
Programming Languages 3 Fun Specification 1

Programming Languages 3

Fun Specification

1 Overview

Fun is a simple imperative language. Its purpose is to illustrate some aspects of programming

language concepts and implementation.

Here is an example of a Fun program:

 bool verbose = true

 func int fac (int n): # returns n!

 int f = 1

 while n > 1:

 f = f*n

 n = n-1 .

 return f

 .

 proc main ():

 int num = read()

 while not (num == 0):

 if verbose: write(num) .

 write(fac(num))

 num = read() .

 .

This program declares a global variable verbose, a function fac, and a procedure main. The

function fac has a formal parameter, and ends by returning a result. A procedure may also have a

formal parameter (although procedure main does not), but does not return a result. Both functions

and procedures may declare local variables.

2 Programs

Syntax

 prog = var-decl * proc-decl
+
 eof

Scope and type rules

Variables declared at the program level are global in scope. All procedures and functions are global in

scope.

No variable may be accessed before it is declared. Likewise, no procedure or function may be called

before it is declared; however, a procedure or function may call itself.

The program must include a procedure main with no parameter.

Semantics

The program is run by first elaborating its global variable declarations (if any) and then calling the

procedure main.

Programming Languages 3 Fun Specification 2

3 Declarations

Syntax

 proc-decl = ‘proc’ ident ‘(’ formal ‘)’ ‘:’

 var-decl * seq-com ‘.’ – procedure declaration

 | ‘func’ type ident ‘(’ formal ‘)’ ‘:’

 var-decl * seq-com

 ‘return’ expr ‘.’ – function declaration

 formal = (type ident)
?
 – formal parameter

 var-decl = type ident ‘=’ expr – variable declaration

 type = ‘bool’

 | ‘int’

Scope and type rules

Variables declared inside a procedure or function are local in scope. Formal parameters are treated as

local variables.

Every variable has a declared type, either bool or int; the expression in the variable declaration

must have the same type.

Likewise, every formal parameter has a declared type, either bool or int.

A procedure has type T → void (if it has a formal parameter of type T) or void → void (if it has

no formal parameter).

A function with result type T ' has type T → T ' (if it has a formal parameter of type T) or void → T '

(if it has no formal parameter). The expression following ‘return’ must have type T '.

Semantics

A variable declaration is elaborated by first evaluating its expression to the value v, then creating a

variable initialised to v, then binding the identifier to the variable.

A procedure or function declaration is elaborated by binding the identifier to the procedure or

function.

4 Commands

Syntax

 com = ident ‘=’ expr – assignment command

 | ident ‘(’ actual ‘)’ – procedure call

 | ‘if’ expr ‘:’ seq-com

 (‘.’ | ‘else’ ‘:’ seq-com ‘.’) – if-command

 | ‘while’ expr ‘:’ seq-com ‘.’ – while-command

 seq-com = com * – sequential command

Scope and type rules

In an assignment command, the identifier must be bound to a variable, and the expression must have

the same type as that variable.

In an if-command, the expression must be of type bool.

Programming Languages 3 Fun Specification 3

In a while-command, the expression must be of type bool.

In a procedure call, the identifier must be bound to a procedure. If the procedure has type T → void,

the procedure call must have an actual parameter of type T. If the procedure has type void → void,

the procedure call must have no actual parameter.

Semantics

An assignment command is executed by first evaluating its expression to the value v, then storing v in

the variable.

An if-command with no ‘else:’ is executed by first evaluating its expression to the bool value b,

and then either (a) executing the command after ‘:’ if b is true, or (b) doing nothing if b is false. An

if-command with ‘else:’ is executed by first evaluating its expression to the bool value b, and

then either (a) executing the command after ‘:’ if b is true, or (b) executing the command after

‘else:’ if b is false.

A while-command is executed by first evaluating its expression to the bool value b, and then either

(a) exiting if b is false, or (b) executing the command after ‘:’ and then repeating the whole while-

command if b is true.

A procedure call without an actual parameter is executed by first elaborating the procedure’s local

variable declarations (if any), then executing the procedure’s sequential command, then destroying

any local variables. A procedure call with an actual parameter is executed by first evaluating its actual

parameter to the value v, then creating a local variable (the formal parameter) initialised to v, then

elaborating the procedure’s local variable declarations (if any), then executing the procedure’s

sequential command, then destroying the formal parameter and any other local variables.

A sequential command is executed by executing its constituent commands in strict order.

5 Expressions

Syntax

 expr = sec-expr ((‘<’ | ‘>’ | ‘==’) sec-expr)
?
 – binary operator application

 sec-expr = prim-expr

 ((‘+’ | ‘-’ | ‘*’ | ‘/’) prim-expr) * – binary operator application

 prim-expr = ‘false’

 | ‘true’

 | num – numeral

 | ident – variable

 | ident ‘(’ actual ‘)’ – function call

 | ‘not’ prim-expr – unary operator application

 | ‘(’ expr ‘)’ – parenthesized expression

 actual = expr
?
 – actual parameter

Scope and type rules

A unary operator application has one sub-expression whose type must be consistent with the type of

the operator. The type of the unary operator application is determined by the type of the operator. The

unary operator ‘not’ has type bool → bool.

A binary operator application has two sub-expressions whose types must be consistent with the type

of the operator. The type of the binary operator application is determined by the type of the operator.

Programming Languages 3 Fun Specification 4

The binary operators ‘+’, ‘-’, ‘*’, and ‘/’ have type (int × int) → int. The binary operators ‘==’,

‘<’, and ‘>’ have type (int × int) → bool.

In a function call, the identifier must be bound to a function. If the function has type T → T ', the

function call must have an actual parameter of type T. If the function has type void → T ', the

function call must have no actual parameter. In either case the type of the function call is T '.

Semantics

A unary operator application is evaluated by first evaluating its sub-expression to the value v, then

applying the unary operator to v.

A binary operator application is evaluated by first evaluating its two sub-expressions to the values v1

and v2, then applying the binary operator to v1 and v2.

A function call without an actual parameter is evaluated by first elaborating the function’s local

variable declarations (if any), then executing the function’s sequential command, then evaluating the

‘return’ expression to the value v', then destroying any local variables. A function call with an

actual parameter is evaluated by first evaluating its actual parameter to the value v, then creating a

local variable (formal parameter) initialised to v, then elaborating the function’s local variable

declarations (if any), then executing the function’s sequential command, then evaluating the

‘return’ expression to the value v', then destroying the formal parameter and any other local

variables. In either case, the value of the function call is v'.

6 Lexicon

Syntax

 num = digit
+
 – numeral

 ident = letter (letter | digit) * – identifier

 space = (‘ ’ | ‘\t’)
+
 – white space

 eol = ‘\r’
?
 ‘\n’ – end-of-line

 comment = ‘#’ comment-char

* ‘\r’

?
 ‘\n’

 comment-char = … – any character other

 – than ‘\r’ or ‘\n’

 digit = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

 letter = ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ |

 ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ |

 ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’ |

 ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ |

 ‘j’ | ‘k’ | ‘l’ | ‘m’ | ‘n’ | ‘o’ | ‘p’ | ‘q’ | ‘r’ |

 ‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’ | ‘y’ | ‘z’

Spaces, ends-of-lines, and comments do not influence the program’s phrase structure. They are there

for human readers only.

7 Predefined

Fun has two predefined procedures and functions:

Programming Languages 3 Fun Specification 5

 func int read (): # inputs and returns an integer

 …

 proc write (int n): # outputs the integer n

 …

