Duration: 90 minutes.
Rubric: Answer all four questions.

1. (@) Pure functional languages (such as Haskell) aghhhiexpressive, despite
lacking the assignments and loops of imperative @bject-oriented) languages.
Identify and briefly explairthree features of functional languages that account
for their expressive power.

| [Notes + insight; any three of the following poimt® sufficient]
Recursive functions are effective for expressimggetiive computations.
Pattern-matching is effective for defining functorase-by-case.

. Higher-order functions are effective for expresstnpgputational patterns.

Polymorphic functions and types are effective fquressing computations that
. are (largely) independent of the types of the datalved.

[3]
(b) Adictionary (of the kind used by a spell-checker) is a setafds.
(i) Define a Haskell type suitable for implementiaglictionary.
' [Unseen problem]
_________ ype Dict=[Stingl
[1]

(i) Write a Haskell functionJookup w d, that yields true if and only if
dictionaryd contains woraw.

. [Similar to seen problem]

lookup :: String -> Dict -> Bool
lookup w [] = False
lookup w (W:ws) =

ifw==w

then True

__

(iif) Write a Haskell functionadd wd, that yields the dictionary obtained by
adding wordw to dictionaryd (or yieldsd if it already containgy).

i [Similar to seen problem]

add :: String -> Dict -> Dict
add w ws =

if lookup w ws

then ws

else w:ws

Explicitly declare the type of each function i &nd (iii).
(Note: A simple implementation using linear search iseptable.)

Consider the following Haskell type definition:

dat a Tree a = NULL | NODE a (Tree a) (Tree a)
A value of typeTree a is a binary tree whose nodes contain elements efatyp

(i) Write a Haskell functiongdepth t, that yields the depth of treée (Note:
a tree with a single node has depth 0; an empgyhas depth —1.)

! [Similar to seen problem]

depth :: Tree a -> Int
depth NULL = -1
depth (NODE x t1 t2) =
1 + max (depth t1) (depth t2)

__

(i) Write a Haskell functionpostorder t, that yields a list of all elements
of treet , using post-order traversal.

——

. [Similar to seen problem]

postorder :: Tree a -> [a]

postorder NULL =[]

postorder (NODE x t1 t2) =
postorder t1 ++ postorder t2 ++ [x]

(iif) Write a Haskell functionmirror t, that yields the mirror-image of tree
t (i.e., the tree obtained fromby swapping every pair of subtrees).

. [Unseen problem]

mirror :: Tree a -> Tree a
mirror NULL = NULL
mirror (NODE x t1 t2) =

NODE x (mirror t2) (mirror t1)

Explicitly declare the type of each function i) &nd (iii).

The following is part of the BNF grammar of a hgipetical programming

language:
exp = pexp
| exp+exp
| exp- exp
pexp = var
| (exp)
var == al|bjc|d]...

(Hereexp is an expressiomexp is a primary expressionar is a variable.)

(@ Show that the expressioa-b+c ” is ambiguous by drawing its two syntax trees.

 [Unseen problem] oxp exp

. | | |
elxp exp

 — I -1 1

exp exp exp exp exp exp

| | | | | |

pexp pexp pexp pexp pexp pexp

| | |

v|ar vz|ar vz|ar var var var

| | |

L a - b o+ ¢

(b) Show how to modify the grammar to eliminate thebaguity, in such a way that
expressions associate to the left. For examm@ey+c ” should be interpreted
like “(a-b)+c ”. lllustrate your answer by drawing the unique tayntree of
“a-b+c .

. [Unseen problem]

exp
exp = pexp | :
| exp+ pexp exp
| exp- pexp 1
exp
|
pexp pexp pexp
| | |
var var var
| | |
a - b + c

(8 What is arinterpretive compiler? Why are interpretive compilers useful?

An interpretive compiler consists of:
+ (i) a compiler that generates virtual machine caahel
: (ii) an interpreter for virtual machine code.

: An interpretive compiler is useful because [2 &g reasons suffice]:
it reduces the effort of building a compiler;

. it speeds up compilation (good for program develept)y

| it makes the compiler portable.

The remainder of this question is about the Tirtgrpretive compiler presented
and used in thBrogramming Languages 3 course.

(b) Draw tombstone diagrams representing the compsrae Tiny interpretive
compiler (expressed in Haskell).

. [Similar to seen problem]

The interpretive compiler consists of a Tiny TVM translator plus a TVM
i interpreter (where TVM = Tiny Virtual Machine code)

Tiny — TVM TVM
Haskel Haskel

(c) Draw tombstone diagrams showing how to install Ty interpretive compiler
on machineV. (Assume that a Haskelb M compiler is available.)

Also show how the interpretive compiler would b&ed to compile and run a
Tiny programp.

i [Similar to seen problem]

To install the interpretive compiler:

Tiny —» TVM Tiny — TVM TVM TVM
Haskel[Haskell- M [M Haskel[Haskell- M [M
M M
M M

(d)

' To compile and run a Tiny prograih

P P CPD

Tiny |Tiny - Tvm | Tvm | 77077 » T rum

M TVM

M M

N v
\/

Suppose now that you are required to build a clanghat will translate Tiny to
M machine code. Using tombstone diagrams, show hmwwould build your
compiler using the Tiny interpretive compiler compats, adding just one new
component.

Also show how your compiler would be used to cdepnd run a Tiny program

. [Similar to seen problem]

Write a TVM — M back-end in (say) Haskell, and compile it:

TVM - M VM — M
Haskell Haskell- M| M

M
M

~

| To compile and run a Tiny prograi

P P P C PO
|Tiny Tiny—>TVM | TVM | TV M ->M | M S Al
M M

4.

(@

(b)

(©)

Define Cartesian products (%), digoint unions (+), andmappings (—). Briefly
explain how each concept is relevant to the undedshg of programming
languages.

. Cartesian product8x T is a set of ordered pairs whose components agetsell|
: from SandT, respectively. This concept underlies recordsicss; and tuples.

| Disjoint unions:S+ T is a set of tagged values, each selected froreretor T.
| This concept underlies algebraic data types, varegords, and objects.

Mappings:S— T is the set of all possible mappings fr&to T. This concept
i underlies arrays and functions.

Using the concepts of part (a), write equationfindey the set of values of each
of the following Haskell types:

dat a Piece = PAWN | KING

dat a Colour = WHITE | BLACK

t ype ColouredPiece = (Colour, Piece)

dat a Square = EMPTY | CONT ColouredPiece
t ype Board = Int -> Square

. [Unseen problem]

| Piece = PAWN, KING}

. Colour = {WHITE, BLACK}

. ColouredPiece = Colous Piece

i Square =EMPTY Void + CONT ColouredPiece
| Board = Int— Square

Using the concepts of part (a), write an equatiefining the set of objects in a
Java program that includes the following classes:

cl ass Event {
pri vat e Date date;
pri vat e String description;
./ methods

}

cl ass Appointment ext ends Event {
privat e Time time;
i methods

}

cl ass Meeting ext ends Appointment {
private int location;
pri vat e String[] participants;
./ methods

(Assume thaDate andTime are library classes.)

. [Unseen problem]

Object = Event (Datex String)
: + Appointment (Datex Stringx Time)
+ Meeting (Datex Stringx Time x Int x (Int — String))

(d) Explain the difference betweerstatically-typed and dynamically-typed
programming languages.

‘Ina statically-typed language, every variable expression has a fixed type. AII
. operands are type-checked at compile-time. ‘

In a dynamically-typed language, values have fixges, but variables and
i expressions do not. All operands are type-checkeshwomputed at run-time.

() What are the advantages and disadvantages ot stati dynamic typing?
lllustrate your answer using the following Java Imoet definition and method
call:

static int max(int x, inty){
if (x>y)
then return Xx;
el se return vy;

}

int m=..;
intn=..;
i nt p=max(m, n)

and the following Python function definition afuhction call:

def max (x,y):
ifx>y:
returnx
el se:
returny

m
n
p max(m n);

(Java is statically-typed, whilst Python is dyneatiy-typed.)

i [Notes + unseen example]

. In the Java program, the method definition canype-thecked at compile-time,
ri.e, x:Intand y : Int, so x>y : Boolean, se ifrstatement is well-typed,;

\ moreover, both return-statements are consistehttiv function’s type. The |
i method call can also be type-checked at compilestire., m : Intand n : Int, so
. max(m,n) : Int . The compiler can guarantee thatgtogram will never fail with:
. a type error at run-time. :

' In the Python program, every operation must be-tjperked at run-time. This is
. costly in terms of time (type checks) and spaceg(tgs), and there is no |
i guarantee of type safety. The advantage is thdutiation is more flexible: it
. can safely be applied to any pair of values thatlmcompared with “>".

