

Programming Languages 3: Questions and Answers: April/May 2010
Duration: 90 minutes.
Rubric: Answer all four questions.

1. (Functional programming)

 (a) Explain the principle of primitive recursion as applied to:

(i) non-negative integers;

(ii) lists.

[Notes]

(i) A function f(n) is primitive-recursive if for n = 0 its result is determined
directly, whilst for n > 0 its result is determined in terms of f(n–1).

(ii) A function f(l) is primitive-recursive if for l empty its result is determined
directly, whilst for l non-empty its result is determined in terms of f(tail of l).

[2+2]

 (b) In a fictional university, each student receives a grade (A, B, C, D, or F) for
his/her work in each course. The student’s grade-point average is the weighted
average of the student’s grades in all courses (where A counts as 4.0, B as 3.0, C
as 2.0, D as 1.0, and F as 0.0).

 Write a Haskell function, gpa gs ws, that yields the grade-point average of the
grades in list gs , using the weights in ws. You may assume that ws has the same
length as gs , and that the weights in ws add up to 1.0 exactly. For example:

gpa [‘B’,‘A’,‘D’] [0.25,0.25,0.5]

 should yield 2.25 (= 3.0×0.25 + 4.0×0.25 + 1.0×0.5).

 Your answer must explicitly declare the type of the gpa function, and the types of
any auxiliary functions.

[Unseen problem]

 points :: Char -> Float
 points ‘A’ = 4.0
 points ‘B’ = 3.0
 points ‘C’ = 2.0
 points ‘D’ = 1.0
 points ‘F’ = 0.0

 gpa :: [Char] -> [Float] -> Float
 gpa [] [] = 0.0
 gpa (g:gs) (w:ws) =
 w * points g + gpa gs ws

Alternatively:

 data Grade = F | D | C | B | A deriving Enum

 points :: Grade -> Float
 points g = fromInt (fromEnum g)

 gpa :: [Grade] -> [Float] -> Float
 gpa [] [] = 0.0
 gpa (g:gs) (w:ws) =
 w * points g + gpa gs ws

[7]

 (c) Consider a binary search tree (BST) whose nodes contain integers.

(i) Define a Haskell type suitable for such a BST.

(ii) Write a Haskell function, search i t , that yields true if and only if the
BST t contains the integer i .

(iii) Write a Haskell function, insert i t , that yields the BST obtained by
inserting a new node containing the integer i into the BST t .

 Your answer must explicitly declare the type of each function.

[Unseen problem]

 data Bst = NULL | NODE Int Bst Bst

 search : Int -> Bst -> Bool
 search i NULL =
 False
 search i (NODE i’ t1 t2) =
 if i == i’
 then True
 else if i < i’
 then search i t1
 else search i t2

 insert :: Int -> Bst -> Bst
 insert i NULL =
 NODE i NULL NULL
 insert i (NODE i’ t1 t2) =
 if i < i’
 then NODE i’ (insert i t1) t2
 else NODE i’ t1 (insert i t2)

[1+4+4]
[total 20]

2. (Syntax)

 Box 1 shows part of the EBNF grammar of the programming language Tiny,
which featured in the course. It shows the syntax of commands. It does not show
the syntax of expressions (not needed in this question).

 (a) Show the syntax tree of the following Tiny command:

while n>0: n = n-1;

 You may assume that n>0 and n-1 are expressions. Your syntax tree should
show these expressions in outline:

[Unseen problem]

[5]

 (b) Suppose that Tiny is to be extended with a loop-command with multiple
conditional exits. For example, the following loop-command contains two
conditional exits:

loop {
 m = m+1;
 exit when m == n;
 f = f*m;
 exit when f > 1000;
}

 In general, the loop-command may contain zero or more commands and
conditional exits, in any order, all enclosed in a pair of curly brackets.
Conditional exits are permitted immediately inside a loop-command, but nowhere
else.

 Modify the grammar to allow for loop-commands.

n>0

expr

n-1

expr

n = n-1 ; n>0 while

ident expr expr

command

:

command

[Unseen problem]
 command ::= …
 | loop { loop-body }

 loop-body ::= (command | exit when expr ;)*

or:
 loop-body ::=
 | command loop-body
 | exit when expr ; loop-body

[5]
[total 10]

 seq-command ::= command+

 command ::= ident = expr ;
 | read ident ;
 | write expr ;
 | if expr : command (else command)?
 | while expr : command
 | { seq-command }

Box 1 Part of the grammar of Tiny (Question 2).
(Here expr is an expression, and ident is an identifier.)

3. (Implementation)

 (a) Explain the difference between a compiler and interpreter.

[Notes]

A compiler translates high-level source code to low-level object code. It does not
execute the code.

An interpreter executes source code directly, one instruction at a time. It does not
translate the code.

[2]

 (b) How does an interpreter work? What assumptions must be made about the
interpreted language? What differences would you expect to see between an
interpreter implemented in C and an interpreter implemented in Haskell?

[Notes]

An interpreter fetches, analyses, and executes source-code instructions, one at a
time.

The source code must be flat, i.e., a sequence of simple instructions (which may
include jumps).

An interpreter implemented in C models the state of the computation by a group
of global variables. Interpreting a single instruction inspects and updates the state.
The interpreter is structured as a loop that interprets one instruction at a time.

An interpreter implemented in Haskell models the state of the computation by a
tuple. Interpreting a single instruction inspects the state and yields a modified
state. The interpreter is structured as a recursive function that interprets one
instruction at a time.

[8]

 (c) Box 2 shows a description (in Haskell) of a simple stack machine, which is
suitable for evaluating simple integer expressions. For example, the following
integer expression:

2×(–(3+7))–4

 would be evaluated by executing the following list of stack-machine instructions:

[PUSH 2, PUSH 3, PUSH 7, ADD, NEG, MUL, PUSH 4, SUB]

 Implement the function execInstr .

[Similar to seen problem]

 execInstr (PUSH i) (RUNNING, pc, stack) =
 (RUNNING, pc+1, i:stack)

 execInstr ADD (RUNNING, pc, i2:i1:stack) =
 (RUNNING, pc+1, (i1+i2):stack)

 execInstr SUB (RUNNING, pc, i2:i1:stack) =
 (RUNNING, pc+1, (i1-i2):stack)

 execInstr MUL (RUNNING, pc, i2:i1:stack) =
 (RUNNING, pc+1, (i1*i2):stack)

 execInstr NEG (RUNNING, pc, i:stack) =
 (RUNNING, pc+1, (negate i):stack)

 execInstr HALT (RUNNING, pc, stack) =
 (HALTED, pc, stack)

[10]
[total 20]

 data Instruction =
 PUSH Int | ADD | SUB | MUL | NEG | HALT
 -- This represents a single instruction. Its effec t is:
 -- PUSH i push i on to the stack
 -- ADD pop i2; pop i1; push (i1+i2)
 -- SUB pop i2; pop i1; push (i1-i2)
 -- MUL pop i2; pop i1; push (i1*i2)
 -- NEG pop i; push (-i)
 -- HALT status <- HALTED

 type Code = [Instruction]
 -- This represents code by a list of instructions.

 data Status = RUNNING | FAILED | HALTED

 type Stack = [Int]
 -- This represents a stack by a list of integers.
 -- Elements may be added and removed only at the h ead
 -- of the list (the stack top).

 type State = (Status, Int, Stack)
 -- This represents the state of the computation. A state
 -- consists of a status, a program counter, and a stack.

 state0 :: State
 -- This is the initial state.
 state0 = (RUNNING, 0, [])

 execCode :: Code -> State -> State
 -- execCode c s yields the state that results from
 -- executing code c in state s.
 …

 execInstr :: Instruction -> State -> State
 -- execInstr i s yields the state that results fro m
 -- executing instruction i in state s.
 …

Box 2 Description of a stack machine, expressed in Haskell (Question 3).

4. (Concepts)

 (a) What is meant by the lifetime of a variable?

 What is the lifetime of:

(i) a global variable?

(ii) a local variable?

(iii) a heap variable?

[Notes]

The lifetime of a variable is the time interval between its creation and its
destruction.

(i) The lifetime of a global variable is the program’s entire run-time.

(ii) The lifetime of a local variable is an activation of the block in which it is
declared.

(iii) The lifetime of a heap variable starts when it is created by an allocator; and
finishes when it is destroyed by a deallocator, when it becomes unreachable, or
when the program halts.

[5]

 (b) Consider the Java program outlined in Box 3. Draw a diagram showing the
lifetimes of all global and heap variables created by this program.

[Unseen problem]

[6]

 (c) What is meant by the scope of a declaration?

 Illustrate your answer by stating the scopes of the declarations of the variable
word, the method add() , and the variable d in Box 3.

d.add
(" rat ")

d.add
(" cat ")

d.rem
(" rat ")

d.add
(" hat ")

main
(…)

lifetime of args

lifetime of d

lifetime of “rat” node

lifetime of “cat” node
lifetime of
“hat” node

lifetime of Dict object

[Notes]

The scope of a declaration is the portion of the program text over which the
declaration is visible.

The scope of the declaration of word is the Dict class declaration only.
The scope of the declaration of add() is the whole program.
The scope of the declaration of d is the body of main() .

[5]

 (d) Briefly explain the general concept of encapsulation in programming languages.
Why is this an important concept?

[Notes]

Encapsulation is the concept whereby some components of a program unit (such
as a module, package, or class) are public whilst others are private. “Public”
means visible to client code; “private” means visible only inside the program
unit.

This is important because it narrows the program unit’s interface, and frees the
implementer of the program unit to add or remove private components at will,
without invalidating client code.

[4]

 (e) Encapsulation is supported in different ways by particular programming
languages.

(i) How is encapsulation supported by Java? Illustrate your answer by
referring to the Java code of Box 3.

(ii) How is encapsulation supported by Haskell? Illustrate your answer by
outlining Haskell code to implement dictionaries as an abstract data type.

[Notes + seen problem]

(i) Java supports encapsulation by means of a class that specifies each of its
components as either public or protected or private. In the class of Box 3, the
components word and rest are specified as private, whilst Dict() , add() ,
remove() , and main() are specified as public.

(ii) Haskell supports encapsulation by means of a module whose heading lists
which of its components are public. Outline of a dictionary module:

 module Dictionaries (Dict, empty, add, remove)
 where

 data Dict = DICT [String]

 empty :: Dict
 empty = DICT []

 add :: String -> Dict -> Dict
 …

 remove :: String -> Dict -> Dict
 …

This module’s components Dict , empty , add , remove are public, but DICT is
private.

[4+6]
[total 30]

 public class Dict {
 // A Dict object represents a dictionary by a sor ted
 //linked list of words.

 private String word;
 private Dict rest;

 public Dict () { word = null; rest = null; }

 public void add (String w) {…}
 // Adds word w to this dictionary.

 public void rem (String x) {…}
 // Removes word x from this dictionary.

 public static void main (String[] args) {
 Dict d = new Dict();
 d.add("rat");
 d.add("cat");
 d.rem("rat");
 d.add("hat");
 }

 }

Box 3 A Java class (Question 4).

