_"° 0OS | 90|
“ A
Y | J
le¢ SE| | )
4 A
Y
le¢ DB | | 2]
“ A
/ Y
¢ PL | | 3]
v A
Y
¢ D | | 90|
4 i
/ Y
LeéDam | | 2]
Ty ‘
Y
Lo CA | | 1)
A A
v \
L9 ADS | | 3]
\ ‘
Y | J
L#é DiM | | 90|
Ty ‘
Y | J
¢ CF | [ )
“ A
/ Y
Le® Prog | | 90|
A A
v \
o HCi s

Figure S15.2 Edge-set representation of the directed graph of Figure 15.3.

Java Collections © 2001 D.A. Watt and D.F. Brown 15-3



"‘Twl—ﬂ I B
A

(I A ey

A

Y

(s DB ST T

A\
(00 pL oL o p
oy S

\
[e® Dav o]
A

[\

Py

9 &
.l e »
| @ '

Y

oo Cael A oI
A

Y -

[#6 ADS of-—<—<%] |
A

4
[e® DiM o]
A

\
[e¢ CF o]
A

(@6 Prog @]
/
Y

o HCl ®

Figure S15.3 Adjacency-set representation of the directed graph of Figure 15.3.

Java Collections © 2001 D.A. Watt and D.F. Brown 154



012345678 9101112131415
olefefe[p[e[g|p[e[e[e]e]

ﬁ-|°|°|°|/r|°|/°|/'|°|°|'|‘|

[T 11
o[ os o [ [ 1]
; S';: ofefeejo[pJe]o]a]efefe] | [ T |
s or—"12[e[e]d]e[pf[efpTale[a[e] [ [ | |
2 so el—>{oTe epfle]¢T¢]pleTNelo ] [ [ [ |
5[ Dav et—s{ee o ]f o[ el pTe]&[&[& [ | | |
S ACDAS:\“>|°|°|° RTpe] g eToTa I\ [ [ |
o DiM*\Hﬂ'H of[o[pfeTeTo ek NI T |
o cr ol >[e[elp[e]¢Tp]aTeTeTeTole Y K [ |
10] Progel _~[e[e]q[ 4]k o[ pTeTeTe RN\ |
g HC'.\‘(°|°/|H/'Y° ¢JeeTeTe oo \K N1\
" . oJoldTp '|°|°|°|°|‘\|\l\\L\1\
14 .
15 L]

¥

Figure S15.4 Adjacency-matrix representation of the directed graph of Figure 15.3 (withm=
16).
(Here, for the sake of clarity, the edge objects are shown as containing node position numbers.
In actual fact they contain links to the corresponding node objects.)

Table S15.5 Edge-set representation of graphs with an SLL for the node set
(where e is the number of edges).

Operation Algorithm Time complexity

cont ai nsEdge linear search of edge-set DLL O(e)

addNode insertion at front of node-set DLL o(1)

addEdge insertion at front of edge-set SLL o(1)

r enoveNode deletion in node-set DLL, plus multiple O(e)
deletionsin edge-set SLL

r enoveEdge deletion in edge-set SLL O(e)

Table S15.6 Edge-set representation of graphs with a hash table for the edge set
(where e isthe number of edges and n is the number of nodes).

Operation Algorithm Time complexity

cont ai nsEdge linear search of edge-set DLL O(e)

addNode insertion in node-set hash table 0o(1) best

O(n) worst

addEdge insertion at front of edge-set DLL 0o(1)

r enoveNode deletion in node-set hash table, plus multiple O(e) best
deletionsin edge-set DLL O(n+e)  worst

r emoveEdge deletion in edge-set DLL 0o(1)

15.7 Inthe adjacency-set representation of graphs, we can represent the adjacency sets
by DLLs (rather than SLLs). The r enoveEdge operation then uses DLL
deletion, which isfaster. See Table S15.7.

Java Collections © 2001 D.A. Watt and D.F. Brown 15-5



Alternatively we can provide each node with an adjacency set for its in-edges (as
well as one for its out-edges). However, we must continue to ensure that each
edge is represented by a single Edge object. So we superimpose the in-edge
SLLs on the out-edge SLLs, with each Edge object containing a link to the next
in-edge as well as alink to the next out-edge. The r enoveNode operation must
delete al in-edges and out-edges, which is tricky because each in-edge must also
be deleted from the out-edge SLL that contains it, and vice versa. See Table
S15.8.

Table S15.7 Adjacency-set representation of graphswith aDLL for each adjacency set
(where e isthe number of edges and d is the maximum degree of each node).

Operation Algorithm Time complexity

cont ai nsEdge linear search of adjacency-set DLL O(d)

addNode insertion at front of node-set DLL o)

addEdge insertion at front of adjacency-set DLL o)

r enoveNode deletion in node-set DLL, plustraversal of al O(e)
adjacency-set DLLsto find and delete connecting
edges

r enoveEdge deletion in adjacency-set DLL o)

Table S15.8 Adjacency-set representation of graphs with adjacency sets for both in-edges and
out-edges (where e is the number of edges and d is the maximum degree of each node).

Operation Algorithm Time complexity
cont ai nsEdge linear search of out-edges (or in-edges) SLL O(d)
addNode insertion at front of node-set DLL o)
addEdge insertion at front of in-edges and out-edges SLLs o)
r enoveNode deletion in node-set DLL, plus deletion of dl in- O(e)
edges and out-edges
r enoveEdge deletion in adjacency-set SLL O(d)

15.8 Starting from the adjacency-matrix representation of a directed graph in Figure
15.16, the effect of removing node V is shown in Figure S15.9. The matrix is no
longer compact: position numbers 0, 1, 2, 4, and 5 are used, but not position
number 3.

An implementation modified to ensure that r emoveNode keeps the matrix
compact is shown in Program S15.10. Whenever the node with position number
p is removed, this implementation decrements the position numbers of all nodes
with position numbers greater than p. The effect on time complexities of the
graph operations is shown in Table S15.11. The addNode operation is now
trivial and O(1), but the r enbveNode operation now entails shifting of both
rows and columnsin the matrix.

Java Collections © 2001 D.A. Watt and D.F. Brown 15-6



01234567829

 e[e[ple[ [e[e[ [T T]

- |
N N ONEDONEEE
2 U e "('l/'/f'l lefe[ N [ [ |
3 [}
LW e OOEODNENE
4 ADNEDOAERY
— ] i
S - o ] T

-

Figure S15.9 Effect of removing node V in the adjacency-matrix representation of the directed
graph of Figure 15.10(a) (m = 10).

public class AMDI graph inplenents Digraph {

/1 Each AMDI gr aph object isadirected graph whose elements and
/'] edge attributes are arbitrary objects.

/1 Thisdirected graph is represented by an adjacency matrix as follows.

/1 nodes isanarray of AMDI gr aph. Node objects, each of which

/'] contains an element, the node' s position number, and alink to an array of
/1 ANDI gr aph. Edge objects. The latter array represents the node's

/1 possible out-edges (with null indicating the absence of a particular out-
/'] edge). Each AMDI gr aph. Edge object contains an attribute and is

/1 linked to the edge’ s source and destination nodes. si ze contains the

/'l graph'ssize.

private ANMD graph. Node[] nodes;
private int size;

public AMDIi graph (int maxsize) {
/1 Construct adirected graph, initially empty, whose size will be bounded
/1 bymaxsize.

nodes = new AMDI gr aph. Node[ maxsi ze] ;

size = 0;

}
TETTTETETTTT Accessors [/ 1111111

publ i ¢ bool ean cont ai nsEdge (G aph. Node nodeO,
G aph. Node nodel) {
/1 Returntrueif and only if thereis an edge connecting node0 to
/1 nodel inthisgraph.
AMDI gr aph. Node source = (AMVDi gr aph. Node) nodeO,
dest = (AMD graph. Node) nodel,;
int p = source.position, q = dest.position;
return (nodes[p].outEdges[q] !'= null);
}

Program S15.10 Outline of adjacency-matrix representation of directed graphs, modified to keep
the matrix compact (continued on next page).

Java Collections © 2001 D.A. Watt and D.F. Brown 15-7



FEEEEEEEEEETD Transformers 11111111

public void clear () {

/1 Make this graph empty.
for (int p=0; p < size) nodes[p] = null;
size = 0;

}

public G aph. Node addNode (Cbject elem;
/' Add to this graph a new node containing element el em but with no
/1 connecting edges, and return the new node.
int p = size++;
nodes[ p] = new AMDI gr aph. Node(el em p);
}

public void renmoveNode (G aph. Node node) {

/1 Remove node from this graph, together with al its connecting edges.
AMDI gr aph. Node nodeP = ( AMDI gr aph. Node) node;
int p = nodeP. position;
size--;
for (int g =p; q < size; q++) {

AMDI gr aph. Node nodeQ = nodes[ q+1];
nodeQ position--;
nodes[ q] = nodeQ
}
for (int q =0; q < size; g++) {
AMDI gr aph. Node nodeQ = nodes[q];
i f (nodeQ out Edges[p] != null)
nodeQ out Degr ee- -;
for (int r = p; r < size; r++)
nodeQ out Edges[r] =
nodeQ out Edges[r +1] ;

FHEEEEEEETTD Wterators 111 1TTTTTTT

(111111 Inner classfor graphnodes 1/ /111111111
private static class Node inplenments G aph. Node {

/1 Each AMDI gr aph. Node object isadirected graph node, and
/'] contains asingle el ement.

private noject el enent;

private int outDegree;

private AND graph. Edge[] out Edges;
private int position;

public Node ((Object elem int pos) {
this.elenent = elem this.position = pos;

}

/I For constructor and methods, see the companion Web site.

}
(11111 Inner classfor graphedges / /1111111111

}

Program S15.10 Outline of adjacency-matrix representation of directed graphs, modified to keep
the matrix compact (continued).

Java Collections © 2001 D.A. Watt and D.F. Brown 15-8



Table S15.11 Adjacency-matrix representation of graphs, modified to keep the matrix compact:
summary of algorithms.

Operation Algorithm Time complexity
cont ai nsEdge  matrix indexing o)

addNode trivial o)

addEdge meatrix indexing o)

r enoveNode deleting a matrix row and column o(n?)

r enoveEdge meatrix indexing o)

15.9 Depth-first and breadth-first graph search algorithms are shown as Algorithms
S15.12 and S15.13.

To find which (if any) node of directed graph g contains an element equal to
target-elem, searching in depth-first order and starting at node start:

1. Make node-stack contain only node start, and mark start as reached.
2. While node-stack is not empty, repeat:
2.1. Remove the top element of node-stack into v.
2.2. If node V' selement is equal to target-elem:
2.2.1. Terminate with answer v.
2.3. For each unreached successor w of node v, repeat:
2.3.1. Add node w to node-stack, and mark w as reached.
3. Terminate with answer none.

Algorithm S15.12 Depth-first search algorithm for a directed graph.

To find which (if any) node of directed graph g contains an element equal to
target-elem, searching in breadth-first order and starting at node start:

1. Make node-queue contain only node start, and mark start as reached.
2. While node-queue is not empty, repeat:
2.1. Remove the front element of node-queue into v.
2.2. If node Vv selement is equal to target-elem:
2.2.1. Terminate with answer v.
2.3. For each unreached successor w of node v, repeat:
2.3.1. Add node w to node-queue, and mark w as reached.
3. Terminate with answer none.

Algorithm S15.13 Breadth-first search algorithm for a directed graph.

Java Collections © 2001 D.A. Watt and D.F. Brown 15-9



15.10 Implementations of the graph traversal algorithms are shown as Programs S15.14
and S15.15. These implementations use the java. util.Li nkedLi st
representation of stacks and queues. They also use sets to record which nodes
have been marked during the traversal.

static void traverseDepthFirst (D graph g,
Graph. Node start) {
Li nkedLi st nodeStack = new Li nkedLi st ();
nodeSt ack. addLast (start);
Set mar kedNodes = new HashSet () ;
mar kedNodes. add(start);
while (! nodeStack.isEmpty()) {
G aph. Node v =
(G aph. Node) nodeSt ack. renovelLast () ;
/1 Visit nodev.
Iterator successors = g.successors(v);
whi |l e (successors. hasNext()) {
Graph. Node w = (Graph. Node) successors. next ();
if (! markedNodes. contains(w)) {
nodeSt ack. addLast (w) ;
mar kedNodes. add(w) ;

}
}
}
}

Program S15.14 Implementation of the depth-first graph traversal algorithm.

static void traverseBreadthFirst (Digraph g,
Graph. Node start) {
Li nkedLi st nodeQueue = new Li nkedLi st ();
nodeQueue. addLast (start);
Set mar kedNodes = new HashSet () ;
mar kedNodes. add(start);
while (! nodeQueue.isEmpty()) {
G aph. Node v =
(G aph. Node) nodeQueue. renoveFirst();
/1 Visit nodev.
Iterator successors = g.successors(v);
whi |l e (successors. hasNext()) {
Graph. Node w = (Graph. Node) successors. next ();
if (! markedNodes. contains(w)) {
nodeQueue. addLast (W) ;
mar kedNodes. add(w) ;
}
}
}
}

Program S15.15 Implementation of the breadth-first graph traversal algorithm.

Java Collections © 2001 D.A. Watt and D.F. Brown 15-10



15.12 Algorithm S15.16 determines whether there is a path between two given nodesin
a directed graph, using a variant of the breadth-first graph search algorithm. (A
variant of the depth-first graph search algorithm would also be suitable.) Program
S15.17 shows an implementation.

To determine whether directed graph g contains a path from node start to node
finish:
1. Make node-queue contain only node start, and mark start as reached.
2. While node-queue is not empty, repeat:
2.1. Remove the front element of node-queue into v.
2.2. If v=finish:
2.2.1. Terminate with answer true.
2.3. For each unreached successor w of node v, repeat:
2.3.1. Add node w to node-queue, and mark w as reached.
3. Terminate with answer false.

Algorithm S15.16 Path search algorithm for a directed graph.

static bool ean contai nsPath (Digraph g,
Graph. Node start, Graph.Node finish) {
Li nkedLi st nodeStack = new Li nkedLi st ();
nodeSt ack. addLast (start);
Set mar kedNodes = new HashSet () ;
mar kedNodes. add(start);
while (! nodeStack.isEmpty()) {

G aph. Node v =
(G aph. Node) nodeSt ack. renovelLast () ;
if (v ==finish) return true;

Iterator successors = g.successors(v);
whil e (successors. hasNext()) {
Graph. Node w = (Graph. Node) successors. next ();
if (! markedNodes. contains(w)) {
nodeSt ack. addLast (w) ;
mar kedNodes. add(w) ;
}
}
}

return fal se;

}

Program S15.17 Implementation of the path search agorithm for adirected graph.

Java Collections © 2001 D.A. Watt and D.F. Brown 15-11



15.13 Program S15.18 computes the distance along the shortest path between a given
node and every other node in a graph, where the distance is the number of edges

along the path. The results are recorded in a map.

static Map findShortestPaths (G aph g,
Graph. Node start) {

Li nkedLi st nodeQueue = new Li nkedLi st ();

Set mar kedNodes = new HashSet () ;

mar kedNodes. add(start);

Map di st Map = new HashMap();

di st Map. put (start, new I nteger(0));

while (! nodeQueue.isEmpty()) {
Graph. Node v =

(G aph. Node) nodeQueue. renoveFirst();

mar kedNodes. add( V) ;
int distV = distance(di st Map, Vv);

Iterator neighbors = g.neighbors(v);

whi | e (nei ghbors. hasNext()) {

Graph. Node w = (Graph. Node) nei ghbors. next () ;
if (! markedNodes. contains(w)) {

int d =distV + 1;

int di st W= distance(di stMp,
if (d < distW distMp.put(w, d);

nodeQueue. addLast (W) ;

}
}
}
return di st Map;

}

static int distance (Map di st Map, G aph. Node v) {
I nteger distValue = (Integer)distMp.get(v);

if (distValue == null)
return I NFI NITY;
el se
return distVal ue.intVal ue();

}

static final int INFINITY = 1000000000;
Program S15.18 Implementation of the shortest-path algorithm for a undirected graph.

Java Collections © 2001 D.A. Watt and D.F. Brown

15-12



15.14 Algorithm S15.19 computes the distance along the shortest path between a given
node and every other node in a graph, where the distance is the sum of the
(positive-integer) edge attributes of edges along the path. The implementation is
shown as Program S15.20.

To find the shortest path in graph g from node start to every other node:

1. Make node-queue contain only node start.
2. Set distgqrt to 0, and set dist, for all other nodes v to infinity.
3. While node-queue is not empty, repeat:
3.1. Remove the front element of node-queue into v, and mark node v as
reached.
3.2. For each edge e connecting node v to an unreached neighbor w, repeat:
3.2.1. Letdbedist, + edge attribute of e.
3.2.2. If d < disty, set dist,, to d.
3.2.3. Add node w to node-queue.
4. Terminate.

Algorithm S15.19 Shortest-path algorithm for an undirected graph with positive-integer edge
attributes.

static Map findShortestPaths (G aph g,
Graph. Node start) {
Li nkedLi st nodeQueue = new Li nkedLi st ();
Set mar kedNodes = new HashSet () ;
mar kedNodes. add(start);
Map di st Map = new HashMap();
di st Map. put (start, new I nteger(0));
while (! nodeQueue.isEmpty()) {
Graph. Node v =
(G aph. Node) nodeQueue. renoveFirst();
mar kedNodes. add( V) ;
int distV = distance(di st Map, Vv);
Iterator edges = g.connectingEdges(Vv);
whi |l e (edges. hasNext ()) {
Graph. Edge e = (Graph. Edge) edges. next () ;
G aph. Node vw = e. get Nodes();
Graph. Node w = (vwW0] == v ? vwW1] : vwO0]);
if (! markedNodes. contains(w)) {
int d=distV +
((Integer)e.getAttribute()).getValue();
int distW= distance(di st Map, W ;
if (d < distW distMp.put(w, d);
nodeQueue. addLast (W) ;
}
}
}
return di st Map;

}

Program S15.20 Implementation of the shortest-path agorithm for a undirected graph with
positive-integer edge attributes (changes from Program S15.18 italicized).

15.16 If the directed graph g is cyclic, the topological sort algorithm will produce an
incomplete list of nodes. In particular, a node v that participates in a cycle will
never be added to the list because in, will never decrease to zero.

Java Collections © 2001 D.A. Watt and D.F. Brown 15-13



To make the topological sort algorithm deal with a cyclic graph, smply insert a
new step 5 as shown in Algorithm S15.21.

To make the algorithm work without node-queue, first observe that node-list
contains nodes v for which in, = 0 and whose out-edges have been processed,
whereas node-queue contains nodes v for which in, = 0 but whose out-edges have
not yet been processed; all nodes in node-queue will eventually be removed and
added to node-list in the same order. As an aternative, we can make node-list
contain all nodes v for which in, = 0, on the understanding that only the first p
nodes in node-list have had their out-edges processed. This is the basis of
Algorithm S15.21.

To find atopological ordering of directed acyclic graph g:

1. Make node-list empty.
2. SetptoO.
3. For each node v of g, repeat:
3.1. Setin, tothein-degree of nodev.
3.2. Ifin, =0, add node v to node-list.
4. While p < length of node-list, repeat:
4.1. Letv bethe element of node-list with index p.
4.2. Increment p.
4.3. For each successor w of node v, repeat:
4.3.1. Decrement iny,.
4.3.2. Ifiny, =0, add node w to node-list.
5. If length of node-list < size of graph g:
5.1. Terminate with awarning that g is cyclic.
6. Terminate with answer node-list.

Algorithm S15.21 Topological sort agorithm for adirected acyclic graph (with awarning if the
graphiscyclic).

15.17 Animplementation of the topological sort algorithm (Algorithm 15.25) in Javais
shown as Program S15.22.

Java Collections © 2001 D.A. Watt and D.F. Brown 15-14



static List topological Sort (Digraph g) {
Li nkedLi st nodeLi st = new Li nkedLi st ();
Li nkedLi st nodeQueue = new Li nkedLi st ();
Map i nMap = new HashMap();
Iterator nodes = g.nodes();
whi |l e (nodes. hasNext ()) {
Graph. Node v = (Graph. Node) nodes. next ();
int inV = g.degree(v) - g.outDegree(v);
i nMap. put (v, new Integer(inV));
if (invV == 0) nodeQueue. add(Vv);
}
while (! nodeQueue.isEnpty()) {
G aph. Node v =
(Graph. Node) nodeQueue. renoveFirst ();
nodeli st. add(v);
Iterator successors = g.successors(v);
whil e (successors. hasNext()) {
Graph. Node w = (Graph. Node) successors. next ();
int inW= ((Integer)inMp.get(v)).getValue();
i nW-;
i nMap. put (w, new I nteger(inW);
if (inW== 0) nodeQueue. add(w);
}
}

return nodeli st;

Program S15.22 Implementation of the topological sort algorithm.

15.18 Program S15.23 shows an implementation of a depth-first iterator for directed
graphs. It is expressed entirely in terms of the other directed-graph operations,
and so could be added to ESDi gr aph, ASDi gr aph, or AVMDI gr aph.

The Dept hFirstlterator constructor is the same as Program S15.14,
except that it adds nodes to a queue, tr ack, rather than visiting them. The
next operation ssimply removes a node from the front of the queue.

Java Collections © 2001 D.A. Watt and D.F. Brown 15-15



public Iterator depthFirstlterator (G aph. Node node) {
/1 Return an iterator that will visit all nodes of this graph that are
/'l reachable from node, in adepth-first traversal.

return new DepthFirstlterator(node);

}
[111111TTTT]T Inner class for depth-firstiterators // /111111111

private class DepthFirstlterator inplenents Iterator {

/1 ADepthFirstlterator objectisaniterator that will visit, in
/1 depth-first order, al the nodes reachable from a given node in a graph.

/'l Thisiterator is represented by a queue of nodes still to be visited,
/'l track.
private LinkedList track;

private DepthFirstlterator (G aph.Node start) {
track = new Li nkedStack();
Li nkedLi st nodeStack = new Li nkedLi st ();
nodeSt ack. addLast (start);
Set mar kedNodes = new HashSet () ;
mar kedNodes. add(start);
while (! nodeStack.isEmpty()) {
Graph. Node v =
(G aph. Node) nodeSt ack. renovelLast () ;
track. addLast(v); // Remembertovisit nodev.
Iterator successors = g.successors(v);
whil e (successors. hasNext()) {
G aph. Node w =
(G aph. Node) successors. next ();
if (! markedNodes. contains(w)) {
nodeSt ack. addLast (w) ;
mar kedNodes. add(w) ;
}
}
}
}

public bool ean hasNext () {
return (! track.isEnpty());
}

public Object next () {
if (track.isEmpty())
t hrow new NoSuchEl enent Exception();
Graph. Node node =
(G aph. Node) track. renoveFirst();
return node. get El ement () ;

}

/1 Ther enpove method is omitted here.

Program S15.23 Depth-first iterator for graphs (as an inner class).

15.19 Program S15.24 shows an implementation of a breadth-first iterator for directed
graphs. It is expressed entirely in terms of the other directed-graph operations,
and so could be added to ESDi gr aph, ASDi gr aph, or AVMDI gr aph.

The Breadt hFi rstlterator constructor is the same as Program S15.15,
except that it adds nodes to a queue, tr ack, rather than visiting them. The
next operation ssimply removes a node from the front of the queue.

Java Collections © 2001 D.A. Watt and D.F. Brown 15-16



public Iterator breadthFirstlterator
(G aph. Node node) {
/1 Return an iterator that will visit all nodes of this graph that are
/'l reachable fromnode, in abreadth-first traversal.
return new BreadthFirstlterator(node);

}
111111111111 Innerclassfor breadth-firstiterators // /111111111

private class BreadthFirstlterator
i mpl ements lterator ({

/1 ABreadt hFirstlterator objectisaniterator that will visit, in
/1 breadth-first order, all the nodes reachable from a given node in a graph.

/'] Thisiterator is represented by a queue of nodes till to be visited,
/'l track.
private LinkedList track;

private BreadthFirstlterator (G aph. Node start) {
track = new Li nkedStack();
Li nkedLi st nodeQueue = new Li nkedLi st ();
nodeQueue. addLast (start);
Set mar kedNodes = new HashSet () ;
mar kedNodes. add(start);
while (! nodeQueue.isEmpty()) {
G aph. Node v =
(G aph. Node) nodeQueue. renmoveFirst () ;
track. addLast (v); // Rememberto visit nodev.
Iterator successors = g.successors(v);
whil e (successors. hasNext()) {
G aph. Node w =
(G aph. Node) successors. next ();
if (! markedNodes. contains(w)) {
nodeQueue. addLast (W) ;
mar kedNodes. add(w) ;
}
}
}
}

public bool ean hasNext () {
return (! track.isEmpty());
}

public Object next () {
if (track.isEmpty())
t hr ow new NoSuchEl enent Excepti on();
G aph. Node node =
(G aph. Node) track. renoveFirst();
return node. get El ement () ;

}

/] Ther enpbve method is omitted here.

Program S15.24 Breadth-first iterator for graphs (as an inner class).

Java Collections © 2001 D.A. Watt and D.F. Brown 15-17



