Duration: 90 minutes.
Rubric: Answer all three questions. Total 60 marks.

1. (Syntax)

Box 1 shows parts of the EBNF grammar of the programming language Fun.

Suppose that Fun is to be extended with arrays. All arrays are to be 1-

dimensional, and indexed from O upwards. The following program illustrates the
required extension:

sum(v) returns the sum of all components of v.
func sum (int[] v):

int s = 0

int 1 = 0

while i < length (v)
s = s + v[i]
i=1+1

return s

main() reads a year and write the number of days.
proc main () :
int year = read()
int[] size = [31,28,31,30,31,30,31,31,30,31,30,31]
int feb =1
if year/4*4 == year:
size[feb] = size[feb] + 1

write (sum(size))

A variable v of type ‘int []’ is an array of integers. The construct ‘v [i]’ uses

the value of i to index the array v. An expression such as ‘[31,28,..,31]°
creates an array.

Modify the grammar to allow for the required extension.

[10]
[Unseen problem]
Grammar with additions emphasized:
prog =
var-decl
type = prim-type
| prim-type ‘[‘]° [2]
prim-type = ‘bool’
| “int’

com

seg-com
expr
sec-expr
prim-expr

id ‘=" expr
id “[>expr ‘]’ ‘=" expr [3]
‘if’ expr ‘:’ seg-com ‘.’

‘false’

‘true’

num

id

id “[>expr‘]’ [2]
‘[>expr(¢,”expr)* ‘]’ [3]
“(expr ‘)’

[Restricting the array indexing construct, such that the index is a literal or
identifier, will lose 1 mark.]

[Restricting the array creation expression, such that the components are all
literals, will be acceptable.]

[Restricting the array creation expression, such that it can occur only in a var-
decl, will be acceptable.]

prog
var-decl

type

com

seq-com
expr
sec-expr
prim-expr

var-decl * proc-decl * eof
type id ‘=" expr

‘bool’

‘int’

id ‘=" expr

‘1f’ expr ‘:’ seg-com ‘.’

com *
sec-expr ((‘=="| ‘<’ | >’) sec-expr)’

prim-expr ((+> | <=7 | “*> | ¢/”) prim-expr)*

‘false’
‘true’
num

id

[(’ eXpr ‘) 2

Box 1 Parts of the EBNF grammar of Fun.

(Here prog is a program, var-decl is a variable declaration,
com is a command, seg-com is a sequential command,

(@)

(b)

expr is an expression, prim-expr is a primary expression,
id is an identifier, and num is a numeral.)

(Concepts)
What is meant by the lifetime of a variable?

What is the lifetime of:
(i) aglobal variable?
(i1) alocal variable?
(iii) a heap variable?

[6]
[Notes]
The lifetime of a variable is the time interval between its creation and its
destruction. [1.5]
(1) The lifetime of a global variable is the program’s entire run-time. [1.5]
(i) The lifetime of a local variable is an activation of the block in which it is
declared. [1.5]

(i) The lifetime of a heap variable starts when it is created by an allocator; and
finishes when it is destroyed by a deallocator, when it becomes unreachable, or
when the program halts. [1.5]

Consider the Java program outlined in Box 2. Draw a diagram showing the
lifetimes of all global and heap variables created by this program.

[6]
[Unseen problem]
d.add d.add d.add d.rem
("iS") (uam") ("are") ("iS")
main L L L L

(...)
lifetime of args

v

lifetime of d

v

lifetime of Dict object

A 4

lifetime of “is” node

A 4

lifetime of “am” node

»

lifetime of “are” node o

»

[1 for each variable]

(©)

(d)

Briefly explain the general concept of encapsulation in programming languages.
Why is encapsulation an important concept?
[4]

[Notes]

Encapsulation makes it possible for some components of a program unit (module,
package, or class) to be public whilst others are private. “Public” means visible to
client code; “private” means visible only inside the program unit. [2]

This is important because it narrows the program unit’s interface, and frees the
implementer of the program unit to add or remove private components at will,
without invalidating client code. [2]

How is encapsulation supported by Java? Illustrate your answer by referring to
the Java code of Box 2.
[4]

[Notes + seen problem]

Java supports encapsulation mainly by means of classes in which each component
(variable/method) is specified as either public or protected or private. [2]

In the class of Box 2, the components word and rest are specified as private,
whilst Dict (), add (), rem (), and main () are specified as public. [2]

public class Dict {
// A Dict object is a dictionary.

// A dictionary is represented by a sorted
// linked list of words.

private String word;

private Dict rest;

public Dict () { word = null; rest = null; }

// add(w) adds word w to this dictionary.
public void add (String w) {..}

// rem(w) removes word w from this dictionary.
public void rem (String w) {..}

public static void main (String[] args) {
Dict d = new Dict();
d.add("is");

d.add ("am") ;
d.add ("are") ;
d.rem("is") ;

Box 2 Outline of a Java program.

(@)

(b)

(©)

(Implementation)

Explain the role of the syntactic analysis, contextual analysis, and code
generation phases of a compiler. How do these phases communicate with each
other?

[3]
[Notes]
Syntactic analysis: lexing and parsing the source code, building an AST. [1]
Contextual analysis: scope checking and type checking, using the AST. [1]
Code generation: address allocation and code selection, using the AST. [1]

Box 3a shows parts of an ANTLR grammar file. Explain in detail what ANTLR
does with this grammar file.
[6]

[Seen example]

ANTLR uses this grammar file to generate a lexer and a parser, which are Java
classes named FunLexer and FunParser. [2]

FunLexer IS generated from the lexical rules in the grammar file, i.e., those
defining IF, ID, ASSN, COLON, etc. When run, the lexer will take a Fun source
file and translate it to a token stream. [2]

FunParser IS generated from the context-free rules in the grammar file, i.e.,
those defining com, segcom, etc. It is a modified form of recursive-descent
parser that contains a parsing method for each nonterminal, i.e., com (),

seqgcom (), etc. When run, the parser will accept a token stream and build an
AST, in accordance with the tree-building operations following ‘>’ in the
grammar file. [2]

Box 3b shows parts of an ANTLR tree grammar file. Explain in detail what
ANTLR does with this tree grammar file.
[6]

[Seen example]

ANTLR uses this tree grammar file to generate a contextual analyser, which is a
Java class named FunChecker. [2]

FunChecker IS generated from the tree patterns and actions in the tree grammar
file. It is a depth-first left-to-right tree walker. When run, it pattern-matches the
AST and performs the actions ‘{...}” associated with each pattern. These
particular actions perform scope checking and type checking, using a type table.

[4]

(d)

(€)

Box 3c shows parts of an ANTLR tree grammar file. Explain in detail what
ANTLR does with this tree grammar file.
[6]

[Seen example]

ANTLR uses this tree grammar file to generate a code generator, which is a Java
class named FunEncoder. [2]

FunEncoder is generated from the tree patterns and actions in the tree grammar
file. It is a depth-first left-to-right tree walker. When run, it pattern-matches the
AST and performs the actions “{...}’ associated with each pattern. These
particular actions perform address allocation and code selection, using an address
table. [4]

Suppose that the Fun language is to be extended with an additional assignment
command such as the following:

s +=a * b

This command should add the value of ‘a*b’ to the value stored in the variable s.
The syntax should allow an arbitrary expression to the right of ‘=’.

Show how the files of Boxes 3a, 3b, and 3c should be modified to achieve this
extension.

[9]
[Unseen problem]
Grammar file with addition emphasized:
grammar Fun
com
ID ASSN expr -> 7~ (ASSN ID expr)

| ID PLUS ASSN expr -> ~(PLUSASSN ID expr) [2]

|
i) : LETTER+ ;
ASSN : '=
PLUS g U4l

Tree grammar file with addition emphasized:
tree grammar FunChecker

com

~(ASSN ID
t2=expr) { ...}
| ~(PLUSASSN ID
t2=expr) { lookup ID in the type table,
and let its type be t1
check that t1 and t2 are both INT
} [3]
|
expr returns [Type type]
: ID { ...}
| ~(PLUS
tl=expr
t2=expr) { ...}

Tree grammar file with addition emphasized:

tree grammar FunEncoder

com
~(ASSN ID
expr) { ... }
| ~(PLUSASSN ID { lookup ID in the address table,
and let its address be d
emit the instruction ‘LOAD d’
}
expr) { emit the instruction ‘ADD’
emit the instruction ‘STORE d’
} [4]
|
expr
: ID { }
| ~(PLUS
expr

expr) { ...}

grammar Fun

com
: ID ASSN expr -> 7~ (ASSN ID expr)
|

ID : LETTER+ ;

ASSN 2 =T

PLUS N

Box 3a Part of an ANTLR grammar file.

tree grammar FunChecker

com
~(ASSN ID
t2=expr) { lookup ID in the type table,
and let its type be t1
check that t1 is equivalent to t2
}
|
expr returns [Type type]
: ID { lookup ID in the type table,
and let its type be t
set Stypetot
}
| ~(PLUS
tl=expr
t2=expr) { checkthat t1 and t2 are both INT

set Stype to INT
}

Box 3b Part of an ANTLR tree grammar file.
(For clarity, actions are expressed in English rather than Java.)

tree grammar FunEncoder

com
~(ASSN ID
expr) { lookup ID in the address table,
and let its address be d
emit the instruction ‘STORE d’
}
|
expr
D { lookup ID in the address table,
and let its address be d
emit the instruction ‘LOAD d’
}
| ~(PLUS
expr
expr) { emit the instruction ‘ADD’

Box 3c Part of an ANTLR tree grammar file.
(For clarity, actions are expressed in English rather than Java.)

