

Programming Languages 3: Questions and Answers: April/May 2014

Duration: 90 minutes.
Rubric: Answer all three questions. Total 60 marks.

1. (Syntax)

 Box 1 shows parts of the EBNF grammar of the programming language Fun.

 Suppose that Fun is to be extended with arrays. All arrays are to be 1-

dimensional, and indexed from 0 upwards. The following program illustrates the

required extension:

sum(v) returns the sum of all components of v.

func sum (int[] v):

 int s = 0

 int i = 0

 while i < length(v):

 s = s + v[i]

 i = i + 1

 .

 return s

.

main() reads a year and write the number of days.

proc main ():

 int year = read()

 int[] size = [31,28,31,30,31,30,31,31,30,31,30,31]

 int feb = 1

 if year/4*4 == year:

 size[feb] = size[feb] + 1 .

 write(sum(size))

.

 A variable v of type ‘int[]’ is an array of integers. The construct ‘v[i]’ uses

the value of i to index the array v. An expression such as ‘[31,28,…,31]’

creates an array.

 Modify the grammar to allow for the required extension.

[10]

 [Unseen problem]

Grammar with additions emphasized:

 prog = …

 var-decl = …

 type = prim-type
 | prim-type ‘[’ ‘]’ [2]

 prim-type = ‘bool’
 | ‘int’

 com = id ‘=’ expr
 | id ‘[’ expr ‘]’ ‘=’ expr [3]
 | ‘if’ expr ‘:’ seq-com ‘.’
 | …

 seq-com = …

 expr = …

 sec-expr = …

 prim-expr = ‘false’
 | ‘true’
 | num
 | id
 | id ‘[’ expr ‘]’ [2]
 | ‘[’ expr (‘,’ expr) * ‘]’ [3]
 | ‘(’ expr ‘)’
 | …

 …

[Restricting the array indexing construct, such that the index is a literal or

identifier, will lose 1 mark.]

[Restricting the array creation expression, such that the components are all

literals, will be acceptable.]

[Restricting the array creation expression, such that it can occur only in a var-

decl, will be acceptable.]

 prog = var-decl * proc-decl
+
 eof

 var-decl = type id ‘=’ expr

 type = ‘bool’
 | ‘int’

 com = id ‘=’ expr
 | ‘if’ expr ‘:’ seq-com ‘.’
 | …

 seq-com = com *

 expr = sec-expr ((‘==’ | ‘<’ | ‘>’) sec-expr)
?

 sec-expr = prim-expr ((‘+’ | ‘-’ | ‘*’ | ‘/’) prim-expr) *

 prim-expr = ‘false’
 | ‘true’
 | num
 | id
 | ‘(’ expr ‘)’
 | …

 …

Box 1 Parts of the EBNF grammar of Fun.

(Here prog is a program, var-decl is a variable declaration,

com is a command, seq-com is a sequential command,

expr is an expression, prim-expr is a primary expression,

id is an identifier, and num is a numeral.)

2. (Concepts)

 (a) What is meant by the lifetime of a variable?

 What is the lifetime of:

(i) a global variable?

(ii) a local variable?

(iii) a heap variable?

[6]

 [Notes]

The lifetime of a variable is the time interval between its creation and its

destruction. [1.5]

(i) The lifetime of a global variable is the program’s entire run-time. [1.5]

(ii) The lifetime of a local variable is an activation of the block in which it is

declared. [1.5]

(iii) The lifetime of a heap variable starts when it is created by an allocator; and

finishes when it is destroyed by a deallocator, when it becomes unreachable, or

when the program halts. [1.5]

 (b) Consider the Java program outlined in Box 2. Draw a diagram showing the

lifetimes of all global and heap variables created by this program.

[6]

 [Unseen problem]

 [1 for each variable]

d.add

("is")

d.add

("am")

d.add

("are")

d.rem

("is")

main
(…)

lifetime of args

lifetime of d

lifetime of “is” node

lifetime of “am” node

lifetime of “are” node

lifetime of Dict object

 (c) Briefly explain the general concept of encapsulation in programming languages.

Why is encapsulation an important concept?

[4]

 [Notes]

Encapsulation makes it possible for some components of a program unit (module,

package, or class) to be public whilst others are private. “Public” means visible to

client code; “private” means visible only inside the program unit. [2]

This is important because it narrows the program unit’s interface, and frees the

implementer of the program unit to add or remove private components at will,

without invalidating client code. [2]

 (d) How is encapsulation supported by Java? Illustrate your answer by referring to

the Java code of Box 2.

 [4]

 [Notes + seen problem]

Java supports encapsulation mainly by means of classes in which each component

(variable/method) is specified as either public or protected or private. [2]

In the class of Box 2, the components word and rest are specified as private,

whilst Dict(), add(), rem(), and main() are specified as public. [2]

 public class Dict {

 // A Dict object is a dictionary.

 // A dictionary is represented by a sorted

 // linked list of words.

 private String word;

 private Dict rest;

 public Dict () { word = null; rest = null; }

 // add(w) adds word w to this dictionary.

 public void add (String w) {…}

 // rem(w) removes word w from this dictionary.

 public void rem (String w) {…}

 public static void main (String[] args) {

 Dict d = new Dict();

 d.add("is");

 d.add("am");

 d.add("are");

 d.rem("is");

 }

 }

Box 2 Outline of a Java program.

3. (Implementation)

 (a) Explain the role of the syntactic analysis, contextual analysis, and code

generation phases of a compiler. How do these phases communicate with each

other?

[3]

 [Notes]

Syntactic analysis: lexing and parsing the source code, building an AST. [1]

Contextual analysis: scope checking and type checking, using the AST. [1]

Code generation: address allocation and code selection, using the AST. [1]

 (b) Box 3a shows parts of an ANTLR grammar file. Explain in detail what ANTLR

does with this grammar file.

 [6]

 [Seen example]

ANTLR uses this grammar file to generate a lexer and a parser, which are Java

classes named FunLexer and FunParser. [2]

FunLexer is generated from the lexical rules in the grammar file, i.e., those

defining IF, ID, ASSN, COLON, etc. When run, the lexer will take a Fun source

file and translate it to a token stream. [2]

FunParser is generated from the context-free rules in the grammar file, i.e.,

those defining com, seqcom, etc. It is a modified form of recursive-descent

parser that contains a parsing method for each nonterminal, i.e., com(),

seqcom(), etc. When run, the parser will accept a token stream and build an

AST, in accordance with the tree-building operations following ‘->’ in the

grammar file. [2]

 (c) Box 3b shows parts of an ANTLR tree grammar file. Explain in detail what

ANTLR does with this tree grammar file.

[6]

 [Seen example]

ANTLR uses this tree grammar file to generate a contextual analyser, which is a

Java class named FunChecker. [2]

FunChecker is generated from the tree patterns and actions in the tree grammar

file. It is a depth-first left-to-right tree walker. When run, it pattern-matches the

AST and performs the actions ‘{…}’ associated with each pattern. These

particular actions perform scope checking and type checking, using a type table.

 [4]

 (d) Box 3c shows parts of an ANTLR tree grammar file. Explain in detail what

ANTLR does with this tree grammar file.

[6]

 [Seen example]

ANTLR uses this tree grammar file to generate a code generator, which is a Java

class named FunEncoder. [2]

FunEncoder is generated from the tree patterns and actions in the tree grammar

file. It is a depth-first left-to-right tree walker. When run, it pattern-matches the

AST and performs the actions ‘{…}’ associated with each pattern. These

particular actions perform address allocation and code selection, using an address

table. [4]

 (e) Suppose that the Fun language is to be extended with an additional assignment

command such as the following:

 s += a * b

 This command should add the value of ‘a*b’ to the value stored in the variable s.

The syntax should allow an arbitrary expression to the right of ‘=’.

 Show how the files of Boxes 3a, 3b, and 3c should be modified to achieve this

extension.

[9]

 [Unseen problem]

Grammar file with addition emphasized:

grammar Fun

…

com

 : ID ASSN expr -> ^(ASSN ID expr)

 | ID PLUS ASSN expr -> ^(PLUSASSN ID expr) [2]
 | …

 ;

…

ID : LETTER+ ;

ASSN : '=' ;

PLUS : '+' ;

…

Tree grammar file with addition emphasized:

tree grammar FunChecker

…

com

 : ^(ASSN ID

 t2=expr) { … }

 | ^(PLUSASSN ID

 t2=expr) { lookup ID in the type table,
 and let its type be t1
 check that t1 and t2 are both INT
 } [3]
 | …

 ;

expr returns [Type type]

 : ID { … }

 | ^(PLUS

 t1=expr

 t2=expr) { … }

 | …

 ;

…

Tree grammar file with addition emphasized:

tree grammar FunEncoder

…

com

 : ^(ASSN ID

 expr) { … }

 | ^(PLUSASSN ID { lookup ID in the address table,
 and let its address be d
 emit the instruction ‘LOAD d’
 }

 expr) { emit the instruction ‘ADD’
 emit the instruction ‘STORE d’
 } [4]
 | …

 ;

expr

 : ID { … }
 | ^(PLUS

 expr

 expr) { … }
 | …

 ;

…

grammar Fun

…

com

 : ID ASSN expr -> ^(ASSN ID expr)

 | …

 ;

…

ID : LETTER+ ;

ASSN : '=' ;

PLUS : '+' ;

…

Box 3a Part of an ANTLR grammar file.

tree grammar FunChecker

…

com

 : ^(ASSN ID

 t2=expr) { lookup ID in the type table,
 and let its type be t1
 check that t1 is equivalent to t2
 }

 | …

 ;

expr returns [Type type]

 : ID { lookup ID in the type table,
 and let its type be t
 set $type to t
 }

 | ^(PLUS

 t1=expr

 t2=expr) { check that t1 and t2 are both INT
 set $type to INT
 }

 | …

 ;

…

Box 3b Part of an ANTLR tree grammar file.

(For clarity, actions are expressed in English rather than Java.)

tree grammar FunEncoder

…

com

 : ^(ASSN ID

 expr) { lookup ID in the address table,
 and let its address be d
 emit the instruction ‘STORE d’
 }

 | …

 ;

expr

 : ID { lookup ID in the address table,
 and let its address be d
 emit the instruction ‘LOAD d’
 }

 | ^(PLUS

 expr

 expr) { emit the instruction ‘ADD’
 }

 | …

 ;

…

Box 3c Part of an ANTLR tree grammar file.

(For clarity, actions are expressed in English rather than Java.)

