s Universi
Pyt 2 Values and types

Types
= Primitive types

= Composite types
— cartesian products
— disjoint unions

— mappings
= Recursive types
= Type systems
= EXpressions

Programming Languages 3 © 2012 David A Watt, University of Glasgow

Unaiversit
of Gl\zllslémz Types (1)

= Values are grouped into types according to the
operations that may be performed on them.

= Different PLs support a bewildering variety of
types:

— C: integers, floats, structs, arrays, unions, pointers to
variables, pointers to functions.

— Java: booleans, integers, floats, arrays, objects.

— Python: booleans, characters, integers, floats, tuples,
strings, lists, dictionaries, objects.

— Haskell: booleans, characters, integers, floats, tuples,
lists, algebraic types, functions.

Universit
of Glang\z Types (2)

= Atype is a set of values, equipped with
operations that can be applied uniformly to all
these values. E.q.:

— The type BOOL has values {false, true} and is equipped
with logical not, and, or.

= The cardinality of a type T, written #T, Is the
number of values of type T. E.g.:

#BOOL = 2

Universit
of Gl\zllsgrgO\z Types (3)

= Valuevis oftype Tif v € set of values of T.
E.Q.:

— the value false is of type BOOL
— the value 13 is of type INT.

= Expression E is of type T if, when evaluation of
E terminates normally, it is guaranteed to yield a

value of type T.
E.g. (assuming that variable n is of type INT):

— the Java expression “n - 1”7 is of type INT

— the Java expression “n > 0” is of type BOOL.

Universit .
qf&ﬁrg%wy Primitive types (1)

= A primitive type is a type whose values are
primitive (i.e., cannot be decomposed into
simpler values).

= Every PL provides built-in primitive types. The
choice of primitive types is influenced by the PL's
Intended application area, e.g.:

— Fortran (scientific computing) has floating-point
numbers

— Cobol (data processing) has fixed-length strings
— C (system programming) has bytes and pointers.

= Some PLs also allow programs to define new
primitive types.

U t L.
!o %ﬁ‘if;é\z Primitive types (2)

= Typical built-in primitive types:

VOID = {void}
BOOL = {false, true}
_ fp? > - --- character set
We'll use CHAR = {A Z (language-defined or
these names | 0,....9, iImplementation-defined)
throughout o)
this course. INT = {-m, ..., -2, —1, 0,~ Whole numbers (m is
1 +2 ’ ’1’ language-defined or
, M—1} implementation-defined)
FLOAT ={...}

I floating-point numbers
(language-defined or
Implementation-defined)

Universit L.
quﬁirgsé\z Primitive types (3)

= Cardinalities:

#VOID =1

#BOOL = 2

#CHAR = 128 or 256 or 32768
#INT = 2m

= Definitions of primitive types vary from one PL to
another.

— In C, booleans and characters (and enumerands) are
just small integers.

— In Java, characters are just small integers.

! Umver31ty

fGlasgow Composite types

= A composite type is a type whose values are
composite (i.e., can be decomposed into simpler
values).

= PLs support a large variety of composite types,
but all can be understood in terms of just four
fundamental concepts:

— cartesian products (tuples, structs, records)

— disjoint unions (algebraic types, variant records,
objects)

— mappings (arrays, functions)

— recursive types (lists, trees, etc.)

Umver31ty _
of Glasgow Cartesian product types (1)

= |n acartesian product, values of two (or more)
given types are grouped into pairs (or tuples).

= |In mathematics, S x T is the type of all pairs (X, y)
such that x is chosen from type Sand y is
chosen from type T:

SxT ={(X,y) |xeS;yeT}

= Cardinality of a cartesian product type:
#(SxT) = #Sx#T

____________________ ____________________________

Universit :
quﬁirgsé\z Cartesian product types (2)

= We can generalize from pairs to tuples:

S; xS, x...x§, =
{(Xy, X5, ..y X)) | X, € S5 X, € Sy .5 X, € S,)

= Basic operations on tuples:
— construction of a tuple from its component values

— selection of a specific component of a tuple
(e.g., its 15t component or its 2"d component or ...).

-~ But we cannot select a
tuple’s k' component
where k is unknown.

U t .
! %“;‘ng%\z Cartesian product types (3)

= Pascal records, C structs, and Haskell tuples
can all be understood in terms of Cartesian
products.

= Note that Python’s so-called “tuples” are
anomalous. They can be indexed, like arrays.
They are not tuples in the mathematical sense.

Umver31ty
o fGlasgow Example: C structs

= Definition of a struct type: \|\§|ac|)u|\?$|—?r=e

enum Month { s {0, 1, ..., 11}
JAN, FEB, MAR, APR, MAY, JUN,
JuUuL, AUG, SEP, OCT, NOV, DEC};

struct Date {Month m; int d;};

= Application code:

printf ("%d/%d",idatel. d datel 10 '+ 1) ;

= Values of the struct type: *Component

selection
DATE = MONTH x INT
={0,1, ..., 1M} x{...,-1,0,1, 2, ...}

Universit . .
of&lﬁirg%wy Disjoint union types (1)

= |n adisjoint union, a value is chosen from one
of two (or more) different types.

= |In mathematics, S + T Is the type of disjoint-union
values. Each disjoint-union value consists of a
variant (chosen from either type S or type T)
together with a tag:

S+T ={leftx|xeS}u{righty|yeT}
— The value left x consists of tag left and variant x € S.

— The value right y consists of tag right and varianty < T.

= |f desired, we can make the tags explicit by
writing “left S + right T " instead of “S + T ".

Universit C .. :
qf%l\z’lsrgoxz Disjoint union types (2)

= Cardinality of a disjoint union type:
#(S+T) = #S +#T

= We can generalize to disjoint unions with multiple
variants: T, + T, + ... + T.

= Haskell algebraic types, Pascal/Ada variant
records, and Java objects can all be
understood in terms of disjoint unions.

Universit C . :
qf%f;srgoxz Disjoint union types (3)

= Basic operations on disjoint-union values in
T, +T,+...+T.:

— construction of a disjoint-union value from its tag and
variant

— tag test, to inspect the disjoint-union value’s tag

— projection, to recover a specific variant of a disjoint-
union value (e.qg., its T, variant or its T, variant or ...).

. Attempting to
recover the wrong
variant fails.

University :
% of Glasgow Example: Java objects (1)

= Class declarations:

class Point {
Point () { }

e memeemeemeeeeeeeeeeeeneeeeeeeeeeoooo methods
} omitted here

class Circle extends Point {
int r;
Circle (int r) { this.r = r; }

University :
% of Glasgow Example: Java objects (2)

= Class declarations (continued):

class Box extends Point {
int w, h;
Box (int w, int h) {

Universit :
quﬁirgsé\z Example: Java objects (3)

= Set of objects in this program:

OBJECT = ... e objects of library
+ Point VOID Classes
+ Circle INT
+ Box (INT x INT)
+ L. e objects of other

_ . declared classes
= These objects include:

Point void,
Circle 1, Circle 2, Circle 3, ...,
Box (1,1), Box (1,2), Box (2,1), ...

= Each object’s tag identifies its class.

University _
%2 of Glasgow Example: Java objects (4)

= Application code:

i

Box b = new Box (3, 4); .

------------------------------ e Object
Point p= .. 2 b : c; constructions
1f (ip_instanceof Circlei).{f... tag test

N o e e e e e e e T oo~

- projection

Universit :
QfGlang\z Example: Java objects (5)

= Note that the set of objects in a Java program Is
open-ended:

— Initially the set contains objects of library classes (non-
abstract).

— Subsequently the set is augmented by each declared
class (non-abstract).

= Note that abstract classes are excluded. (It is not
possible to create an object of an abstract class.)

Universit |
quﬁesrg%wy Mapping types

In mathematics, m: S —» T states that mis a
mapping from type S to type T, i.e., m maps
every value in S to some value in T.

= |f m maps value x to value y, we write y = m(x),
and we call y the image of x under m.

= S — Tis the type of all mappings from Sto T:
SH>oT={m|xeS=mKX)eT}

= Cardinality of a mapping type:

H(S > T) = (HT)fS since there are #S

values in S, and each
such value has #T
possible images

Universit :
QfGlang\z Example: mappings

= Consider the mapping type:

{u, v} > {a, b, c}.
= |ts cardinality is 32 = 9.

= |ts 9 possible mappings are:

{u—>a,v—oa} {u—>a,v-ob} {u—>a,v-oc}
{u—>b,v—oa} {u—>b,v—-Db} {u—>b,v—oc}
{u—>c,v—a}

{u—>c,v—- Db} {u—>c,v-oc}

Universit
quﬁesrg%wy Array types (1)

= Arrays can be understood as mappings.

= |fan array’s components are of type T and its
Index values are of type S, the array has one
component of type T for each value Iin type S.
Thus the array’'s typeis S - T.

= Basic operations on arrays:
— construction of an array from its components

— Indexing, to select a component using a computed

index value. We can select an array’s
kih component, where k is
unknown.

(This is unlike a tuple.)

Universit
Qf%ﬁ?g%\% Array types (2)

An array Is a finite mapping.

= |[fan array is of type S — T, S must be a finite
range of consecutive values {Ib, Ib+1, ..., ub},
called the array’s index range.

= |[n some PLs, the index range may be any range
of integers.

= |[n C and Java, the index range must be {0, 1, ...,
n—1} for some given n.

Universit
Qf&l\;ssrgoxz Example: C arrays (1)

= Definition of an array type:

enum Pixel {DARK, LIGHT}; - Values are
typedef Pixel[] Row; PIXEL = {0, 1}.

= Application code:

Row r = {DARK, LIGHT, LIGHT, DARK};

QS)

= Values of this array type:

ROW = {0, 1,2, ...} > PIXEL
{0,1,2,..3 {0, 1}

Universit :
QfGlasgowy Function types

Functions can also be understood as mappings.
They map arguments to results.

= Consider a unary function f whose argument is of
type S and whose resultis of type T. Then f's
typeis S —> T.

= Basic operations on functions:
— construction (or definition) of a function

— application, i.e., calling the function with an argument.

= A function can represent an infinite mapping
(where #S =), since its results are computed

ondemand. = T unlike an array, where all
components are stored

2-26

Universit :
Qf&l\;ssrgoxz Example: C unary functions (1)

= Definition of a function:

int abs (int n) {
return (n >= 0 ?2 n : -n);

}

= This function’s type is:
INT — INT

= This function’s value is a mapping:
{..., 252,-1-51,0-50,1->1,2>2, ..}

Universit :
Qf&l\;ssrgoxz Example: C unary functions (2)

= Definition of a function:
int length (String s) {

int n = 0;
while (s[n] != NUL)
n++,;

return n;

}

= This function’s type is:
STRING — INT

= This function’s value is an infinite mapping:

(1Pt

{“” % O, a % 1, “b” % 1’ “ab” % 2’ “abC” % 3’ ...}

Universit , ,
QfGlang\z Binary functions

Consider a binary function f whose arguments
are of types S, and S,, and whose result type Is
.

= |n most PLs, we view f as mapping a pair of
arguments to a result:

f1(S;xS,)>T

= This can be generalized to n-ary functions:
fi(S;x...xS)—>T

Universit : :
Qf&l\glsgoxz Example: C binary function

= Declaration of a function:

String rep (int n, char c) {
String s =
malloc((n+l) * sizeof (char)):;
for (int 1 = 0; 1 < n; 1++)
s[i] = c;
s[n] = NUL;
return s;

}

= This function’s type is:
(INT x CHAR) — STRING

= |n a call, the function is applied to a pair:

rep (6, "!") o yjelS ML LT

2-30

Universit :
QfGlang\z Recursive types

A recursive type is one defined in terms of itself.

= A recursive type is a disjoint-union type in which:
— at least one variant is recursive

— at least one variant IS non-recursive.

= Some recursive types in mathematical notation:
LIST = VOID + (VALUE x LIST)
TREE = VOID + (VALUE x TREE x TREE)

= Cardinality of a recursive type T:
#T = o©

e |
fGlasgow Lists

= Alistis a sequence of O or more component
values.

= Alistis either:

— empty, or

— non-empty, in which case it consists of a head (its first
component) and a tail (a list consisting of all but its first
component).

= This leads immediately to the recursive definition:

LIST = empty VOID
+ nonempty (VALUE x LIST)
" head " tail

o1a| Universit)
QfGlang\z Example: Java lists

= Class declaration for integer-lists:

class IntlList {
int head;
IntList tail;

}

= The non-recursive variant is the built-in null
value.

! Umver51ty

of Glasgow Strings

A string is a sequence of O or more characters.

= Python treats strings as primitive.

= Haskell treats strings as lists of characters. So
strings are equipped with general list operations
(head selection, tail selection, concatenation, ...).

= C treats strings as arrays of characters. So
strings are equipped with general array
operations (indexing, ...).

= Java treats strings as objects, of class String.
So strings are equipped with the methods of that
class.

Universit
QfGlasgowy Type systems

= Atype error occurs if a program performs a
meaningless operation

— such as adding a string to a boolean.

= APL’'stype system groups values into types:
— to enable programmers to describe data effectively
— to help prevent type errors.

= Possession of a type system distinguishes high-
level PLs from low-level languages:

— In assembly/machine languages, the only “types” are
bytes and words, so meaningless operations cannot be
prevented.

Universit ,
qf%l\z’lsrgoxz Type checking

= Before any operation is performed, its operands
must be type-checked to prevent a type error.
E.Q.:

— In a not operation, must check that the operand is a
boolean.

— In an add operation, must check that both operands are
numbers.

— In an indexing operation, must check that (a) the left
operand is an array, and (b) the right operand is an
integer.

Umver31ty _ :
of Glasgow Static typing

= |n a statically typed PL:

— every variable has a fixed type
(usually declared by the programmer)

— every expression has a fixed type
(usually inferred by the compiler)

— all operands are type-checked at compile-time.

= Nearly all PLs (including Pascal, Ada, C, Java,
Haskell) are statically typed.

Universit : :
qf%l\z’lsrgoxz Dynamic typing

= |[nadynamically typed PL:
— only values has fixed types
— variables do not have fixed types
— expressions do not have fixed types

— operands must be type-checked when they are
computed at run-time.

= A few PLs (Smalltalk, Lisp, Prolog) and most
scripting languages (Perl, Python) are
dynamically typed.

University _ _
& of Glasgow Example: Java static typing

= Java function definition:

static boolean even (int n) {

return i(ns2 == 0 hi The compiler doesn’t know
J n’'s value, but does know that
_ n's type is INT; so it can infer
= Java function call: that this expression’s type is
. BOOL.
int p;

The compiler doesn’t know p’s value,
but does know that p’s type is INT;
then . so it can infer that this expression’s

type is INT. This is consistent with
else .. the type of even’s parameter.

————————————

= Even without knowing the values of variables, the
Java compiler can guarantee that no type errors
will occur at run-time.

Univers: : :
qul\z’grg%% Python dynamic typing (1)

= Python function definition:
-- The type of n is unknown.

def even (n): -~ So the “%” operation must
return (n%2 == 0) be protected by a run-time
type check.

= |n Python the types of variables are not declared,
and in general cannot be inferred by the
compiler.

= So run-time type checks are needed to detect
type errors.

University

< of Glasgow Python dynamic typing (2)

= Python function definition:

def minimum (values):
Return the minimum element of values.
min = values[0])
for val in values:
if val < min:
min = val
return min

* which may be
a tuple or list

University

< of Glasgow Python dynamic typing (3)

= Application code:

readings = (3.0, 2.7, 4.1) 77 tuple of floating-

point numbers

X = minimum (readings) = yields 2.7
primes = [2, 3, 5, 7] -mmmmmeeees list of integers
y = minimum (primes) e yields 2
WOrdS — ["dog"’ "dog", "ant"]

w = minimum (words) -----e-ecceeeeeeeae fails inside the

function

! Umver51ty

fGlasgow Static vs dynamic typing

= Pros and cons of static typing:

+ Static typing is more efficient: it requires only compile-
time type checks. Dynamic typing requires run-time
type checks (making the program run slower), and
forces all values to be tagged (using up more space).

+ Static typing is more secure: the compiler can
guarantee that the object program contains no type
errors. Dynamic typing provides no such security.

— Static typing is less flexible: certain computations
cannot be expressed naturally. Dynamic typing is
natural when processing data whose types are not
known at compile-time.

Universit _
QfGlang\z Expressions (1)

= An expression is a program construct that will
be evaluated to yield a value.

= Simple expressions:
— literals

— variables.

Universit :
QfGlasgowy Expressions (2)

= Compound expressions: -~ Note that*+, '~ etc,
are also functions .

— A function call is an expré'ésion that computes a result
by applying a function to argument(s).

— A construction is an expression that constructs a
composite value from its components.

— A conditional expression is an expression that
chooses one of its sub-expressions to evaluate.

— An iterative expression is an expression that performs
a computation over a collection (e.g., an array or list).

— A Dblock expression is an expression that contains
declarations of local variables, etc.

University _
of Glasgow Example: constructions

= Python tuple and list constructions:

newYearsDay = ("JAN", 1)
tomorrow = (m, d+1)

primes = [2, 3, 5, 7, 11]
size = [31, 29 1f 1slLeap(y) else 28,
31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
= Java array and object constructions:
int|[] primes = {2, 3, 5, 7, 11};

Date newYearsDay = new Date (JAN, 1);
Date tomorrow = new Date(m, d+1);

University N _
< of Glasgow Example: conditional expressions

= Python if-expressions:
x 1f x > y else vy

29 1f i1sleap(y) else 28
= C/Java if-expression:
X >y ? X 'y

isLeap(y) 2?2 29 : 28

University _ _ _
<) of Glasgow Example: iterative expressions

= Python list comprehensions:
[toUpper (c) for ¢ in cs]

[v for v in ys if not isLeap (y)]

