

Wednesday, 07 May 2014
9.30 am – 11.00 am

(Duration: 1 hour 30 minutes)

DEGREES OF MSci, MEng, BEng, BSc, MA and MA (Social Sciences)

COMPUTING SCIENCE 3Z:
PROGRAMMING LANGUAGES 3

Answer all three questions.

This examination paper is worth a total of 60 marks.

You must not leave the examination room within the first half-hour or the last
fifteen minutes of the examination.

Summer Diet -2- /END

1. (Syntax)

 Box 1 shows parts of the EBNF grammar of the programming language Fun.

 Suppose that Fun is to be extended with arrays. All arrays are to be 1-

dimensional, and indexed from 0 upwards. The following program illustrates the

required extension:

sum(v) returns the sum of all components of v.

func sum (int[] v):

 int s = 0

 int i = 0

 while i < length(v):

 s = s + v[i]

 i = i + 1

 .

 return s

.

main() reads a year and write the number of days.

proc main ():

 int year = read()

 int[] size = [31,28,31,30,31,30,31,31,30,31,30,31]

 int feb = 1

 if year/4*4 == year:

 size[feb] = size[feb] + 1 .

 write(sum(size))

.

 A variable v of type ‘int[]’ is an array of integers. The construct ‘v[i]’ uses

the value of i to index the array v. An expression such as ‘[31,28,…,31]’

creates an array.

 Modify the grammar to allow for the required extension.

[10]

Summer Diet -3- /END

 prog = var-decl * proc-decl
+
 eof

 var-decl = type id ‘=’ expr

 type = ‘bool’
 | ‘int’

 com = id ‘=’ expr
 | ‘if’ expr ‘:’ seq-com ‘.’
 | …

 seq-com = com *

 expr = sec-expr ((‘==’ | ‘<’ | ‘>’) sec-expr)
?

 sec-expr = prim-expr ((‘+’ | ‘-’ | ‘*’ | ‘/’) prim-expr) *

 prim-expr = ‘false’
 | ‘true’
 | num
 | id
 | ‘(’ expr ‘)’
 | …

 …

Box 1 Parts of the EBNF grammar of Fun.

(Here prog is a program, var-decl is a variable declaration,

com is a command, seq-com is a sequential command,

expr is an expression, prim-expr is a primary expression,

id is an identifier, and num is a numeral.)

Summer Diet -4- /END

2. (Concepts)

 (a) What is meant by the lifetime of a variable?

 What is the lifetime of:

(i) a global variable?

(ii) a local variable?

(iii) a heap variable?

[6]

 (b) Consider the Java program outlined in Box 2. Draw a diagram showing the

lifetimes of all global and heap variables created by this program.

[6]

 (c) Briefly explain the general concept of encapsulation in programming languages.

Why is encapsulation an important concept?

[4]

 (d) How is encapsulation supported by Java? Illustrate your answer by referring to

the Java code of Box 2.

 [4]

 public class Dict {

 // A Dict object is a dictionary.

 // A dictionary is represented by a sorted

 // linked list of words.

 private String word;

 private Dict rest;

 public Dict () { word = null; rest = null; }

 // add(w) adds word w to this dictionary.

 public void add (String w) {…}

 // rem(w) removes word w from this dictionary.

 public void rem (String w) {…}

 public static void main (String[] args) {

 Dict d = new Dict();

 d.add("is");

 d.add("am");

 d.add("are");

 d.rem("is");

 }

 }

Box 2 Outline of a Java program.

Summer Diet -5- /END

3. (Implementation)

 (a) Explain the role of the syntactic analysis, contextual analysis, and code

generation phases of a compiler. How do these phases communicate with each

other?

[3]

 (b) Box 3a shows parts of an ANTLR grammar file. Explain in detail what ANTLR

does with this grammar file.

 [6]

 (c) Box 3b shows parts of an ANTLR tree grammar file. Explain in detail what

ANTLR does with this tree grammar file.

[6]

 (d) Box 3c shows parts of an ANTLR tree grammar file. Explain in detail what

ANTLR does with this tree grammar file.

[6]

 (e) Suppose that the Fun language is to be extended with an additional assignment

command such as the following:

 s += a * b

 This command should add the value of ‘a*b’ to the value stored in the variable s.

The syntax should allow an arbitrary expression to the right of ‘=’.

 Show how the files of Boxes 3a, 3b, and 3c should be modified to achieve this

extension.

[9]

grammar Fun

…

com

 : ID ASSN expr -> ^(ASSN ID expr)

 | …

 ;

…

ID : LETTER+ ;

ASSN : '=' ;

PLUS : '+' ;

…

Box 3a Part of an ANTLR grammar file.

Summer Diet -6- /END

tree grammar FunChecker

…

com

 : ^(ASSN ID

 t2=expr) { lookup ID in the type table,
 and let its type be t1
 check that t1 is equivalent to t2
 }

 | …

 ;

expr returns [Type type]

 : ID { lookup ID in the type table,
 and let its type be t
 set $type to t
 }

 | ^(PLUS

 t1=expr

 t2=expr) { check that t1 and t2 are both INT
 set $type to INT
 }

 | …

 ;

…

Box 3b Part of an ANTLR tree grammar file.

(For clarity, actions are expressed in English rather than Java.)

Summer Diet -7- /END

tree grammar FunEncoder

…

com

 : ^(ASSN ID

 expr) { lookup ID in the address table,
 and let its address be d
 emit the instruction ‘STORE d’
 }

 | …

 ;

expr

 : ID { lookup ID in the address table,
 and let its address be d
 emit the instruction ‘LOAD d’
 }

 | ^(PLUS

 expr

 expr) { emit the instruction ‘ADD’
 }

 | …

 ;

…

Box 3c Part of an ANTLR tree grammar file.

(For clarity, actions are expressed in English rather than Java.)

