
Programming Languages 3 Coursework 1

Assessed Coursework
Course Name Programming Languages 3

Coursework Number 1

Deadline Time: 16:30 Date: 14/11/2013 and
05/12/2013

% Contribution to final
course mark

20%

Solo or Group Solo Group

Anticipated Hours 20

Submission Instructions Submit by e-mail. See detailed instructions on pages 5
and 6.

Please Note: This Coursework cannot be Re-Assessed

Code of Assessment Rules for Coursework Submission

Deadlines for the submission of coursework which is to be formally assessed will be
published in course documentation, and work which is submitted later than the deadline will
be subject to penalty as set out below.

The primary grade and secondary band awarded for coursework which is submitted after the
published deadline will be calculated as follows:

(i) in respect of work submitted not more than five working days after the deadline

a. the work will be assessed in the usual way;

b. the primary grade and secondary band so determined will then be reduced by

two secondary bands for each working day (or part of a working day) the work

was submitted late.

(ii) work submitted more than five working days after the deadline will be awarded

Grade H.

Penalties for late submission of coursework will not be imposed if good cause is established
for the late submission. You should submit documents supporting good cause via
MyCampus.

Penalty for non-adherence to Submission Instructions is 2 bands

You must complete an “Own Work” form via
https://webapps.dcs.gla.ac.uk/ETHICS for all coursework

https://webapps.dcs.gla.ac.uk/ETHICS

Programming Languages 3 Coursework 2

Programming Languages 3

Coursework Assignment (2013-14)

In this assignment you will extend the Fun compiler, using the compiler generation tool ANTLR. The

Fun compiler is outlined in the course notes. You will start your assignment by familiarizing yourself

with ANTLR and the Fun compiler.

The assignment itself consists of three stages: syntactic analysis, contextual analysis, and code

generation. The deadlines are 14/11/2013 (stage 1) and 05/12/2013 (stages 2 and 3).

The assignment contributes 20% of the assessment for the PL3 course.

Familiarization with ANTLR

ANTLR runs on Linux machines. To use ANTLR, ensure that your CLASSPATH includes “.” and

/usr/local/antlr/antlr-3.3-complete.jar.

Go to the PL3 Moodle page, download Calc.zip, and extract the files (Calc.g,

CalcRun.java, and some test files) into a new directory named Calc.

Study Calc.g. It contains the grammar of Calc, expressed in ANTLR notation. It also contains

actions that will execute the commands and evaluate the expressions in a Calc program. These actions

use an array that has space for all the 26 variables provided by Calc. That array, store, is declared in

the @members section of Calc.g.

To make ANTLR generate a lexer and parser for Calc, enter the following Linux command:

 …$ java org.antlr.Tool Calc.g

This should generate files named CalcLexer.java and CalcParser.java. You might wish to

look at them briefly (although they are not intended for human readers!). In particular, the

CalcParser class contains methods prog(), com(), expr(), etc., which work together as a

modified form of recursive-descent parser. Notice that ANTLR has pasted the actions from Calc.g

into these parsing methods.

Study CalcRun.java. It expects an argument that is a named Calc source file. CalcRun creates a

lexer and uses it to translate the source code into a token stream. Then it creates a parser and calls the

parser’s prog() method, which in turn calls com(), expr(), etc. While parsing the token stream,

these methods also execute the actions that ANTLR pasted into them.

Compile all the Java files:

 …$ javac *.java

Run CalcRun with a selected source file, e.g.:

 …$ java CalcRun test1.calc

 16

 56

 72

Note the outputs: these are numbers printed by the “put” commands in the source program.

Now try:

Programming Languages 3 Coursework 3

 …$ java CalcRun test2.calc

 line 4:15 no viable alternative at character '/'

 line 4:16 extraneous input '2' expecting EOL

The Calc parser prints an error message because this source program uses “/”, but Calc has no such

operator. (Note: The generated parser’s error messages are not very informative. However, they

always include a line number and column number, such as “4:15”, so you can locate the error

exactly.)

Experiment by modifying the Calc grammar in Calc.g. Try at least one of the following:

 (a) Add comments (choosing your preferred syntax, such as “/*…*/” or “//…”).

 (b) Add a “/” operator.

 (c) Allow variable identifiers to consist of one or more letters (instead of just a single letter).

Whenever you modify Calc.g, make ANTLR regenerate CalcLexer.java and

CalcParser.java, then recompile these Java files.

If you make any mistakes in the grammar, ANTLR will print error messages. (Note: These error

messages are not very informative, so it is wise to make only one modification at a time.)

On the other hand, if you make any mistakes inside actions, these mistakes will not be noticed by

ANTLR. Instead, ANTLR blindly pastes the actions into the generated Java files, leaving it to the

Java compiler to detect these mistakes and print error messages.

Familiarization with the Fun compiler

Go to the PL3 Moodle page, download Fun.zip, and extract all the files into a new directory named

Fun.

Study Fun.g. It contains the grammar of Fun, expressed in ANTLR notation. It also contains tree-

building operations that will translate a Fun source program to an AST.

To make ANTLR generate a Fun syntactic analyser (lexer and parser), enter the following Linux

command:

 …$ java org.antlr.Tool Fun.g

This should generate files named FunLexer.java and FunParser.java. The FunParser

class contains methods prog(), com(), expr(), etc., which work together as a modified form of

recursive-descent parser. The parser’s output is an AST. The translation from token stream to AST is

specified by the tree-building operations in Fun.g.

Study FunChecker.g. It contains a tree grammar of Fun ASTs, expressed in ANTLR notation. It

also contains actions that will enforce Fun’s scope rules and type rules.

To make ANTLR generate a Fun contextual analyser, enter the following Linux command:

 …$ java org.antlr.Tool FunChecker.g

This should generate a file named FunChecker.java. The FunChecker class contains methods

that work together to walk the AST and enforce Fun’s scope rules and type rules.

Study FunEncoder.g. It contains the tree grammar of Fun ASTs, expressed in ANTLR notation. It

also contains actions that will allocate addresses and emit SVM object code.

To make ANTLR generate a Fun → SVM code generator, enter the following Linux command:

 …$ java org.antlr.Tool FunEncoder.g

Programming Languages 3 Coursework 4

This should generate a file named FunEncoder.java. The FunEncoder class contains methods

that work together to walk the AST, allocate addresses and emit SVM object code.

Study SVM.java. This class defines the representation of SVM instructions. It also contains a group

of methods for emitting SVM instructions, i.e., placing them one by one in the code store; these

methods are called by the Fun code generator. This class also contains a method interpret() that

interprets the program in the code store.

Study FunRun.java. This driver program first compiles a named Fun source file to SVM object

code. To help you to see what is going on, the program prints the AST and the SVM object code.

Finally (if compilation was successful) the program interprets the object code.

Compile all the Java files:

 …$ javac *.java

You will find several Fun test programs in the directory tests. Run the driver program with a

selected source file:

 …$ java FunRun tests/func.fun

This particular test program repeatedly invites you to input an integer, and outputs that integer’s

factorial. It terminates when you input 0.

If you wish, you can make the interpreter print each instruction as it is executed. In FunRun.java,

simply change the static variable tracing from false to true.

Assignment: extension to Fun

In this assignment you are required to extend Fun by adding a for-command. The following Fun

function contains a for-command:

 func int fac (int n): # returns n!

 int i = 0

 int f = 1

 for i = 2 to n:

 f = f*i .

 return f

 .

This particular for-command makes the control variable i range from 2 up to the value of n. The for-

command’s body “f = f*i” is executed repeatedly, once for each value of the control variable. If

the value of n happens to be less than 2, the for-command’s body is not executed at all.

The Fun grammar is extended with the for-command as follows:

 com = ident ‘=’ expression – assignment command

 | ident ‘(’ actual ‘)’ – procedure call

 | ‘if’ expr ‘:’ seq-com

 (‘.’ | ‘else’ ‘:’ seq-com ‘.’) – if-command

 | ‘while’ expr ‘:’ seq-com ‘.’ – while-command

 | ‘for’ ident ‘=’ expr ‘to’ expr ‘:’

 seq-com ‘.’ – for-command

The for-command ‘for’ ident ‘=’ expr1 ‘to’ expr2 ‘:’ seq-com ‘.’ must respect the following

scope/type rules:

• The control variable ident must have been declared as a local variable of type int.

Programming Languages 3 Coursework 5

• Both expr1 and expr2 must be of type int.

The for-command ‘for’ ident ‘=’ expr1 ‘to’ expr2 ‘:’ seq-com ‘.’ has the following semantics:

1. Assign the value of expr1 to the control variable ident.

2. If the value of the control variable is greater than the value of expr2, terminate the for-

command.

3. Execute the body seq-com.

4. Increment the control variable.

5. Continue the for-command at step 2.

Assignment stage 1: syntactic analysis

Extend the Fun syntactic analyser as follows.

Decide how you will represent a for-command by an AST. The AST will have to include the relevant

parts of the for-command: its control variable, the two expressions, and its body.

Add the for-command to Fun.g, using ANTLR notation. Remember to extend the lexicon as

necessary.

Add a tree-building operation to translate the for-command to the corresponding AST.

Add your own name and the date to the header comment in Fun.g. Clearly highlight all your

modifications, using comments like “// EXTENSION”.

Use ANTLR to regenerate FunLexer.java and FunParser.java, then recompile them:

 …$ java org.antlr.Tool Fun.g

 …$ javac FunLexer.java FunParser.java

Write one or more test Fun programs containing for-commands. Test your extended syntactic analyser

by running the simplified driver program FunSA with each of these test programs, and see whether it

builds correct ASTs.

Submission (stage 1)

The deadline for stage 1 is Thursday 14/11/2013 at 16:30. Submit by e-mail to

David.Watt@glasgow.ac.uk (Glasgow) or StevenKai-Juan@glasgow.ac.uk (Singapore). Attach a

copy of your extended Fun.g. The body of your e-mail should contain a brief (but honest!) status

report.

Assignment stage 2: contextual analysis

Extend the Fun contextual analyser as follows.

Add an AST pattern for the for-command to FunChecker.g. Then add actions to perform the

necessary scope/type checks.

As before, add your own name and the date to the header comment in FunChecker.g. Clearly

highlight all your modifications, using comments like “// EXTENSION”.

Use ANTLR to regenerate FunChecker.java, then recompile it:

mailto:david.watt@glasgow.ac.uk
mailto:StevenKai-Juan@glasgow.ac.uk

Programming Languages 3 Coursework 6

 …$ java org.antlr.Tool FunChecker.g

 …$ javac FunChecker.java

Test your extended contextual analyser by running FunRun with each of your test programs, and see

whether it performs proper scope/type checks. Your test programs should include one that violates all

the for-command’s scope/type rules. (Note: At this stage FunRun will fail if it attempts code

generation, since you have not yet added the for-command to the code generator. You will fix that

problem in stage 3.)

Assignment stage 3: code generation

Extend the Fun code generator as follows.

Start by devising a code template for a for-command. This should combine code to evaluate the for-

command’s two expressions, code to execute the for-command’s body, conditional and/or

unconditional jumps, and instructions to initialize, test, and increment the control variable.

Add an AST pattern for the for-command to FunEncoder.g. Then add actions to generate the code

as specified by your code template.

As before, add your own name and the date to the header comment in FunEncoder.g. Clearly

highlight all your modifications, using comments like “// EXTENSION”.

Note: Include your code template as a comment in FunEncoder.g. You will receive marks for a

reasonable code template even if your code generator does not work as intended.

Use ANTLR to regenerate FunEncoder.java, then recompile it:

 …$ java org.antlr.Tool FunEncoder.g

 …$ javac FunEncoder.java

Test your extended contextual analyser and code generator by running FunRun with each of your test

programs, and see whether it performs proper scope/type checks and generates correct object code.

There are two ways to verify whether the compiler generates correct object code – use both!

1. Visually inspect the object code.

2. See what happens when the object code is interpreted. If the object code’s behaviour is

unexpected, your compiler must be generating incorrect object code.

Submission (stages 2 and 3)

The deadline for stages 2 and 3 is Thursday 05/12/2013 at 16:30. Submit by e-mail to

David.Watt@glasgow.ac.uk (Glasgow) or StevenKai-Juan@glasgow.ac.uk (Singapore). Attach a

copy of your extended Fun.g, FunChecker.g, and FunEncoder.g. The body of your e-mail

should contain a brief (but honest!) status report.

Help and support

Your lecturer and a demonstrator will be in the lab to help you if needed.

You may collaborate with other students to familiarize yourself with ANTLR and the Fun compiler.

However, assignment stages 1–3 must be your own unaided work.

Your stage 1 work will be marked and returned to you promptly. You are then free to modify your

Fun.g in the light of your feedback, but your stage 1 work will not be re-assessed.

mailto:david.watt@glasgow.ac.uk
mailto:StevenKai-Juan@glasgow.ac.uk

Programming Languages 3 Coursework 7

Schedule

You can work at your own pace, but here is a suggested schedule:

Familiarization with ANTLR by 31/10/2013

Familiarization with Fun compiler by 07/11/2013

Assignment stage 1 by 14/11/2013

Assignment stage 2 by 21/11/2013

Assignment stage 3 by 05/12/2013

Assessment

Your work will be marked primarily for correctness. However, marks may be deducted for code that

is clumsy, hard to read, or very inefficient. Marks will also be deducted for a missing or misleading

status report.

The assessment scheme will be:

Stage 1 (syntactic analysis) 9 marks

Stage 2 (contextual analysis) 9 marks

Stage 3 (code generation) 12 marks

Total 30 marks

Your total mark will be converted to a grade on the 22-point scale.

