

Monday, 26 th April 2010
9.30 am – 11.00 am

(Duration: 1 hour 30 minutes)

DEGREES OF MSci, MEng, BEng, BSc, MA and MA (Social Sciences)

COMPUTING SCIENCE 3Z:
PROGRAMMING LANGUAGES 3

Answer all 4 questions.

This examination paper is worth a total of 80 marks .

You must not leave the examination room within the first half-hour or the last
fifteen minutes of the examination.

Summer Diet - 1 - Continued Overleaf/

1. (Functional programming)

 (a) Explain the principle of primitive recursion as applied to:

(i) non-negative integers;

(ii) lists.
[2+2]

 (b) In a fictional university, each student receives a grade (A, B, C, D, or F) for
his/her work in each course. The student’s grade-point average is the weighted
average of the student’s grades in all courses (where A counts as 4.0, B as 3.0, C
as 2.0, D as 1.0, and F as 0.0).

 Write a Haskell function, gpa gs ws, that yields the grade-point average of the
grades in list gs , using the weights in ws. You may assume that ws has the same
length as gs , and that the weights in ws add up to 1.0 exactly. For example:

gpa [‘B’,‘A’,‘D’] [0.25,0.25,0.5]

 should yield 2.25 (= 3.0×0.25 + 4.0×0.25 + 1.0×0.5).

 Your answer must explicitly declare the type of the gpa function, and the types of
any auxiliary functions.

[7]

 (c) Consider a binary search tree (BST) whose nodes contain integers.

(i) Define a Haskell type suitable for such a BST.

(ii) Write a Haskell function, search i t , that yields true if and only if the
BST t contains the integer i .

(iii) Write a Haskell function, insert i t , that yields the BST obtained by
inserting a new node containing the integer i into the BST t .

 Your answer must explicitly declare the type of each function.
[1+4+4]

[total 20]

Summer Diet - 2 - Continued Overleaf/

2. (Syntax)

 Box 1 shows part of the EBNF grammar of the programming language Tiny,
which featured in the course. It shows the syntax of commands. It does not show
the syntax of expressions (not needed in this question).

 (a) Show the syntax tree of the following Tiny command:

while n>0: n = n-1;

 You may assume that n>0 and n-1 are expressions. Your syntax tree should
show these expressions in outline:

[5]

 (b) Suppose that Tiny is to be extended with a loop-command with multiple
conditional exits. For example, the following loop-command contains two
conditional exits:

loop {
 m = m+1;
 exit when m == n;
 f = f*m;
 exit when f > 1000;
}

 In general, the loop-command may contain zero or more commands and
conditional exits, in any order, all enclosed in a pair of curly brackets.
Conditional exits are permitted immediately inside a loop-command, but nowhere
else.

 Modify the grammar to allow for loop-commands.
[5]

[total 10]

 seq-command ::= command+

 command ::= ident = expr ;
 | read ident ;
 | write expr ;
 | if expr : command (else command)?
 | while expr : command
 | { seq-command }

Box 1 Part of the grammar of Tiny (Question 2).
(Here expr is an expression, and ident is an identifier.)

n>0

expr

n-1

expr

Summer Diet - 3 - Continued Overleaf/

3. (Implementation)

 (a) Explain the difference between a compiler and interpreter.
[2]

 (b) How does an interpreter work? What assumptions must be made about the
interpreted language? What differences would you expect to see between an
interpreter implemented in C and an interpreter implemented in Haskell?

[8]

 (c) Box 2 (next page) shows a description (in Haskell) of a simple stack machine,
which is suitable for evaluating simple integer expressions. For example, the
following integer expression:

2×(–(3+7))–4

 would be evaluated by executing the following list of stack-machine instructions:

[PUSH 2, PUSH 3, PUSH 7, ADD, NEG, MUL, PUSH 4, SUB]

 Implement the function execInstr .
[10]

[total 20]

Summer Diet - 4 - Continued Overleaf/

data Instruction =
 PUSH Int | ADD | SUB | MUL | NEG | HALT
 -- This represents a single instruction. Its effec t is:
 -- PUSH i push i on to the stack
 -- ADD pop i2; pop i1; push (i1+i2)
 -- SUB pop i2; pop i1; push (i1-i2)
 -- MUL pop i2; pop i1; push (i1*i2)
 -- NEG pop i; push (-i)
 -- HALT status <- HALTED

 type Code = [Instruction]
 -- This represents code by a list of instructions.

 data Status = RUNNING | FAILED | HALTED

 type Stack = [Int]
 -- This represents a stack by a list of integers.
 -- Elements may be added and removed only at the h ead
 -- of the list (the stack top).

 type State = (Status, Int, Stack)
 -- This represents the state of the computation. A state
 -- consists of a status, a program counter, and a stack.

 state0 :: State
 -- This is the initial state.
 state0 = (RUNNING, 0, [])

 execCode :: Code -> State -> State
 -- execCode c s yields the state that results from
 -- executing code c in state s.
 …

 execInstr :: Instruction -> State -> State
 -- execInstr i s yields the state that results fro m
 -- executing instruction i in state s.
 …

Box 2 Description of a stack machine, expressed in Haskell (Question 3).

Summer Diet - 5 - Continued Overleaf/

4. (Concepts)

 (a) What is meant by the lifetime of a variable?

 What is the lifetime of:

(i) a global variable?

(ii) a local variable?

(iii) a heap variable?
[5]

 (b) Consider the Java program outlined in Box 3 (next page). Draw a diagram
showing the lifetimes of all global and heap variables created by this program.

[6]

 (c) What is meant by the scope of a declaration?

 Illustrate your answer by stating the scopes of the declarations of the variable
word, the method add() , and the variable d in Box 3.

[5]

 (d) Briefly explain the general concept of encapsulation in programming languages.
Why is this an important concept?

[4]

 (e) Encapsulation is supported in different ways by particular programming
languages.

(i) How is encapsulation supported by Java? Illustrate your answer by referring
to the Java code of Box 3.

(ii) How is encapsulation supported by Haskell? Illustrate your answer by
outlining Haskell code to implement dictionaries as an abstract data type.

[4+6]
[total 30]

Summer Diet -6- /END

 public class Dict {
 // A Dict object represents a dictionary by a sor ted
 //linked list of words.

 private String word;
 private Dict rest;

 public Dict () { word = null; rest = null; }

 public void add (String w) {…}
 // Adds word w to this dictionary.

 public void rem (String x) {…}
 // Removes word x from this dictionary.

 public static void main (String[] args) {
 Dict d = new Dict();
 d.add("rat");
 d.add("cat");
 d.rem("rat");
 d.add("hat");
 }

 }

Box 3 A Java class (Question 4).

