
2-1

2 Values and types

 Types

 Primitive types

 Composite types

– cartesian products

– disjoint unions

– mappings

 Recursive types

 Type systems

 Expressions

Programming Languages 3 © 2012 David A Watt, University of Glasgow

2-2

Types (1)

 Values are grouped into types according to the

operations that may be performed on them.

 Different PLs support a bewildering variety of

types:

– C: integers, floats, structs, arrays, unions, pointers to

variables, pointers to functions.

– Java: booleans, integers, floats, arrays, objects.

– Python: booleans, characters, integers, floats, tuples,

strings, lists, dictionaries, objects.

– Haskell: booleans, characters, integers, floats, tuples,

lists, algebraic types, functions.

2-3

Types (2)

 A type is a set of values, equipped with

operations that can be applied uniformly to all

these values. E.g.:

– The type BOOL has values {false, true} and is equipped

with logical not, and, or.

 The cardinality of a type T, written #T, is the

number of values of type T. E.g.:

 #BOOL = 2

2-4

Types (3)

 Value v is of type T if v  set of values of T.

E.g.:

– the value false is of type BOOL

– the value 13 is of type INT.

 Expression E is of type T if, when evaluation of

E terminates normally, it is guaranteed to yield a

value of type T.
E.g. (assuming that variable n is of type INT):

– the Java expression “n - 1” is of type INT

– the Java expression “n > 0” is of type BOOL.

2-5

Primitive types (1)

 A primitive type is a type whose values are
primitive (i.e., cannot be decomposed into
simpler values).

 Every PL provides built-in primitive types. The
choice of primitive types is influenced by the PL’s
intended application area, e.g.:

– Fortran (scientific computing) has floating-point
numbers

– Cobol (data processing) has fixed-length strings

– C (system programming) has bytes and pointers.

 Some PLs also allow programs to define new
primitive types.

2-6

Primitive types (2)

 Typical built-in primitive types:

 VOID = {void}

 BOOL = {false, true}

 CHAR = {‘A’, …, ‘Z’,

 ‘0’, …, ‘9’,

 …}

 INT = {–m, …, –2, –1, 0,

 +1, +2, …, m–1}

 FLOAT = {…}

character set
(language-defined or
implementation-defined)

whole numbers (m is
language-defined or
implementation-defined)

floating-point numbers
(language-defined or
implementation-defined)

We’ll use

these names

throughout

this course.

2-7

Primitive types (3)

 Cardinalities:

 #VOID = 1

 #BOOL = 2

 #CHAR = 128 or 256 or 32768

 #INT = 2m

 Definitions of primitive types vary from one PL to
another.

– In C, booleans and characters (and enumerands) are
just small integers.

– In Java, characters are just small integers.

2-8

Composite types

 A composite type is a type whose values are

composite (i.e., can be decomposed into simpler

values).

 PLs support a large variety of composite types,

but all can be understood in terms of just four

fundamental concepts:

– cartesian products (tuples, structs, records)

– disjoint unions (algebraic types, variant records,

objects)

– mappings (arrays, functions)

– recursive types (lists, trees, etc.)

2-9

Cartesian product types (1)

 In a cartesian product, values of two (or more)

given types are grouped into pairs (or tuples).

 In mathematics, S  T is the type of all pairs (x, y)

such that x is chosen from type S and y is

chosen from type T:

 S  T = { (x, y) | x  S; y  T }

 Cardinality of a cartesian product type:

 #(S  T) = #S  #T

NB

2-10

Cartesian product types (2)

 We can generalize from pairs to tuples:

 S1  S2    Sn =

 { (x1, x2, , xn) | x1  S1; x2  S2; …; xn  Sn }

 Basic operations on tuples:

– construction of a tuple from its component values

– selection of a specific component of a tuple

(e.g., its 1st component or its 2nd component or …).

But we cannot select a
tuple’s kth component
where k is unknown.

2-11

Cartesian product types (3)

 Pascal records, C structs, and Haskell tuples

can all be understood in terms of Cartesian

products.

 Note that Python’s so-called “tuples” are

anomalous. They can be indexed, like arrays.

They are not tuples in the mathematical sense.

2-12

Example: C structs

 Definition of a struct type:

 enum Month {

 JAN, FEB, MAR, APR, MAY, JUN,

 JUL, AUG, SEP, OCT, NOV, DEC};

struct Date {Month m; int d;};

 Application code:

 struct Date date1 = {JAN, 1};

 printf ("%d/%d", date1.d, date1.m + 1);

struct
construction

 Values of the struct type:

 DATE = MONTH  INT

 = {0, 1, …, 11}  {…, –1, 0, 1, 2, …}

Values are
MONTH =
{0, 1, …, 11}

component
selection

2-13

Disjoint union types (1)

 In a disjoint union, a value is chosen from one

of two (or more) different types.

 In mathematics, S + T is the type of disjoint-union

values. Each disjoint-union value consists of a

variant (chosen from either type S or type T)

together with a tag:

 S + T = { left x | x  S }  { right y | y  T }

– The value left x consists of tag left and variant x  S.

– The value right y consists of tag right and variant y  T.

 If desired, we can make the tags explicit by

writing “left S + right T ” instead of “S + T ”.

2-14

Disjoint union types (2)

 Cardinality of a disjoint union type:

 #(S + T) = #S + #T

NB

 We can generalize to disjoint unions with multiple

variants: T1 + T2 +  + Tn.

 Haskell algebraic types, Pascal/Ada variant

records, and Java objects can all be

understood in terms of disjoint unions.

2-15

Disjoint union types (3)

 Basic operations on disjoint-union values in
T1 + T2 +  + Tn:

– construction of a disjoint-union value from its tag and
variant

– tag test, to inspect the disjoint-union value’s tag

– projection, to recover a specific variant of a disjoint-
union value (e.g., its T1 variant or its T2 variant or …).

Attempting to
recover the wrong
variant fails.

2-16

Example: Java objects (1)

 Class declarations:

 class Point {

 Point () { }

 …

}

 class Circle extends Point {

 int r;

 Circle (int r) { this.r = r; }

 …

}

methods
omitted here

2-17

Example: Java objects (2)

 Class declarations (continued):

 class Box extends Point {

 int w, h;

 Box (int w, int h) { … }

 …

}

2-18

Example: Java objects (3)

 Set of objects in this program:

 OBJECT = …

 + Point VOID

 + Circle INT

 + Box (INT  INT)

 + …

 These objects include:

 Point void,

Circle 1, Circle 2, Circle 3, …,

Box (1,1), Box (1,2), Box (2,1), …

 Each object’s tag identifies its class.

objects of library
classes

objects of other
declared classes

2-19

Example: Java objects (4)

 Application code:

 Circle c = new Circle(5);

Box b = new Box(3, 4);

 Point p = … ? b : c;

if (p instanceof Circle) {

 int rad = ((Circle)p).r;

 …

}

object
constructions

tag test

projection

2-20

Example: Java objects (5)

 Note that the set of objects in a Java program is

open-ended:

– Initially the set contains objects of library classes (non-

abstract).

– Subsequently the set is augmented by each declared

class (non-abstract).

 Note that abstract classes are excluded. (It is not

possible to create an object of an abstract class.)

2-21

Mapping types

 In mathematics, m : S  T states that m is a

mapping from type S to type T, i.e., m maps

every value in S to some value in T.

 If m maps value x to value y, we write y = m(x),

and we call y the image of x under m.

 S  T is the type of all mappings from S to T:

 S  T = { m | x  S  m(x)  T }

 Cardinality of a mapping type:

 #(S  T) = (#T)#S

since there are #S
values in S, and each
such value has #T
possible images

2-22

Example: mappings

 Consider the mapping type:

 {u, v}  {a, b, c}.

 Its cardinality is 32 = 9.

 Its 9 possible mappings are:

 {u  a, v  a} {u  a, v  b} {u  a, v  c}

 {u  b, v  a} {u  b, v  b} {u  b, v  c}

 {u  c, v  a} {u  c, v  b} {u  c, v  c}

2-23

Array types (1)

 Arrays can be understood as mappings.

 If an array’s components are of type T and its

index values are of type S, the array has one

component of type T for each value in type S.

Thus the array’s type is S  T.

 Basic operations on arrays:

– construction of an array from its components

– indexing, to select a component using a computed

index value. We can select an array’s
kth component, where k is
unknown.
(This is unlike a tuple.)

2-24

Array types (2)

 An array is a finite mapping.

 If an array is of type S  T, S must be a finite

range of consecutive values {lb, lb+1, …, ub},

called the array’s index range.

 In some PLs, the index range may be any range

of integers.

 In C and Java, the index range must be {0, 1, …,

n–1} for some given n.

2-25

Example: C arrays (1)

 Definition of an array type:

 enum Pixel {DARK, LIGHT};

typedef Pixel[] Row;

 Application code:

 Row r = {DARK, LIGHT, LIGHT, DARK};

int i, j;

r[i] = r[j];

array indexing

array construction

 Values of this array type:

 ROW = {0, 1, 2, …}  PIXEL

 = {0, 1, 2, …}  {0, 1}

Values are
PIXEL = {0, 1}.

2-26

Function types

 Functions can also be understood as mappings.
They map arguments to results.

 Consider a unary function f whose argument is of
type S and whose result is of type T. Then f ’s
type is S  T.

 Basic operations on functions:

– construction (or definition) of a function

– application, i.e., calling the function with an argument.

 A function can represent an infinite mapping
(where #S = ), since its results are computed
on demand. unlike an array, where all

components are stored

2-27

Example: C unary functions (1)

 Definition of a function:

 int abs (int n) {

 return (n >= 0 ? n : -n);

}

 This function’s type is:

 INT  INT

 This function’s value is a mapping:

 {…, –2  2, –1  1, 0  0, 1 1, 2 2, …}

2-28

Example: C unary functions (2)

 Definition of a function:

 int length (String s) {

 int n = 0;

 while (s[n] != NUL)

 n++;

 return n;

}

 This function’s type is:

 STRING  INT

 This function’s value is an infinite mapping:

 {“”  0, “a”  1, “b”  1, “ab”  2, “abc”  3, …}

2-29

Binary functions

 Consider a binary function f whose arguments

are of types S1 and S2, and whose result type is

T.

 In most PLs, we view f as mapping a pair of

arguments to a result:

 f : (S1  S2)  T

 This can be generalized to n-ary functions:

 f : (S1  …  Sn)  T

2-30

Example: C binary function

 Declaration of a function:

 String rep (int n, char c) {

 String s =

 malloc((n+1) * sizeof(char));

 for (int i = 0; i < n; i++)

 s[i] = c;

 s[n] = NUL;

 return s;

}

 This function’s type is:

 (INT  CHAR)  STRING

 In a call, the function is applied to a pair:

 rep (6, '!') yields "!!!!!!"

2-31

Recursive types

 A recursive type is one defined in terms of itself.

 A recursive type is a disjoint-union type in which:

– at least one variant is recursive

– at least one variant is non-recursive.

 Some recursive types in mathematical notation:

 LIST = VOID + (VALUE  LIST)

 TREE = VOID + (VALUE  TREE  TREE)

 Cardinality of a recursive type T:

 #T = 

2-32

Lists

 A list is a sequence of 0 or more component

values.

 A list is either:

– empty, or

– non-empty, in which case it consists of a head (its first

component) and a tail (a list consisting of all but its first

component).

 This leads immediately to the recursive definition:

 LIST = empty VOID

 + nonempty (VALUE  LIST)

head tail

2-33

Example: Java lists

 Class declaration for integer-lists:

 class IntList {

 int head;

 IntList tail;

}

 The non-recursive variant is the built-in null

value.

2-34

Strings

 A string is a sequence of 0 or more characters.

 Python treats strings as primitive.

 Haskell treats strings as lists of characters. So
strings are equipped with general list operations
(head selection, tail selection, concatenation, …).

 C treats strings as arrays of characters. So
strings are equipped with general array
operations (indexing, …).

 Java treats strings as objects, of class String.
So strings are equipped with the methods of that
class.

2-35

Type systems

 A type error occurs if a program performs a
meaningless operation

– such as adding a string to a boolean.

 A PL’s type system groups values into types:

– to enable programmers to describe data effectively

– to help prevent type errors.

 Possession of a type system distinguishes high-
level PLs from low-level languages:

– In assembly/machine languages, the only “types” are
bytes and words, so meaningless operations cannot be
prevented.

2-36

Type checking

 Before any operation is performed, its operands

must be type-checked to prevent a type error.

E.g.:

– In a not operation, must check that the operand is a

boolean.

– In an add operation, must check that both operands are

numbers.

– In an indexing operation, must check that (a) the left

operand is an array, and (b) the right operand is an

integer.

2-37

Static typing

 In a statically typed PL:

– every variable has a fixed type

(usually declared by the programmer)

– every expression has a fixed type

(usually inferred by the compiler)

– all operands are type-checked at compile-time.

 Nearly all PLs (including Pascal, Ada, C, Java,

Haskell) are statically typed.

2-38

Dynamic typing

 In a dynamically typed PL:

– only values has fixed types

– variables do not have fixed types

– expressions do not have fixed types

– operands must be type-checked when they are

computed at run-time.

 A few PLs (Smalltalk, Lisp, Prolog) and most

scripting languages (Perl, Python) are

dynamically typed.

2-39

Example: Java static typing

 Java function definition:

 static boolean even (int n) {

 return (n%2 == 0);

}
The compiler doesn’t know
n’s value, but does know that
n’s type is INT; so it can infer
that this expression’s type is
BOOL.

The compiler doesn’t know p’s value,
but does know that p’s type is INT;
so it can infer that this expression’s
type is INT. This is consistent with
the type of even’s parameter.

 Java function call:

 int p;

…

if even(p+1)

then …

else …

 Even without knowing the values of variables, the
Java compiler can guarantee that no type errors
will occur at run-time.

2-40

Python dynamic typing (1)

 Python function definition:

 def even (n):

 return (n%2 == 0)

The type of n is unknown.
So the “%” operation must
be protected by a run-time
type check.

 In Python the types of variables are not declared,

and in general cannot be inferred by the

compiler.

 So run-time type checks are needed to detect

type errors.

2-41

Python dynamic typing (2)

 Python function definition:

 def minimum (values):

 # Return the minimum element of values.

 min = values[0]

 for val in values:

 if val < min:

 min = val

 return min

which may be
a tuple or list

2-42

Python dynamic typing (3)

 Application code:

 readings = (3.0, 2.7, 4.1)

x = minimum (readings)

 primes = [2, 3, 5, 7]

y = minimum (primes)

 words = ["dog", "dog", "ant"]

w = minimum(words)

tuple of floating-
point numbers
yields 2.7

list of integers

yields 2

fails inside the
function

2-43

Static vs dynamic typing

 Pros and cons of static typing:

+ Static typing is more efficient: it requires only compile-

time type checks. Dynamic typing requires run-time

type checks (making the program run slower), and

forces all values to be tagged (using up more space).

+ Static typing is more secure: the compiler can

guarantee that the object program contains no type

errors. Dynamic typing provides no such security.

– Static typing is less flexible: certain computations

cannot be expressed naturally. Dynamic typing is

natural when processing data whose types are not

known at compile-time.

2-44

Expressions (1)

 An expression is a program construct that will

be evaluated to yield a value.

 Simple expressions:

– literals

– variables.

2-45

Expressions (2)

 Compound expressions:

– A function call is an expression that computes a result

by applying a function to argument(s).

– A construction is an expression that constructs a

composite value from its components.

– A conditional expression is an expression that

chooses one of its sub-expressions to evaluate.

– An iterative expression is an expression that performs

a computation over a collection (e.g., an array or list).

– A block expression is an expression that contains

declarations of local variables, etc.

Note that ‘+’, ‘–’, etc.,
are also functions .

2-46

Example: constructions

 Python tuple and list constructions:

 newYearsDay = ("JAN", 1)

tomorrow = (m, d+1)

 primes = [2, 3, 5, 7, 11]

size = [31, 29 if isLeap(y) else 28,

 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

 Java array and object constructions:

 int[] primes = {2, 3, 5, 7, 11};

 Date newYearsDay = new Date(JAN, 1);

Date tomorrow = new Date(m, d+1);

2-47

Example: conditional expressions

 Python if-expressions:

 x if x > y else y

 29 if isLeap(y) else 28

 C/Java if-expression:

 x > y ? x : y

 isLeap(y) ? 29 : 28

2-48

Example: iterative expressions

 Python list comprehensions:

 [toUpper(c) for c in cs]

 [y for y in ys if not isLeap(y)]

