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2  Values and types 

 Types 

 Primitive types 

 Composite types 

– cartesian products 

– disjoint unions 

– mappings 

 Recursive types 

 Type systems 

 Expressions 
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Types (1) 

 Values are grouped into types according to the 

operations that may be performed on them. 

 Different PLs support a bewildering variety of 

types: 

– C: integers, floats, structs, arrays, unions, pointers to 

variables, pointers to functions. 

– Java: booleans, integers, floats, arrays, objects. 

– Python: booleans, characters, integers, floats, tuples, 

strings, lists, dictionaries, objects. 

– Haskell: booleans, characters, integers, floats, tuples, 

lists, algebraic types, functions. 
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Types (2) 

 A type is a set of values, equipped with 

operations that can be applied uniformly to all 

these values. E.g.: 

– The type BOOL has values {false, true} and is equipped 

with logical not, and, or. 

 The cardinality of a type T, written #T, is the 

number of values of type T. E.g.: 

 #BOOL  =  2 
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Types (3) 

 Value v is of type T if v  set of values of T. 

E.g.: 

– the value false is of type BOOL 

– the value 13 is of type INT. 

 Expression E is of type T if, when evaluation of 

E terminates normally, it is guaranteed to yield a 

value of type T.  
E.g. (assuming that variable n is of type INT): 

– the Java expression “n - 1” is of type INT 

– the Java expression “n > 0” is of type BOOL. 
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Primitive types (1) 

 A primitive type is a type whose values are 
primitive (i.e., cannot be decomposed into 
simpler values). 

 Every PL provides built-in primitive types. The 
choice of primitive types is influenced by the PL’s 
intended application area, e.g.: 

– Fortran (scientific computing) has floating-point 
numbers 

– Cobol (data processing) has fixed-length strings 

– C (system programming) has bytes and pointers. 

 Some PLs also allow programs to define new 
primitive types.  
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Primitive types (2) 

 Typical built-in primitive types: 

  VOID = {void} 

  BOOL = {false, true} 

  CHAR = {‘A’, …, ‘Z’, 

    ‘0’, …, ‘9’,  

    …} 

  INT = {–m, …, –2, –1, 0,  

    +1, +2, …, m–1} 

  FLOAT = {…} 

character set  
(language-defined or 
implementation-defined) 

whole numbers (m is 
language-defined or 
implementation-defined) 

floating-point numbers  
(language-defined or 
implementation-defined) 

We’ll use 

these names 

throughout 

this course. 
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Primitive types (3) 

 Cardinalities: 

  #VOID = 1 

  #BOOL = 2 

  #CHAR = 128 or 256 or 32768 

  #INT = 2m 

 Definitions of primitive types vary from one PL to 
another. 

– In C, booleans and characters (and enumerands) are 
just small integers. 

– In Java, characters are just small integers. 
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Composite types 

 A composite type is a type whose values are 

composite (i.e., can be decomposed into simpler 

values). 

 PLs support a large variety of composite types, 

but all can be understood in terms of just four 

fundamental concepts: 

– cartesian products (tuples, structs, records)  

– disjoint unions (algebraic types, variant records, 

objects) 

– mappings (arrays, functions) 

– recursive types (lists, trees, etc.) 
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Cartesian product types (1) 

 In a cartesian product, values of two (or more) 

given types are grouped into pairs (or tuples). 

 In mathematics, S  T is the type of all pairs (x, y) 

such that x is chosen from type S and y is 

chosen from type T: 

 S  T  =  { (x, y) | x  S; y  T } 

 Cardinality of a cartesian product type: 

 #(S  T)  =  #S  #T 

NB 
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Cartesian product types (2) 

 We can generalize from pairs to tuples: 

 S1  S2    Sn  = 

 { (x1, x2, , xn) | x1  S1; x2  S2; …; xn  Sn } 

 Basic operations on tuples: 

– construction of a tuple from its component values 

– selection of a specific component of a tuple  

(e.g., its 1st component or its 2nd component or …). 

But we cannot select a 
tuple’s kth component 
where k is unknown. 
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Cartesian product types (3) 

 Pascal records, C structs, and Haskell tuples 

can all be understood in terms of Cartesian 

products. 

 Note that Python’s so-called “tuples” are 

anomalous. They can be indexed, like arrays. 

They are not tuples in the mathematical sense. 
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Example: C structs 

 Definition of a struct type: 

 enum Month { 

 JAN, FEB, MAR, APR, MAY, JUN, 

 JUL, AUG, SEP, OCT, NOV, DEC}; 

struct Date {Month m; int d;}; 

 Application code: 

 struct Date date1 = {JAN, 1}; 

 printf ("%d/%d", date1.d, date1.m + 1); 

struct 
construction 

 Values of the struct type: 

  DATE = MONTH  INT 

  = {0, 1, …, 11}  {…, –1, 0, 1, 2, …} 

Values are 
MONTH = 
{0, 1, …, 11} 

component 
selection 
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Disjoint union types (1) 

 In a disjoint union, a value is chosen from one 

of two (or more) different types. 

 In mathematics, S + T is the type of disjoint-union 

values. Each disjoint-union value consists of a 

variant (chosen from either type S or type T) 

together with a tag: 

 S + T  =  { left x | x  S }  { right y | y  T } 

– The value left x consists of tag left and variant x  S. 

– The value right y consists of tag right and variant y  T. 

 If desired, we can make the tags explicit by 

writing “left S + right T ” instead of “S + T ”. 



2-14 

Disjoint union types (2) 

 Cardinality of a disjoint union type: 

 #(S + T)  =  #S + #T 

NB 

 We can generalize to disjoint unions with multiple 

variants: T1 + T2 +  + Tn. 

 Haskell algebraic types, Pascal/Ada variant 

records, and Java objects can all be 

understood in terms of disjoint unions. 
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Disjoint union types (3) 

 Basic operations on disjoint-union values in  
T1 + T2 +  + Tn: 

– construction of a disjoint-union value from its tag and 
variant 

– tag test, to inspect the disjoint-union value’s tag 

– projection, to recover a specific variant of a disjoint-
union value (e.g., its T1 variant or its T2 variant or …). 

Attempting to 
recover the wrong 
variant fails. 
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Example: Java objects (1) 

 Class declarations: 

 class Point { 

 Point () { } 

 … 

} 

 class Circle extends Point { 

 int r; 

 Circle (int r) { this.r = r; } 

 … 

} 

methods 
omitted here 



2-17 

Example: Java objects (2) 

 Class declarations (continued): 

 class Box extends Point { 

 int w, h; 

 Box (int w, int h) { … } 

 … 

} 
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Example: Java objects (3) 

 Set of objects in this program: 

  OBJECT = … 

   + Point VOID 

   + Circle INT 

   + Box (INT  INT) 

   + … 

 These objects include: 

 Point void, 

Circle 1,  Circle 2,  Circle 3,  …, 

Box (1,1),  Box (1,2),  Box (2,1),  … 

 Each object’s tag identifies its class. 

objects of library 
classes 

objects of other 
declared classes 
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Example: Java objects (4) 

 Application code: 

 Circle c = new Circle(5); 

Box b = new Box(3, 4); 

 Point p = … ? b : c; 

if ( p instanceof Circle ) { 

 int rad = ((Circle)p).r; 

 … 

} 

object 
constructions 

tag test 

projection 
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Example: Java objects (5) 

 Note that the set of objects in a Java program is 

open-ended: 

– Initially the set contains objects of library classes (non-

abstract). 

– Subsequently the set is augmented by each declared 

class (non-abstract). 

 Note that abstract classes are excluded. (It is not 

possible to create an object of an abstract class.) 
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Mapping types 

 In mathematics, m : S  T states that m is a 

mapping from type S to type T, i.e., m maps 

every value in S to some value in T. 

 If m maps value x to value y, we write y = m(x), 

and we call y the image of x under m. 

 S  T is the type of all mappings from S to T: 

 S  T  =  { m | x  S  m(x)  T }  

 Cardinality of a mapping type: 

 #(S  T)  =  (#T)#S 

 

since there are #S 
values in S, and each 
such value has #T 
possible images 
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Example: mappings 

 Consider the mapping type: 

 {u, v}  {a, b, c}. 

 Its cardinality is 32 = 9. 

 Its 9 possible mappings are: 

 {u  a, v  a} {u  a, v  b} {u  a, v  c} 

 {u  b, v  a} {u  b, v  b} {u  b, v  c} 

 {u  c, v  a} {u  c, v  b} {u  c, v  c} 
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Array types (1) 

 Arrays can be understood as mappings. 

 If an array’s components are of type T and its 

index values are of type S, the array has one 

component of type T for each value in type S. 

Thus the array’s type is S  T. 

 Basic operations on arrays: 

– construction of an array from its components 

– indexing, to select a component using a computed 

index value. We can select an array’s 
kth component, where k is 
unknown.  
(This is unlike a tuple.) 
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Array types (2) 

 An array is a finite mapping. 

 If an array is of type S  T, S must be a finite 

range of consecutive values {lb, lb+1, …, ub}, 

called the array’s index range. 

 In some PLs, the index range may be any range 

of integers. 

 In C and Java, the index range must be {0, 1, …, 

n–1} for some given n. 
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Example: C arrays (1) 

 Definition of an array type: 

 enum Pixel {DARK, LIGHT}; 

typedef Pixel[] Row;  

 Application code: 

 Row r = {DARK, LIGHT, LIGHT, DARK}; 

int i, j; 

r[i] = r[j]; 

array indexing 

array construction 

 Values of this array type: 

 ROW = {0, 1, 2, …}  PIXEL 

 = {0, 1, 2, …}  {0, 1} 

Values are 
PIXEL = {0, 1}. 
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Function types 

 Functions can also be understood as mappings. 
They map arguments to results. 

 Consider a unary function f whose argument is of 
type S and whose result is of type T. Then f ’s 
type is S  T. 

 Basic operations on functions: 

– construction (or definition) of a function 

– application, i.e., calling the function with an argument. 

 A function can represent an infinite mapping 
(where #S = ), since its results are computed 
on demand. unlike an array, where all 

components are stored 
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Example: C unary functions (1) 

 Definition of a function: 

 int abs (int n) { 

 return (n >= 0 ? n : -n); 

} 

 This function’s type is: 

 INT  INT  

 This function’s value is a mapping: 

 {…,  –2  2, –1  1, 0  0, 1 1, 2 2, …} 
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Example: C unary functions (2) 

 Definition of a function: 

 int length (String s) { 

 int n = 0; 

 while (s[n] != NUL) 

  n++;  

 return n; 

} 

 This function’s type is: 

 STRING  INT  

 This function’s value is an infinite mapping: 

 {“”  0, “a”  1, “b”  1, “ab”  2, “abc”  3, …} 
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Binary functions 

 Consider a binary function f whose arguments 

are of types S1 and S2, and whose result type is 

T. 

 In most PLs, we view f as mapping a pair of 

arguments to a result: 

 f : (S1  S2)  T 

 This can be generalized to n-ary functions: 

 f : (S1  …  Sn)  T 
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Example: C binary function 

 Declaration of a function: 

 String rep (int n, char c) { 

 String s =  

  malloc((n+1) * sizeof(char)); 

 for (int i = 0; i < n; i++) 

  s[i] = c; 

 s[n] = NUL; 

 return s; 

} 

 This function’s type is: 

 (INT  CHAR)  STRING 

 In a call, the function is applied to a pair: 

 rep (6, '!') yields "!!!!!!" 
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Recursive types 

 A recursive type is one defined in terms of itself. 

 A recursive type is a disjoint-union type in which: 

– at least one variant is recursive 

– at least one variant is non-recursive. 

 Some recursive types in mathematical notation: 

 LIST = VOID + (VALUE  LIST) 

 TREE = VOID + (VALUE  TREE  TREE) 

 Cardinality of a recursive type T: 

 #T  =   
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Lists 

 A list is a sequence of 0 or more component 

values. 

 A list is either: 

– empty, or 

– non-empty, in which case it consists of a head (its first 

component) and a tail (a list consisting of all but its first 

component). 

 This leads immediately to the recursive definition: 

  LIST = empty VOID 

   + nonempty (VALUE  LIST) 

head tail 
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Example: Java lists 

 Class declaration for integer-lists: 

 class IntList { 

 int head; 

 IntList tail; 

} 

 The non-recursive variant is the built-in null 

value. 
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Strings 

 A string is a sequence of 0 or more characters. 

 Python treats strings as primitive. 

 Haskell treats strings as lists of characters. So 
strings are equipped with general list operations 
(head selection, tail selection, concatenation, …). 

 C treats strings as arrays of characters. So 
strings are equipped with general array 
operations (indexing, …). 

 Java treats strings as objects, of class String. 
So strings are equipped with the methods of that 
class. 
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Type systems 

 A type error occurs if a program performs a 
meaningless operation 

– such as adding a string to a boolean. 

 A PL’s type system groups values into types: 

– to enable programmers to describe data effectively 

– to help prevent type errors. 

 Possession of a type system distinguishes high-
level PLs from low-level languages: 

– In assembly/machine languages, the only “types” are 
bytes and words, so meaningless operations cannot be 
prevented. 
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Type checking 

 Before any operation is performed, its operands 

must be type-checked to prevent a type error. 

E.g.: 

– In a not operation, must check that the operand is a 

boolean. 

– In an add operation, must check that both operands are 

numbers. 

– In an indexing operation, must check that (a) the left 

operand is an array, and (b) the right operand is an 

integer. 
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Static typing 

 In a statically typed PL: 

– every variable has a fixed type 

(usually declared by the programmer) 

– every expression has a fixed type 

(usually inferred by the compiler) 

– all operands are type-checked at compile-time. 

 Nearly all PLs (including Pascal, Ada, C, Java, 

Haskell) are statically typed. 
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Dynamic typing 

 In a dynamically typed PL: 

– only values has fixed types 

– variables do not have fixed types 

– expressions do not have fixed types 

– operands must be type-checked when they are 

computed at run-time. 

 A few PLs (Smalltalk, Lisp, Prolog) and most 

scripting languages (Perl, Python) are 

dynamically typed. 
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Example: Java static typing 

 Java function definition: 

 static boolean even (int n) { 

 return (n%2 == 0); 

} 
The compiler doesn’t know 
n’s value, but does know that 
n’s type is INT; so it can infer 
that this expression’s type is 
BOOL. 

The compiler doesn’t know p’s value, 
but does know that p’s type is INT; 
so it can infer that this expression’s 
type is INT. This is consistent with 
the type of even’s parameter. 

 Java function call: 

 int p; 

… 

if even(p+1)  

then …  

else … 

 Even without knowing the values of variables, the 
Java compiler can guarantee that no type errors 
will occur at run-time. 
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Python dynamic typing (1) 

 Python function definition: 

 def even (n): 

 return (n%2 == 0) 

The type of n is unknown. 
So the “%” operation must 
be protected by a run-time 
type check. 

 In Python the types of variables are not declared, 

and in general cannot be inferred by the 

compiler. 

 So run-time type checks are needed to detect 

type errors. 
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Python dynamic typing (2) 

 Python function definition: 

 def minimum (values): 

 # Return the minimum element of values. 

 min = values[0] 

 for val in values: 

  if val < min: 

   min = val 

 return min 

which may be 
a tuple or list 
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Python dynamic typing (3) 

 Application code: 

 readings = (3.0, 2.7, 4.1) 

x = minimum (readings) 

 primes = [2, 3, 5, 7] 

y = minimum (primes) 

 words = ["dog", "dog", "ant"] 

w = minimum(words) 

tuple of floating-
point numbers 
yields 2.7 

list of integers 

yields 2 

fails inside the 
function 
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Static vs dynamic typing 

 Pros and cons of static typing: 

+ Static typing is more efficient: it requires only compile-

time type checks. Dynamic typing requires run-time 

type checks (making the program run slower), and 

forces all values to be tagged (using up more space). 

+ Static typing is more secure: the compiler can 

guarantee that the object program contains no type 

errors. Dynamic typing provides no such security. 

– Static typing is less flexible: certain computations 

cannot be expressed naturally. Dynamic typing is 

natural when processing data whose types are not 

known at compile-time. 
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Expressions (1) 

 An expression is a program construct that will 

be evaluated to yield a value. 

 Simple expressions: 

– literals 

– variables. 
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Expressions (2) 

 Compound expressions: 

– A function call is an expression that computes a result 

by applying a function to argument(s). 

– A construction is an expression that constructs a 

composite value from its components. 

– A conditional expression is an expression that 

chooses one of its sub-expressions to evaluate. 

– An iterative expression is an expression that performs 

a computation over a collection (e.g., an array or list). 

– A block expression is an expression that contains 

declarations of local variables, etc. 

Note that ‘+’, ‘–’, etc., 
are also functions . 
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Example: constructions 

 Python tuple and list constructions: 

 newYearsDay = ("JAN", 1) 

tomorrow = (m, d+1) 

 primes = [2, 3, 5, 7, 11] 

size = [31, 29 if isLeap(y) else 28,   

  31, 30, 31, 30, 31, 31, 30, 31, 30, 31] 

 Java array and object constructions: 

 int[] primes = {2, 3, 5, 7, 11}; 

 Date newYearsDay = new Date(JAN, 1); 

Date tomorrow    = new Date(m, d+1); 
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Example: conditional expressions 

 Python if-expressions: 

 x if x > y else y 

 29 if isLeap(y) else 28 

 C/Java if-expression: 

 x > y ? x : y 

 isLeap(y) ? 29 : 28 
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Example: iterative expressions 

 Python list comprehensions: 

 [toUpper(c) for c in cs] 

 [y for y in ys if not isLeap(y)] 


