
 

Programming Languages 3: Questions and Answers: April/May 2014 

Duration: 90 minutes. 
Rubric: Answer all three questions. Total 60 marks. 

1.  (Syntax) 

  Box 1 shows parts of the EBNF grammar of the programming language Fun. 

  Suppose that Fun is to be extended with arrays. All arrays are to be 1-

dimensional, and indexed from 0 upwards. The following program illustrates the 

required extension: 

# sum(v) returns the sum of all components of v. 

func sum (int[] v): 

 int s = 0 

 int i = 0 

 while i < length(v): 

  s = s + v[i] 

  i = i + 1 

 . 

 return s 

. 

# main() reads a year and write the number of days. 

proc main (): 

 int year = read() 

 int[] size = [31,28,31,30,31,30,31,31,30,31,30,31]  

 int feb = 1 

 if year/4*4 == year: 

  size[feb] = size[feb] + 1 . 

 write(sum(size)) 

. 

  A variable v of type ‘int[]’ is an array of integers. The construct ‘v[i]’ uses 

the value of i to index the array v. An expression such as ‘[31,28,…,31]’ 

creates an array. 

  Modify the grammar to allow for the required extension. 

[10] 

 [Unseen problem] 

Grammar with additions emphasized: 

 prog = … 

 var-decl = … 

 type = prim-type 
  | prim-type ‘[’ ‘]’ [2] 

 prim-type = ‘bool’ 
  | ‘int’ 



 

 com = id  ‘=’  expr 
  | id  ‘[’ expr ‘]’ ‘=’  expr [3] 
  |  ‘if’  expr  ‘:’  seq-com  ‘.’ 
  | … 

 seq-com = … 

 expr = … 

 sec-expr = … 

 prim-expr = ‘false’ 
  | ‘true’ 
  | num 
  | id 
  | id  ‘[’ expr ‘]’  [2] 
  | ‘[’ expr ( ‘,’ expr ) * ‘]’  [3] 
  | ‘(’  expr  ‘)’ 
  | … 

 … 

[Restricting the array indexing construct, such that the index is a literal or 

identifier, will lose 1 mark.] 

[Restricting the array creation expression, such that the components are all 

literals, will be acceptable.] 

[Restricting the array creation expression, such that it can occur only in a var-

decl, will be acceptable.] 

 

 prog = var-decl *  proc-decl 
+
  eof 

 var-decl = type  id  ‘=’  expr 

 type = ‘bool’ 
  | ‘int’ 

 com = id  ‘=’  expr 
  | ‘if’  expr  ‘:’  seq-com  ‘.’ 
  | … 

 seq-com = com * 

 expr = sec-expr ( ( ‘==’  |  ‘<’  |  ‘>’ )  sec-expr ) 
?
 

 sec-expr = prim-expr ( ( ‘+’  |  ‘-’  |  ‘*’  |  ‘/’ )  prim-expr ) * 

 prim-expr = ‘false’ 
  | ‘true’ 
  | num 
  | id 
  | ‘(’  expr  ‘)’ 
  | … 

 … 

Box 1  Parts of the EBNF grammar of Fun. 

(Here prog is a program, var-decl is a variable declaration,  

com is a command, seq-com is a sequential command, 



 

expr is an expression, prim-expr is a primary expression,  

id is an identifier, and num is a numeral.) 

 

2.  (Concepts) 

 (a) What is meant by the lifetime of a variable? 

  What is the lifetime of: 

(i) a global variable? 

(ii) a local variable? 

(iii) a heap variable? 

[6] 

 [Notes] 

The lifetime of a variable is the time interval between its creation and its 

destruction. [1.5] 

(i) The lifetime of a global variable is the program’s entire run-time. [1.5] 

(ii) The lifetime of a local variable is an activation of the block in which it is 

declared. [1.5] 

(iii) The lifetime of a heap variable starts when it is created by an allocator; and 

finishes when it is destroyed by a deallocator, when it becomes unreachable, or 

when the program halts. [1.5] 

 (b) Consider the Java program outlined in Box 2. Draw a diagram showing the 

lifetimes of all global and heap variables created by this program. 

[6] 

 [Unseen problem] 

 

 

 

 

 

 

 [1 for each variable] 
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("is") 

main 
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lifetime of Dict object 



 

 (c) Briefly explain the general concept of encapsulation in programming languages. 

Why is encapsulation an important concept? 

[4] 

 [Notes] 

Encapsulation makes it possible for some components of a program unit (module, 

package, or class) to be public whilst others are private. “Public” means visible to 

client code; “private” means visible only inside the program unit. [2] 

This is important because it narrows the program unit’s interface, and frees the 

implementer of the program unit to add or remove private components at will, 

without invalidating client code. [2] 

 (d) How is encapsulation supported by Java? Illustrate your answer by referring to 

the Java code of Box 2. 

  [4] 

 [Notes + seen problem] 

Java supports encapsulation mainly by means of classes in which each component 

(variable/method) is specified as either public or protected or private. [2] 

In the class of Box 2, the components word and rest are specified as private, 

whilst Dict(), add(), rem(), and main() are specified as public. [2] 

 

 public class Dict { 

  // A Dict object is a dictionary. 

  // A dictionary is represented by a sorted  

  // linked list of words. 

  private String word; 

  private Dict rest; 

  public Dict () { word = null; rest = null; } 

  // add(w) adds word w to this dictionary. 

  public void add (String w) {…} 

  // rem(w) removes word w from this dictionary. 

  public void rem (String w) {…} 

  public static void main (String[] args) { 

   Dict d = new Dict(); 

   d.add("is"); 

   d.add("am"); 

   d.add("are"); 

   d.rem("is"); 

  } 

 } 

Box 2  Outline of a Java program. 



 

3.  (Implementation) 

 (a) Explain the role of the syntactic analysis, contextual analysis, and code 

generation phases of a compiler. How do these phases communicate with each 

other? 

[3] 

 [Notes] 

Syntactic analysis: lexing and parsing the source code, building an AST. [1] 

Contextual analysis: scope checking and type checking, using the AST.  [1] 

Code generation: address allocation and code selection, using the AST.  [1] 

 (b) Box 3a shows parts of an ANTLR grammar file. Explain in detail what ANTLR 

does with this grammar file. 

 [6] 

 [Seen example] 

ANTLR uses this grammar file to generate a lexer and a parser, which are Java 

classes named FunLexer and FunParser. [2] 

FunLexer is generated from the lexical rules in the grammar file, i.e., those 

defining IF, ID, ASSN, COLON, etc. When run, the lexer will take a Fun source 

file and translate it to a token stream. [2] 

FunParser is generated from the context-free rules in the grammar file, i.e., 

those defining com, seqcom, etc. It is a modified form of recursive-descent 

parser that contains a parsing method for each nonterminal, i.e., com(), 

seqcom(), etc. When run, the parser will accept a token stream and build an 

AST, in accordance with the tree-building operations following ‘->’ in the 

grammar file. [2] 

 (c) Box 3b shows parts of an ANTLR tree grammar file. Explain in detail what 

ANTLR does with this tree grammar file. 

[6] 

 [Seen example] 

ANTLR uses this tree grammar file to generate a contextual analyser, which is a 

Java class named FunChecker. [2] 

FunChecker is generated from the tree patterns and actions in the tree grammar 

file. It is a depth-first left-to-right tree walker. When run, it pattern-matches the 

AST and performs the actions ‘{…}’ associated with each pattern. These 

particular actions perform scope checking and type checking, using a type table.

 [4] 



 

 (d) Box 3c shows parts of an ANTLR tree grammar file. Explain in detail what 

ANTLR does with this tree grammar file. 

[6] 

 [Seen example] 

ANTLR uses this tree grammar file to generate a code generator, which is a Java 

class named FunEncoder. [2] 

FunEncoder is generated from the tree patterns and actions in the tree grammar 

file. It is a depth-first left-to-right tree walker. When run, it pattern-matches the 

AST and performs the actions ‘{…}’ associated with each pattern. These 

particular actions perform address allocation and code selection, using an address 

table. [4] 

 (e) Suppose that the Fun language is to be extended with an additional assignment 

command such as the following: 

   s += a * b 

  This command should add the value of ‘a*b’ to the value stored in the variable s. 

The syntax should allow an arbitrary expression to the right of ‘=’. 

  Show how the files of Boxes 3a, 3b, and 3c should be modified to achieve this 

extension. 

[9] 

 [Unseen problem] 

Grammar file with addition emphasized: 

grammar Fun 

… 

com 

 : ID ASSN expr -> ^(ASSN ID expr)  

 | ID PLUS ASSN expr -> ^(PLUSASSN ID expr)  [2]  
 | … 

 ; 

… 

ID : LETTER+ ; 

ASSN : '=' ;  

PLUS : '+' ; 

… 

Tree grammar file with addition emphasized: 

tree grammar FunChecker 

… 



 

com 

 : ^(ASSN ID 

    t2=expr) { … } 

 | ^(PLUSASSN ID 

    t2=expr) { lookup ID in the type table,  
        and let its type be t1 
     check that t1 and t2 are both INT 
   } [3] 
 | … 

 ; 

expr   returns [Type type] 

 : ID { … } 

 | ^(PLUS 

    t1=expr 

    t2=expr) { … } 

 | … 

 ; 

… 

Tree grammar file with addition emphasized: 

tree grammar FunEncoder 

… 

com 

 : ^(ASSN ID 

    expr) { … } 

 | ^(PLUSASSN ID { lookup ID in the address table,  
        and let its address be d 
     emit the instruction ‘LOAD d’ 
   } 

    expr) { emit the instruction ‘ADD’ 
     emit the instruction ‘STORE d’ 
   } [4] 
 | … 

 ; 

expr 

 : ID { … } 
 | ^(PLUS 

    expr 

    expr) { … } 
 | … 

 ; 

… 

 



 

grammar Fun 

… 

com 

 : ID ASSN expr -> ^(ASSN ID expr)  

 | … 

 ; 

… 

ID : LETTER+ ; 

ASSN : '=' ;  

PLUS : '+' ; 

… 

Box 3a  Part of an ANTLR grammar file. 

 

tree grammar FunChecker 

… 

com 

 : ^(ASSN ID 

    t2=expr) { lookup ID in the type table,  
       and let its type be t1 
     check that t1 is equivalent to t2 
   } 

 | … 

 ; 

expr   returns [Type type] 

 : ID { lookup ID in the type table,  
       and let its type be t 
     set $type to t 
   } 

 | ^(PLUS 

    t1=expr 

    t2=expr) { check that t1 and t2 are both INT 
     set $type to INT 
   } 

 | … 

 ; 

… 

Box 3b  Part of an ANTLR tree grammar file. 

(For clarity, actions are expressed in English rather than Java.) 

 



 

tree grammar FunEncoder 

… 

com 

 : ^(ASSN ID 

    expr) { lookup ID in the address table,  
       and let its address be d 
     emit the instruction ‘STORE d’ 
   } 

 | … 

 ; 

expr 

 : ID { lookup ID in the address table,  
       and let its address be d 
     emit the instruction ‘LOAD d’ 
   } 

 | ^(PLUS 

    expr 

    expr) { emit the instruction ‘ADD’ 
   } 

 | … 

 ; 

… 

Box 3c  Part of an ANTLR tree grammar file. 

(For clarity, actions are expressed in English rather than Java.) 


