

Programming Languages 3: Questions and Answers: April/May 2011

Duration: 90 minutes.
Rubric: Answer all four questions. Total 60 marks.

1. (Functional programming)

 (a) Given a list of integers, ns, write the following:

(i) a list comprehension that yields a list of Boolean values, in which each

element is True if the corresponding element of ns is even, or False if

the element is odd;

(ii) a list comprehension that yields a list of integers, in which each element is

one less than the corresponding element of ns, except that non-positive

elements of ns are discarded.

[Similar to seen problem]

(i) [mod n 2 == 0 | n <- ns]

(ii) [n – 1 | n <- ns; n > 0]

[1+1]

 (b) Given a list of Boolean values, bs, define the following functions:

(i) “all bs” yields True if and only if bs is empty or all its elements are

True;

(ii) “any bs” yields True if and only if bs is non-empty and at least one of its

elements is True.

 Make sure that your functions are efficient.

 Your answer must explicitly declare the type of each function. Do not use any list

functions from the Haskell standard prelude.

[Unseen problem]

(i) all :: [Bool] -> Bool

 all [] = True

 all (b:bs) = b && all bs

(ii) any :: [Bool] -> Bool

 any [] = False

 any (b:bs) = b || any bs

[Alternative solutions using if…then…else… are equally acceptable. But lose 1

mark each if short-circuit evaluation is not used.]

 [2+2]

 (c) Given an arbitrary list, xs, define the following polymorphic functions:

(i) “map f xs” yields a list in which each element is the result of applying

function f to the corresponding elements of xs;

 (ii) “filter f xs” yields a list containing just those elements of xs satisfied

by function f (i.e., those elements x for which f x yields True).

 Your answer must explicitly declare the type of each function. Do not use any list

functions from the Haskell standard prelude.

[Unseen problem]

(i) map :: (a -> b) -> [a] -> [b]

 map f [] = []

 map f (x:xs) = f x : map f xs

(ii) filter :: (a -> Bool) -> [a] -> [a]

 filter f [] = []

 filter f (x:xs) =

 if f x

 then x : filter f xs

 else filter f xs

[Answers using list comprehensions are equally acceptable.]

 [4+5]

[total 15]

2. (Syntax)

 Box 1 shows part of the BNF grammar of a fictional programming language,

FPL. It shows only the syntax of commands and sequential commands. (The

syntax of expressions is not needed in this question, and is not shown in Box 1.)

 (a) By drawing two different syntax trees, show that the following FPL sequential

command is ambiguous:

while x<0 do x = x+1; y = y*2;

 You may assume that x<0, x+1, and y*2 are expressions. Your syntax tree

should show these expressions in outline:

x<0

expr

x+1

expr

y*2

expr

 [Similar to seen problem]

 [6]

 (b) Suggest how the grammar might be modified to eliminate the ambiguity. Your

modified grammar must still allow a sequential command within a loop body.

[Unseen problem]

 command ::= ident = expr ;
 | while expr do seq-command end
 | …

or:

 command ::= ident = expr ;
 | while expr do command
 | begin seq-command end
 | …

 [4]

[total 10]

x = x+1 ; x<0 while

ident expr expr

command

do

command

seq-command

y = y*2 ;

ident expr

seq-command

command

x = x+1 ; x<0 while

ident expr expr

command

do

command

seq-command

y = y*2 ;

ident expr

seq-command

command

seq-command

seq-command

 seq-command ::= command
 | seq-command command

 command ::= ident = expr ;
 | while expr do seq-command
 | …

Box 1 Part of the grammar of a fictional programming language FPL.

(Here expr is an expression, and ident is an identifier.)

3. (Implementation)

 (a) The Microsoft common-language run-time system (known as CLR or .NET)

consists of a suite of front-end compilers translating high-level languages into

CLR intermediate code, plus a suite of back-end compilers translating CLR code

into native machine code. The front-end compilers run on the software

developer’s machine, but the back-end compilers run on the customer’s machine.

 Using this system, a software developer writes an application program in a high-

level language, compiles it, and distributes it as CLR code.

 Draw tombstone diagrams for (i) a C++ front-end compiler; (ii) a C# front-end

compiler; (iii) a PPC back-end compiler; (iv) a P4 back-end compiler.

[Seen problem]

where M is the developer’s machine.

 [4]

 (b) Using tombstone diagrams, show how an application program P written in C#

would be (i) compiled, and (ii) run on a customer’s PPC machine.

 Comment on your answer to (ii) – when exactly would PPC native code be

generated?

[Similar to seen problem]

In (ii), PPC code could be generated either just-in-time (each time P is run) or

once and for all (when P is installed or when P is first loaded). [Either answer is

acceptable.]

 [2+2+1]

M

C++ → CLR

M

C# → CLR

PPC

CLR → PPC

P4

CLR → P4

M

C# → CLR C#

P

CLR

P

M

PPC PPC

CLR → PPC CLR

P

PPC

P

PPC

PPC

P

(i)

(ii)

 (c) Compare and contrast the CLR system with the Java Development Kit. What are

the strengths and weaknesses of each?

 [Insight]

CLR supports multiple languages and multiple platforms. JDK supports multiple

platforms but only one language, Java.

CLR supports only compilation. JDK supports a choice of interpretation or JIT

compilation, which is good because interpretation is preferable during program

development and for infrequently-executed code.

 [6]

[total 15]

4. (Concepts)

 (a) What is meant by an abstract data type (ADT)?

 [Notes]

An ADT is a type characterized by its values and operations only. Its data

representation is hidden.

[2]

 (b) Explain briefly how ADTs are supported by (i) Java and (ii) Haskell.

 Illustrate your answer by outlining (i) a Java program-unit and (ii) a Haskell

program-unit, each implementing an ADT whose values are sets of integers. It

must be possible to construct an empty set, to add a given integer to a set, and to

test whether a given integer is in a set. The data structure representing the set

must be hidden.

 Your outlines should show the headings of all operations, but should not show

the data structure or how the operations are implemented.

[Unseen problem]

(i) Java: Use a class whose instance variables are specified as private but whose

constructors and methods are specified as public.

 class IntSet {

 // An IntSet object represents a set of integers.

 private … // data structure

 public IntSet () { … }

 // constructs an empty set

 public void add (int x) { … }

 // adds x to this set

 public boolean contains (int x) { … }

 // returns true iff x is in this set

 }

 (ii) Haskell: Use a module whose heading lists the type itself and its public

operations. Declare the type using a data declaration, but keep its constructor(s)

private.

 module IntSets (IntSet, empty, add, contains)

 where

 data IntSet = SET … -- data structure

 -- An IntSet value represents a set of integers.

 empty :: IntSet

 empty = …

 -- the empty set

 add :: Int -> IntSet -> IntSet

 add x s = …

 -- adds x to set s

 contains :: Int -> IntSet -> Bool

 contains x s = …

 -- yields true iff x is in set s

[4+4]

 (c) Show how you would generalize your Java and Haskell program-units of part (b)

to supports sets of elements of an arbitrary type.

[Unseen problem]

(i) Java: Make the class generic.

 class Set <T> {

 // A Set<T> object represents a set of objects of type T.

 private … // data structure

 public Set<T> () { … }

 // constructs an empty set

 public void add (T x) { … }

 // adds x to this set

 public boolean contains (T x) { … }

 // returns true iff x is in this set

 }

 (ii) Haskell: Make the module export a polymorphic type and polymorphic

operations.

 module Sets (Set, empty, add, contains)

 where

 data Set t = SET … -- data structure

 -- A Set t object represents a set of values of type t.

 empty :: Set t

 empty = …

 -- the empty set

 add :: t -> Set t -> Set t

 add x s = …

 -- adds x to set s

 contains :: t -> Set t -> Bool

 contains x s = …

 -- yields true iff x is in set s

 [3+3]

 (d) Suppose that an additional requirement is now introduced: it must be possible to

obtain the least value in a set. Show how your Java program-unit of part (c)

would be modified.

[Unseen problem]

Insist that T implements the Comparable<T> interface. Add a least() method

that uses compareTo() to compare values of type T.

 class Set <T extends Comparable<T>> {

 // A Set<T> object represents a set of objects of type T.

 private … // data structure

 public Set<T> () { … }

 // constructs an empty set

 public void add (T x) { … }

 // adds x to this set

 public boolean contains (T x) { … }

 // returns true iff x is in this set

 public T least () { … }

 // returns the least element of this set

 }

[4]

 [total 20]

