
1-1

1 Syntax

 Informal vs formal specification

 Regular expressions

 Backus Naur Form (BNF)

 Extended Backus Naur Form (EBNF)

 Case study: Calc syntax

Programming Languages 3 © 2012 David A Watt, University of Glasgow

1-2

What is syntax?

 The syntax of a PL is concerned with the form of
programs: how expressions, commands,
declarations, and other constructs are arranged
to make a well-formed program.

 When learning a new PL, we need to learn the
PL’s syntax.

 The PL’s syntax must be specified. Examples
alone do not show the PL’s generality:

 if n > 0 : write(n)

What is allowed here?
– a variable?
– an arbitrary expression?

What is allowed here?
– a simple command?
– a sequence of commands?

1-3

Informal vs formal specification

 An informal specification is one expressed in

natural language (such as English).

 A formal specification is one expressed in a

precise notation.

 Pros and cons of formal specification:

+ more precise

+ usually more concise

+ less likely to be ambiguous, inconsistent, or incomplete

– accessible only to those familiar with the notation.

1-4

Example: informal vs formal syntax

 Informal syntax of some commands in a C-like

language:

 A while-command consists of ‘while’, followed by an

expression enclosed in parentheses, followed by a

command.

 A sequential-command consists of a sequence of one
or more commands, enclosed by ‘{’ and ‘}’.

 Formal syntax (using EBNF notation):

 while-command = ‘while’ ‘(’ expression ‘)’

 command

 sequential-command = ‘{’ command + ‘}’

1-5

Notations for formal specification of PL

syntax

 Regular expressions (REs)

– good for specifying syntax of lexical elements of

programs (such as identifiers, literals, comments).

 Backus Naur Form (BNF)

– good for specifying syntax of larger and nested

program constructs (such as expressions, commands,

declarations).

 Extended Backus Naur Form (EBNF)

– combination of BNF and REs, good for nearly

everything.

1-6

Running example: Calc

 Calc is a very simple calculator language, with:

– variables named ‘a’, …, ‘z’

– expressions consisting of variables, numerals, and
arithmetic operators

– assignment and output commands.

 Example Calc program:

set x = 13
set y = x*(x+1)
put x
put y/2

1-7

Regular expressions

 A regular expression (RE) is a kind of pattern.

 Each RE matches a set of strings

– possibly an infinite set of strings.

 We can use REs for a variety of applications:

– specifying a pattern of strings to be searched for in a

text

– specifying a pattern of filenames to be searched for in a

file system

– specifying the syntax of a PL’s lexical elements.

1-8

Example: REs

 Examples:

 ‘M’(‘r’|‘rs’|‘iss’) – means ‘M’ followed by either

 ‘r’ or ‘rs’ or ‘iss’

 – matches ‘Mr’, ‘Mrs’, ‘Miss’.

 ‘b’(‘an’)*‘a’ – means ‘b’ followed by zero or more

 occurrences of ‘an’ followed by ‘a’

 – matches ‘ba’, ‘bana’, ‘banana’, etc.

 (‘x’|‘abc’)* – means zero or more occurrences of

 ‘x’ or ‘abc’

 – matches ‘’, ‘x’, ‘abc’,

 ‘xx’, ‘xabc’, ‘abcx’, ‘abcabc’,

 ‘xxx’, ‘xxabc’, ‘xabcx’, ‘abcxx’, etc.

1-9

RE notation (1)

 Basic RE notation:

– ‘xyz’ matches the string ‘xyz’

– RE1 | RE2 matches any string matched by either RE1

 or RE2

– RE1 RE2 matches any string matched by RE1

 concatenated with any string matched by RE2

– RE * matches the concatenation of zero or more

 strings, each of which is matched by RE

– (RE) matches any string matched by RE

 (parentheses used for grouping)

1-10

RE notation (2)

 Additional RE notation:

– RE ? matches either the empty string or any string

 matched by RE

– RE + matches the concatenation of one or more

 strings, each of which is matched by RE

 These additional forms are useful but not

essential. They can be expanded into basic RE

notation:

RE ? = RE | ‘’

RE + = RE RE*

1-11

Example: Calc lexicon (1)

 A Calc identifier consists of a single lower-case

letter.

 The syntax of such identifiers is specified by the

RE:

 ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ |

‘j’ | ‘k’ | ‘l’ | ‘m’ | ‘n’ | ‘o’ | ‘p’ | ‘q’ | ‘r’ |

‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’ | ‘y’ | ‘z’

1-12

Example: Calc lexicon (2)

 A Calc numeral consists of one or more decimal

digits. E.g.:

 5 13 2000000000

 The syntax of such numbers is specified by the

RE:

 (‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’) +

1-13

Example: alphanumeric identifiers

 Consider a PL in which an identifier consists of a

sequence of one or more upper-case letters and

digits, starting with a letter. E.g.:

 X A1 P2P SOS

 The syntax of such identifiers is specified by RE:

 (‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ |

 ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ |

 ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’)

(‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ |

 ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ |

 ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’ |

 ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’)*

one letter

zero or more

letters and

digits

1-14

Application of REs: Unix shell (1)

 The Unix shell scripting language uses an ad hoc

pattern-matching notation in which:

– […] matches any one of the enclosed characters

– ? (on its own) matches any single character

– * (on its own) matches any string of 0 or more

 characters.

 This a restricted variant of RE notation.

(It lacks “RE1|RE2” and “RE *”.)

1-15

Application of REs: Unix shell (2)

 Example commands:

print bat.[chp]

 prints files whose names are
 ‘bat.c’, ‘bat.h’, or ‘bat.p’

print bat.?

 prints all files whose names are
 ‘bat.’ followed by any single

 character

print *.c

 prints all files whose names end
 with ‘.c’

1-16

Application of REs: egrep (1)

 The Unix utility egrep uses the full pattern-

matching notation, in which the following have

their usual meanings:

– RE1|RE2

– RE*

– RE+

– RE?

 It also provides extensions such as:

– […] matches any one of the enclosed characters

– . matches any single character.

1-17

Application of REs: egrep (2)

 Example commands:

egrep "b[aei]t" file

 finds all lines in file containing ‘bat’,

 ‘bet’, or ‘bit’

egrep "b.t" file

 finds all lines in file containing ‘b’

 followed by any character followed by ‘t’.

egrep "b(an)*a" file

 finds all lines in file containing ‘b’

 followed by 0 or more occurrences of ‘an’

 followed by ‘a’.

1-18

Application of REs: Java pattern

matching

 Some Java classes also use the full pattern-

matching notation, with the same extensions as
egrep:

– […] matches any one of the enclosed characters

– . matches any single character.

 Example code:

 String s = …;

if (s.matches("b.t")) …

if (s.matches("b[aeiou]t")) …

if (s.matches("M(r|rs|iss)")) …

if (s.matches("b(an)*a")) …

1-19

Limitations of REs

 REs are not powerful enough to express the

syntax of nested (embedded) phrases.

 In every PL, expressions can be nested:

 n * (n + 1)

 In nearly every PL, commands can be nested:

 while (r>0)

 { m = n; n = r;

 r = m-(n*(m/n)); }

1-20

Grammars

 To specify the syntax of nested phrases such as

expressions and commands, we need a (context-

free) grammar.

 The grammar of a language is a set of rules

specifying how the phrases of that language are

formed.

 Each rule specifies how each phrase may be

formed from symbols (such as words and

punctuation) and simpler phrases.

1-21

Example: mini-English grammar (1)

 Mini-English consists of simple sentences like:

 I smell a rat .

 the cat sees me .

 The following symbols occur in mini-English

sentences:

 ‘a’ ‘cat’ ‘I’ ‘mat’ ‘me’ ‘rat’

‘see’ ‘sees’ ‘smell ’ ‘smells’ ‘the’ ‘.’

 The grammar uses the following symbols to

denote mini-English phrases:

 sentence subject object noun verb

terminal
symbols

nonterminal
symbols

1-22

Example: mini-English grammar (2)

 Production rules of the mini-English grammar:

 sentence = subject verb object ‘.’

 subject = ‘I’ | ‘a’ noun | ‘the’ noun

 object = ‘me’ | ‘a’ noun | ‘the’ noun

 noun = ‘cat’ | ‘mat’ | ‘rat’

 verb = ‘see’ | ‘sees’ | ‘smell’ | ‘smells’

read as
“A sentence consists of
a subject followed by
a verb followed by
an object followed by ‘.’.”

read as
“A subject consists of the word ‘I’ alone,
or the word ‘a’ followed by a noun,
or the word ‘the’ followed by a noun.”

1-23

Example: mini-English grammar (3)

 How sentences are structured:

rat a smell I .

sentence

subject

verb noun

object

cat the sees me .

sentence

object

verb noun

subject

 The structure of a sentence can be shown by a

syntax tree (see later).

1-24

Grammars, symbols, production rules

 A context-free grammar (or just grammar)

consists of:

– a set of terminal symbols

– a set of nonterminal symbols

– a sentence symbol

– a set of production rules.

Each terminal symbol
is a symbol that may
occur in a sentence.

Each nonterminal
symbol stands for a
phrase that may form
part of a sentence.

The sentence symbol
is the nonterminal
symbol that stands for
a complete sentence.

Each production rule
specifies how phrases
are composed from
terminal symbols and
sub-phrases.

1-25

BNF notation (1)

 Backus Naur Form (BNF) is a notation for

expressing a grammar.

 A simple production rule in BNF looks like this:

 N = α

N is a
nonterminal
symbol

α is a sequence of terminal and
nonterminal symbols

“=” is read as “consists of”

 Example (mini-English):

 sentence = subject verb object ‘.’

1-26

BNF notation (2)

 More generally, a production rule in BNF may

have several alternatives on its right-hand side:

 N = α | β | γ each of α, β, γ is a
sequence of terminal and
nonterminal symbols

“|” is read as “or”.

 Example (mini-English):

 subject = ‘I’ | ‘a’ noun | ‘the’ noun

1-27

Example: Calc grammar in BNF (1)

 Terminal symbols:

 ‘put’ ‘set’

‘=’ ‘+’ ‘-’ ‘*’ ‘(’ ‘)’

‘\n’

‘a’ ‘b’ ‘c’ … ‘z’ ‘0’ ‘1’ … ‘9’

 Nonterminal symbols:

 prog com

expr prim

num id

 Sentence symbol:

 prog

1-28

Example: Calc grammar in BNF (2)

 Production rules:

 prog = eof
 | com prog

 com = ‘put’ expr eol

 | ‘set’ id ‘=’ expr eol

 expr = prim
 | expr ‘+’ prim
 | expr ‘-’ prim
 | expr ‘*’ prim

 prim = num
 | id
 | ‘(’ expr ‘)’

A prog consists of just an eof,
or alternatively a com followed
by a prog.

In other words, a prog consists
of a sequence of zero or more
coms followed by an eof.

1-29

Example: Calc grammar in BNF (3)

 Production rules (continued):

 num = digit | num digit

 id = letter

 letter = ‘a’ | ‘b’ | ‘c’ | … | ‘z’

 digit = ‘0’ | ‘1’ | … | ‘9’

 eol = ‘\n’

1-30

Phrase structure

 A grammar defines how phrases may be formed

from sub-phrases in the language. This is called

phrase structure.

 Every phrase in the language has a syntax tree

that explicitly represents its phrase structure.

1-31

Example: mini-English syntax trees

 Syntax trees of mini-English sentences:

. I smell a rat

sentence

subject object verb

noun

the cat sees me .

sentence

subject object verb

noun

1-32

Example: Calc syntax trees (1)

 Syntax trees of Calc expressions:

prim

prim

id num

n + 1

expr

op expr

prim

* x

id

prim

prim

expr

id num

y - 22) (

prim

expr

op

op expr

expr

1-33

Example: Calc syntax trees (2)

 Syntax trees of Calc commands:

put n

id

expr

\n

prim

com

= 42 \n

num

expr

prim

set n

id

com

1-34

Syntax trees

 Consider a grammar G.

 A syntax tree of G is a tree with the following

properties:

– Every terminal node is labeled by a terminal symbol of

G.

– Every nonterminal node is labeled by a nonterminal

symbol of G.

– A nonterminal node labeled N

may have children labeled

X, Y, Z (from left to right)

only if G has a production rule

N = X Y Z or N = … | X Y Z | …

N

X Z Y

1-35

Phrases

 If N is a nonterminal symbol of G, a phrase of
class N is a string of terminal symbols labeling
the terminal nodes of a syntax tree whose root
node is labeled N.

– Note: The terminal nodes must be visited from left to
right.

 E.g., phrases in Calc:

– ‘x*(22-y)’ is a phrase of class expr

– ‘set n = 42 \n’ is a phrase of class com

– ‘set n = 42 \n put x*(22-y) \n’ is a phrase of class
prog.

1-36

Sentences and languages

 If S is the sentence symbol of G, a sentence of
G is a phrase of class S. E.g.:

– ‘set n = 42 \n put x*(22-y) \n’ is a sentence of
Calc.

 The language generated by G is the set of all
sentences of G.

 Note: The language generated by G is typically
infinite (although G itself is finite).

1-37

Phrase structure and semantics

 The above definition of a language is narrowly
syntactic: a set of sentences.

 We are also interested in the language’s
semantics (i.e., the meaning of each sentence).

 A grammar does more than generate a set of
sentences: it also imposes a phrase structure on
each sentence (embodied in the sentence’s
syntax tree).

 Once we know a sentence’s phrase structure,
we can use it to ascribe a meaning to that
sentence.

1-38

Example: expression structure (1)

 Consider this grammar (similar to Calc):

 expr = prim
 | expr ‘+’ prim

 | expr ‘-’ prim

 | expr ‘+’ prim

 prim = num

 | id
 | ‘(’ expr ‘)’

1-39

Example: expression structure (2)

 In this grammar, operators ‘+’, ‘-’, and ‘*’ all

have the same precedence . E.g.:

x-y*2 will be
evaluated as
(x-y)*2

prim

expr

prim

id num

expr

y * 2 -

prim

id

x

expr

1-40

Example: expression structure (3)

 But note that parentheses can always be used to

control the evaluation:

prim prim

id num

prim

id

expr expr

prim

expr

expr

() y * 2 - x

1-41

Example: expression structure (4)

 Consider this different grammar:

 expr = term
 | expr ‘+’ term

 | expr ‘-’ term

 term = prim
 | term ‘*’ prim

 prim = num

 | id
 | ‘(’ expr ‘)’

 This grammar is typical of most PLs such as C

and Java. It leads to a different phrase structure.

1-42

Example: expression structure (5)

 In this grammar, operator ‘*’ has higher

precedence than ‘+’ and ‘-’. E.g.:

x-y*2 will be
evaluated as
x-(y*2)

prim

expr

prim

id num

term

y * 2 -

id

x

term

prim

term

expr

1-43

Ambiguity

 A phrase is ambiguous if it has more than one
syntax tree.

 A grammar is ambiguous if any of its phrases is
ambiguous.

 Ambiguity is common in natural languages such
as English:

– The peasants are revolting.

– Time flies like an arrow. Fruit flies like a banana.

 The grammar of a PL should be unambiguous,
otherwise the meaning of some programs would
be uncertain.

1-44

Example: dangling “else” ambiguity (1)

 Part of the grammar of a fictional PL:

 com = ‘put’ expr

 | ‘if’ expr ‘then’ com

 | ‘if’ expr ‘then’ com ‘else’ com

 | …

 This makes some if-commands ambiguous, such

as:

if b then if c then put 1 else put 2

1-45

Example: dangling “else” ambiguity (2)

 The above if-command has two syntax trees:

b if else c if then then

expr expr

com

com

put 1

com com

put 2

com

b if c if then then

expr expr

com

else put 1

com

put 2

com

1-46

ENBF notation

 Extended Backus Naur Form (EBNF) is a

combination of BNF and RE notation.

 An EBNF production rule has the form:

 N = RE

 where RE is a regular expression, expressed in

terms of both terminal and nonterminal symbols.

 Example:

 sequential-command = ‘{’ command + ‘}’

 EBNF is convenient for specifying all aspects of

syntax.

1-47

Example: Calc syntax in EBNF (1)

 Production rules:

 prog = com * eof

 com = ‘put’ expr eol

 | ‘set’ id ‘=’ expr eol

 expr = prim (‘+’ prim | ‘-’ prim | ‘*’ prim)*

 prim = num

 | id
 | ‘(’ expr ‘)’

1-48

Example: Calc syntax in EBNF (2)

 Production rules (continued):

 id = ‘a’ | ‘b’ | ‘c’ | … | ‘z’

 num = (‘0’ | ‘1’ | … | ‘9’)+

 eol = ‘\n’

