Duration: 90 minutes.
Rubric: Answer all four questions.

(@)

(b)

(Functional programming)

Explain the principle oprimitive recursion as applied to:
(i) non-negative integers;
(i) lists.

| (i) A functionf(n) is primitive-recursive if fon = 0 its result is determined
. directly, whilst forn > 0 its result is determined in termsf@t1).

(ii) A function f(l) is primitive-recursive if fof empty its result is determined
. directly, whilst forl non-empty its result is determined in term$(til of I).

In a fictional university, each student receivegrade (A, B, C, D, or F) for
his/her work in each course. The studegtade-point average is the weighted
average of the student’s grades in all coursesr@vhecounts as 4.0, B as 3.0, C
as 2.0,Das 1.0, and F as 0.0).

Write a Haskell functiongpa gs ws, that yields the grade-point average of the
grades in lisys, using the weights ims. You may assume thats has the same
length agys, and that the weights ims add up to 1.0 exactly. For example:

gpa [‘B',‘A",D] [0.25,0.25,0.5]
should yield 2.25 (= 3.0x0.25 + 4.0x0.25 + 1.G0.

Your answer must explicitly declare the typeladpa function, and the types of
any auxiliary functions.

——

. [Unseen problem]

points :: Char -> Float

points ‘A’ = 4.0
points ‘B’ = 3.0
points ‘C’' = 2.0
points ‘D’ = 1.0
points ‘F’ = 0.0

gpa :: [Char] -> [Float] -> Float
gpa[][]=0.0
gpa (9:9s) (w:ws) =

w * points g + gpa gs ws

| Alternatively:
' data Grade =F | D | C | B | A deriving Enum

points :: Grade -> Float
points g = fromint (fromEnum g)

gpa :: [Grade] -> [Float] -> Float
gpa[][]=0.0
gpa (9:9s) (w:ws) =

w * points g + gpa gs ws

(c) Consider a binary search tree (BST) whose nodesicointegers.
(i) Define a Haskell type suitable for such a BST.

(i) Write a Haskell functionsearch i t, that yields true if and only if the
BSTt contains the integér.

(iif) Write a Haskell functionjnsert i t, that yields the BST obtained by
inserting a new node containing the inteigémto the BSTt .

Your answer must explicitly declare the type aéte function.

. [Unseen problem]
dat a Bst = NULL | NODE Int Bst Bst

search : Int -> Bst -> Bool
search i NULL =
False
search i (NODE i’ t1 t2) =
ifi==i
t hen True
else ifi<i
t hen searchitl
el se searchit2

insert :: Int -> Bst -> Bst
insert i NULL =
NODE i NULL NULL
inserti (NODE i’ t1 t2) =
ifi<v
t hen NODE i’ (insert i t1) t2 !
el se NODE i’ t1 (insert i t2) !

[1+4+4]
[total 20]

(@

(b)

(Syntax)

Box 1 shows part of the EBNF grammar of the prognamg language Tiny,
which featured in the course. It shows the synfasoonmands. It does not show
the syntax of expressions (not needed in this tprést

Show the syntax tree of the following Tiny command
while n>0: n =n-1;

You may assume that>0 andn-1 are expressions. Your syntax tree should
show these expressions in outline:
expr expr

A1) I
1 1
1o

n>0 n-1

command
I

I
command

I

O [
expr ident expr

while n>0 n = n-1 :

__

Suppose that Tiny is to be extended with a logpwoand with multiple
conditional exits. For example, the following loopmmand contains two
conditional exits:

loop {
m=m+1;
exit when m ==n;
f=m;
exit when f > 1000;
}

In general, the loop-command may contain zeronmre commands and
conditional exits, in any order, all enclosed inpair of curly brackets.
Conditional exits are permitted immediately insed®op-command, but nowhere
else.

Modify the grammar to allow for loop-commands.

i [Unseen problem]

command = ...
| loop { loop-body }

loop-body ::= (command |exit when expr ;)*

or:
' loop-body ::=
| command loop-body
] | _exit _whenexpr; loopbody
[3]
[total 10]
seg-command ::= command’

= ident = expr ;

| read ident;

| write expr; ,
| if expr: command (else command)’
| while expr: command

| { seg-command }

Box 1 Part of the grammar of Tiny (Question 2).
(Hereexpr is an expression, andent is an identifier.)

(b)

(©

(Implementation)

Explain the difference betweercampiler andinterpreter.

A compiler translates high-level source code to-level object code. It does not
i execute the code. ‘

. An interpreter executes source code directly, osgtction at a time. It does not
. translate the code.

How does an interpreter work? What assumptionst roesmade about the
interpreted language? What differences would yopeek to see between an
interpreter implemented in C and an interpretedé@mented in Haskell?

. An interpreter fetches, analyses, and executessaade instructions, one at a
| time. |

| The source code must be flat, i.e., a sequendengiesinstructions (which may
: include jumps).

' An interpreter implemented in C models the statdefcomputation by a group§
i of global variables. Interpreting a single instroctinspects and updates the state.
. The interpreter is structured as a loop that imeggpone instruction at a time.

. An interpreter implemented in Haskell models tratesbf the computation by a |
 tuple. Interpreting a single instruction inspedis state and yields a modified

i state. The interpreter is structured as a recufsivetion that interprets one

| instruction at a time.

Box 2 shows a description (in Haskell) of a simptack machine, which is
suitable for evaluating simple integer expressidf. example, the following
integer expression:

2x(~(3+7))-4
would be evaluated by executing the following difstack-machine instructions:

[PUSH 2, PUSH 3, PUSH 7, ADD, NEG, MUL, PUSH 4, SUB]

Implement the functioaxeclinstr

| [Similar to seen problem]

execlnstr (PUSH i) (RUNNING, pc, stack) =

__

execlnstr ADD (RUNNING, pc, i2:il:stack) =
(RUNNING, pc+1, (i1+i2):stack)

execlnstr SUB (RUNNING, pc, i2:il:stack) =
(RUNNING, pc+1, (i1-i2):stack)

: execlnstr MUL (RUNNING, pc, i2:il:stack) =
i (RUNNING, pc+1, (i1*i2):stack)

execlnstr NEG (RUNNING, pc, i:stack) =
(RUNNING, pc+1, (negate i):stack)

execlnstr HALT (RUNNING, pc, stack) =
(HALTED, pc, stack)

[total 20]

dat a Instruction =
PUSH Int | ADD | SUB | MUL | NEG | HALT
-- This represents a single instruction. Its effec tis:
-- PUSH i pushion to the stack
-- ADD popi2; pop il; push (i1+i2)
-- SUB popi2; pop il; push (i1-i2)
-- MUL popi2; pop il; push (i1*i2)
-- NEG popi; push (-i)
-- HALT status <- HALTED

t ype Code = [Instruction]
-- This represents code by a list of instructions.

dat a Status = RUNNING | FAILED | HALTED

t ype Stack = [Int]

-- This represents a stack by a list of integers.

-- Elements may be added and removed only at the h ead
-- of the list (the stack top).

t ype State = (Status, Int, Stack)
-- This represents the state of the computation. A state
-- consists of a status, a program counter, and a stack.

stateO :: State
-- This is the initial state.
state0 = (RUNNING, 0, [])

execCode :: Code -> State -> State
-- execCode c s yields the state that results from
-- executing code c in state s.

execlnstr :: Instruction -> State -> State
-- execlnstr i s yields the state that results fro m
-- executing instruction i in state s.

Box 2 Description of a stack machine, expressed in elagRuestion 3).

(@

(b)

(©

(Concepts)
What is meant by thiéfetime of a variable?

What is the lifetime of:
(i) aglobal variable?
(i) alocal variable?
(iif) a heap variable?

The lifetime of a variable is the time intervalween its creation and its
i destruction.

(i) The lifetime of a global variable is the progra entire run-time.

(i) The lifetime of a local variable is an actiiat of the block in which it is
i declared.

(iif) The lifetime of a heap variable starts whersicreated by an allocator; and§
+ finishes when it is destroyed by a deallocator, miidecomes unreachable, or:
. when the program halts. |

Consider the Java program outlined in Box 3. Deawdiagram showing the
lifetimes of all global and heap variables credigdhis program.

. [Unseen problem]

d.add . d.add . drem _ d.add _

("rat ") " ("cat") > ("rat ") ("hat") >
main pl - - - = pl - - - = pl - - — = el - - - = >
(“) > > > > >

—lifetime of args

v

—lifetime ofd

v

—lifetime of Dict objec

v

—lifetime cf “rat” nod€é ———p

—lifetime cf “cat” node

v

lifetime cf
~“hat” node

What is meant by thacope of a declaration?

lllustrate your answer by stating the scopeshef declarations of the variable
word, the methochdd() , and the variabld in Box 3.

(d)

(€)

| The scope of a declaration is the portion of tregpm text over which the
. declaration is visible.

| The scope of the declarationwdrd is theDict class declaration only.
. The scope of the declarationaafd() is the whole program.
+ The scope of the declarationdfs the body ofmain() .

Briefly explain the general concept efcapsulation in programming languages.
Why is this an important concept?

Encapsulation is the concept whereby some compsérat program unit (such§
i as a module, package, or class) are public whifgire are private. “Public”

: means visible to client code; “private” means \isibnly inside the program

b unit.

This is important because it narrows the prograitisuinterface, and frees the
i implementer of the program unit to add or remowvegbe components at will,
. without invalidating client code.

Encapsulation is supported in different ways byrtipalar programming
languages.

() How is encapsulation supported by Java? llatstryour answer by
referring to the Java code of Box 3.

(i) How is encapsulation supported by Haskellgttate your answer by
outlining Haskell code to implement dictionariesaasabstract data type.

[Notes + seen problem]

(i) Java supports encapsulation by means of a tasspecifies each of its
components as either public or protected or privatéhe class of Box 3, the
componentsvord andrest are specified as private, whiBict() , add() ,
remove() , andmain() are specified as public.

(i) Haskell supports encapsulation by means obaufe whose heading lists
which of its components are public. Outline of etidnary module:

nodul e Dictionaries (Dict, empty, add, remove)
wher e

dat a Dict = DICT [String]

empty :: Dict
empty = DICT []

add :: String -> Dict -> Dict
remove :: String -> Dict -> Dict

This module’s componenict , empty , add, remove are public, buDICT is
| private.

[total 30]

public cl ass Dict{
/I A Dict object represents a dictionary by a sor ted
/Ninked list of words.

pri vat e String word,
pri vat e Dict rest;

publ i c Dict () { word = nul | ;rest = nul | ;}

public void add (Stringw) {...}
// Adds word w to this dictionary.

public voidrem (String x) {...}
/I Removes word x from this dictionary.

public static voi d main (String[] args) {
Dictd = new Dict();
d.add("rat");
d.add("cat");
d.rem("rat");
d.add("hat");

Box 3 A Java class (Question 4).

