

Thursday, 28
th

 April 2011
9.30am – 11.00am

(Duration: 1 hour 30 minutes)

DEGREES OF MSci, MEng, BEng, BSc, MA and MA (Social Sciences)

COMPUTING SCIENCE 3Z:
PROGRAMMING LANGUAGES 3

Answer all 4 questions.

This examination paper is worth a total of 60 marks.

You must not leave the examination room within the first half-hour or the last
fifteen minutes of the examination.

Summer Diet - 1 - Continued Overleaf/

1. (Functional programming)

 (a) Given a list of integers, ns, write the following:

(i) a list comprehension that yields a list of Boolean values, in which each

element is True if the corresponding element of ns is even, or False if the

element is odd;

(ii) a list comprehension that yields a list of integers, in which each element is

one less than the corresponding element of ns, except that non-positive

elements of ns are discarded.

 [2]

 (b) Given a list of Boolean values, bs, define the following functions:

(i) “all bs” yields True if and only if bs is empty or all its elements are

True;

(ii) “any bs” yields True if and only if bs is non-empty and at least one of its

elements is True.

 Make sure that your functions are efficient.

 Your answer must explicitly declare the type of each function. Do not use any list

functions from the Haskell standard prelude.

 [4]

 (c) Given an arbitrary list, xs, define the following polymorphic functions:

(i) “map f xs” yields a list in which each element is the result of applying

function f to the corresponding elements of xs;

 (ii) “filter f xs” yields a list containing just those elements of xs satisfied

by function f (i.e., those elements x for which f x yields True).

 Your answer must explicitly declare the type of each function. Do not use any list

functions from the Haskell standard prelude.

 [9]

Summer Diet - 2 - Continued Overleaf/

2. (Syntax)

 Box 1 shows part of the BNF grammar of a fictional programming language,

FPL. It shows only the syntax of commands and sequential commands. (The

syntax of expressions is not needed in this question, and is not shown in Box 1.)

 (a) By drawing two different syntax trees, show that the following FPL sequential

command is ambiguous:

while x<0 do x = x+1; y = y*2;

 You may assume that x<0, x+1, and y*2 are expressions. Your syntax tree

should show these expressions in outline:

 [6]

 (b) Suggest how the grammar might be modified to eliminate the ambiguity. Your

modified grammar must still allow a sequential command within a loop body.

 [4]

 seq-command ::= command
 | seq-command command

 command ::= ident = expr ;
 | while expr do seq-command
 | …

Box 1 Part of the grammar of a fictional programming language FPL.

(Here expr is an expression, and ident is an identifier.)

x<0

expr

x+1

expr

y*2

expr

Summer Diet - 3 - Continued Overleaf/

3. (Implementation)

 (a) The Microsoft common-language run-time system (known as CLR or .NET)

consists of a suite of front-end compilers translating high-level languages into

CLR intermediate code, plus a suite of back-end compilers translating CLR code

into native machine code. The front-end compilers run on the software

developer’s machine, but the back-end compilers run on the customer’s machine.

 Using this system, a software developer writes an application program in a high-

level language, compiles it, and distributes it as CLR code.

 Draw tombstone diagrams for (i) a C++ front-end compiler; (ii) a C# front-end

compiler; (iii) a PPC back-end compiler; (iv) a P4 back-end compiler.

 [4]

 (b) Using tombstone diagrams, show how an application program P written in C#

would be (i) compiled, and (ii) run on a customer’s PPC machine.

 Comment on your answer to (ii) – when exactly would PPC native code be

generated?

 [5]

 (c) Compare and contrast the CLR system with the Java Development Kit. What are

the strengths and weaknesses of each?

 [6]

Summer Diet -4- /END

4. (Concepts)

 (a) What is meant by an abstract data type (ADT)?

 [2]

 (b) Explain briefly how ADTs are supported by (i) Java and (ii) Haskell.

 Illustrate your answer by outlining (i) a Java program-unit and (ii) a Haskell

program-unit, each implementing an ADT whose values are sets of integers. It

must be possible to construct an empty set, to add a given integer to a set, and to

test whether a given integer is in a set. The data structure representing the set

must be hidden.

 Your outlines should show the headings of all operations, but should not show

the data structure or how the operations are implemented.

 [8]

 (c) Show how you would generalize your Java and Haskell program-units of part (b)

to supports sets of elements of an arbitrary type.

 [6]

 (d) Suppose that an additional requirement is now introduced: it must be possible to

obtain the least value in a set. Show how your Java program-unit of part (c)

would be modified.

 [4]

