
Programming Languages 3 SVM Specification 1

Programming Languages 3

SVM Specification

SVM is a simple virtual machine. It is suitable for execution of programs in simple imperative

languages.

1 Machine state

The virtual machine consists of:

• a code store of 32,768 bytes, which contains the program’s instructions (diagram below left)

• a register pc (program counter), which points to the opcode of the next instruction to be fetched

• a register cl (code limit), which points to the first free byte after the stored program code

• a data store of 32,768 words (each of 32 bits), which contains the program’s data (diagram

below right)

• a register sp (stack pointer), which points to the first free word above the top of the stack

• a register fp (frame pointer), which points to the first word of the topmost frame

• a register status, which indicates whether the program is running, halted, or failed.

The data store contains a stack. The stack contains a frame for each currently active routine

(procedure or function). Each frame contains:

• a dynamic link, which points to the first word of the underlying frame

• a return address, which points to the instruction following the CALL that activated the routine

• local data (arguments, local variables, expression evaluation results)

0

dyn. link

return addr.

data store

fp

sp

dyn. link

return addr.

global data

local data

local data

frame

frame

global

frame

0
pc cl

instruction

code store

instruction ... instruction ... instruct-

ion

Programming Languages 3 SVM Specification 2

The base of the stack is always occupied by a global frame. The global frame contains only global

data (with no dynamic link or return address).

2 Instruction set

Each instruction occupies 1, 2, or 3 bytes. The first byte of each instruction is its opcode.

Opcode Bytes Mnemonic Behaviour

0 1+2 LOADG d

(load global)

w ← word at global address d;

push w on to stack

1 1+2 STOREG d

(store global)

pop w from stack;

word at global address d ← w

2 1+2 LOADL d

(load local)

w ← word at local address (fp+d);

push w on to stack

3 1+2 STOREL d

(store local)

pop w from stack;

word at local address (fp+d) ← w

4 1+2 LOADC v

(load constant)

push v on to stack

6 1 ADD

(add)
pop w2 from stack; pop w1 from stack;

push (w1 + w2) on to stack

7 1 SUB

(subtract)
pop w2 from stack; pop w1 from stack;

push (w1 – w2) on to stack

8 1 MUL

(multiply)
pop w2 from stack; pop w1 from stack;

push (w1 × w2) on to stack

9 1 DIV

(divide)
pop w2 from stack; pop w1 from stack;

push (w1 / w2) on to stack, discarding any

remainder

10 1 CMPEQ

(compare equal)
pop w2 from stack; pop w1 from stack;

push (if w1 = w2 then 1 else 0) on to stack

12 1 CMPLT

(compare less than)
pop w2 from stack; pop w1 from stack;

push (if w1 < w2 then 1 else 0) on to stack

13 1 CMPGT

(compare greater than)
pop w2 from stack; pop w1 from stack;

push (if w1 > w2 then 1 else 0) on to stack

14 1 INV

(invert)
pop w from stack;

push (if w = 0 then 1 else 0) on to stack

15 1 INC

(increment)
pop w from stack;

push (w + 1) on to stack

16 1 HALT

(halt)
status ← halted

17 1+2 JUMP c

(jump)

pc ← c

18 1+2 JUMPF c

(jump if false)

pop w from stack;

if w = 0 then pc ← c

19 1+2 JUMPT c pop w from stack;

Programming Languages 3 SVM Specification 3

(jump if true) if w ≠ 0 then pc ← c

20 1+2 CALL c

(call)

if c is the address of an input/output routine

then:

 execute that routine

else:

 push fp (dynamic link) on to stack;

 push pc (return address) on to stack;

 fp ← address where dynamic link is stored;

 pc ← c

21 1+1 RETURN r

(return)

pop result (r words) from stack;

pop topmost frame down to address fp;

fp ← dynamic link;

pc ← return address;

push result on to stack

22 1+1 COPYARG s

(copy arguments)

move arguments (s words) into topmost frame,

swapping with dynamic link and return address

Notes:

• c denotes an address within the code store

• d denotes a global address or local address offset within the data store

• r denotes the number of words to be returned by a routine

• s denotes the number of words to be passed into a routine

• v denotes a 16-bit value.

3 Routines and frames

A routine is a piece of code that is invoked by a CALL instruction. When the routine executes a

RETURN instruction, control returns to the instruction following the CALL.

Throughout the routine’s activation, a frame in the stack holds its local data. A CALL instruction

pushes a new frame on to the stack. A RETURN instruction pops a frame off the stack.

If a routine has any arguments, the caller is required to push these arguments on to the stack

immediately before executing a CALL instruction. The called routine should start by using the

COPYARG instruction to move these arguments into its own frame. The COPYARG instruction simply

swaps these arguments with the dynamic link and return address.

The effect of these instructions on the data store is illustrated in the diagram below. It is assumed that

the called routine has arguments totalling s words and a result of r words.

Programming Languages 3 SVM Specification 4

dynamic link

return addr.

arguments

locals

result

result
(r words)

dynamic link

return addr.

arguments
dynamic link

return addr.

arguments arguments

(s words)

CALL c COPYARG s routine body RETURN r

fp fp

fp

fp

sp sp

sp

sp

0 0 0 0 0

fp

sp

