
2-1

2 Values and types

 Types

 Primitive types

 Composite types

– cartesian products

– disjoint unions

– mappings

 Recursive types

 Type systems

 Expressions

Programming Languages 3 © 2012 David A Watt, University of Glasgow

2-2

Types (1)

 Values are grouped into types according to the

operations that may be performed on them.

 Different PLs support a bewildering variety of

types:

– C: integers, floats, structs, arrays, unions, pointers to

variables, pointers to functions.

– Java: booleans, integers, floats, arrays, objects.

– Python: booleans, characters, integers, floats, tuples,

strings, lists, dictionaries, objects.

– Haskell: booleans, characters, integers, floats, tuples,

lists, algebraic types, functions.

2-3

Types (2)

 A type is a set of values, equipped with

operations that can be applied uniformly to all

these values. E.g.:

– The type BOOL has values {false, true} and is equipped

with logical not, and, or.

 The cardinality of a type T, written #T, is the

number of values of type T. E.g.:

 #BOOL = 2

2-4

Types (3)

 Value v is of type T if v set of values of T.

E.g.:

– the value false is of type BOOL

– the value 13 is of type INT.

 Expression E is of type T if, when evaluation of

E terminates normally, it is guaranteed to yield a

value of type T.
E.g. (assuming that variable n is of type INT):

– the Java expression “n - 1” is of type INT

– the Java expression “n > 0” is of type BOOL.

2-5

Primitive types (1)

 A primitive type is a type whose values are
primitive (i.e., cannot be decomposed into
simpler values).

 Every PL provides built-in primitive types. The
choice of primitive types is influenced by the PL’s
intended application area, e.g.:

– Fortran (scientific computing) has floating-point
numbers

– Cobol (data processing) has fixed-length strings

– C (system programming) has bytes and pointers.

 Some PLs also allow programs to define new
primitive types.

2-6

Primitive types (2)

 Typical built-in primitive types:

 VOID = {void}

 BOOL = {false, true}

 CHAR = {‘A’, …, ‘Z’,

 ‘0’, …, ‘9’,

 …}

 INT = {–m, …, –2, –1, 0,

 +1, +2, …, m–1}

 FLOAT = {…}

character set
(language-defined or
implementation-defined)

whole numbers (m is
language-defined or
implementation-defined)

floating-point numbers
(language-defined or
implementation-defined)

We’ll use

these names

throughout

this course.

2-7

Primitive types (3)

 Cardinalities:

 #VOID = 1

 #BOOL = 2

 #CHAR = 128 or 256 or 32768

 #INT = 2m

 Definitions of primitive types vary from one PL to
another.

– In C, booleans and characters (and enumerands) are
just small integers.

– In Java, characters are just small integers.

2-8

Composite types

 A composite type is a type whose values are

composite (i.e., can be decomposed into simpler

values).

 PLs support a large variety of composite types,

but all can be understood in terms of just four

fundamental concepts:

– cartesian products (tuples, structs, records)

– disjoint unions (algebraic types, variant records,

objects)

– mappings (arrays, functions)

– recursive types (lists, trees, etc.)

2-9

Cartesian product types (1)

 In a cartesian product, values of two (or more)

given types are grouped into pairs (or tuples).

 In mathematics, S T is the type of all pairs (x, y)

such that x is chosen from type S and y is

chosen from type T:

 S T = { (x, y) | x S; y T }

 Cardinality of a cartesian product type:

 #(S T) = #S #T

NB

2-10

Cartesian product types (2)

 We can generalize from pairs to tuples:

 S1 S2 Sn =

 { (x1, x2, , xn) | x1 S1; x2 S2; …; xn Sn }

 Basic operations on tuples:

– construction of a tuple from its component values

– selection of a specific component of a tuple

(e.g., its 1st component or its 2nd component or …).

But we cannot select a
tuple’s kth component
where k is unknown.

2-11

Cartesian product types (3)

 Pascal records, C structs, and Haskell tuples

can all be understood in terms of Cartesian

products.

 Note that Python’s so-called “tuples” are

anomalous. They can be indexed, like arrays.

They are not tuples in the mathematical sense.

2-12

Example: C structs

 Definition of a struct type:

 enum Month {

 JAN, FEB, MAR, APR, MAY, JUN,

 JUL, AUG, SEP, OCT, NOV, DEC};

struct Date {Month m; int d;};

 Application code:

 struct Date date1 = {JAN, 1};

 printf ("%d/%d", date1.d, date1.m + 1);

struct
construction

 Values of the struct type:

 DATE = MONTH INT

 = {0, 1, …, 11} {…, –1, 0, 1, 2, …}

Values are
MONTH =
{0, 1, …, 11}

component
selection

2-13

Disjoint union types (1)

 In a disjoint union, a value is chosen from one

of two (or more) different types.

 In mathematics, S + T is the type of disjoint-union

values. Each disjoint-union value consists of a

variant (chosen from either type S or type T)

together with a tag:

 S + T = { left x | x S } { right y | y T }

– The value left x consists of tag left and variant x S.

– The value right y consists of tag right and variant y T.

 If desired, we can make the tags explicit by

writing “left S + right T ” instead of “S + T ”.

2-14

Disjoint union types (2)

 Cardinality of a disjoint union type:

 #(S + T) = #S + #T

NB

 We can generalize to disjoint unions with multiple

variants: T1 + T2 + + Tn.

 Haskell algebraic types, Pascal/Ada variant

records, and Java objects can all be

understood in terms of disjoint unions.

2-15

Disjoint union types (3)

 Basic operations on disjoint-union values in
T1 + T2 + + Tn:

– construction of a disjoint-union value from its tag and
variant

– tag test, to inspect the disjoint-union value’s tag

– projection, to recover a specific variant of a disjoint-
union value (e.g., its T1 variant or its T2 variant or …).

Attempting to
recover the wrong
variant fails.

2-16

Example: Java objects (1)

 Class declarations:

 class Point {

 Point () { }

 …

}

 class Circle extends Point {

 int r;

 Circle (int r) { this.r = r; }

 …

}

methods
omitted here

2-17

Example: Java objects (2)

 Class declarations (continued):

 class Box extends Point {

 int w, h;

 Box (int w, int h) { … }

 …

}

2-18

Example: Java objects (3)

 Set of objects in this program:

 OBJECT = …

 + Point VOID

 + Circle INT

 + Box (INT INT)

 + …

 These objects include:

 Point void,

Circle 1, Circle 2, Circle 3, …,

Box (1,1), Box (1,2), Box (2,1), …

 Each object’s tag identifies its class.

objects of library
classes

objects of other
declared classes

2-19

Example: Java objects (4)

 Application code:

 Circle c = new Circle(5);

Box b = new Box(3, 4);

 Point p = … ? b : c;

if (p instanceof Circle) {

 int rad = ((Circle)p).r;

 …

}

object
constructions

tag test

projection

2-20

Example: Java objects (5)

 Note that the set of objects in a Java program is

open-ended:

– Initially the set contains objects of library classes (non-

abstract).

– Subsequently the set is augmented by each declared

class (non-abstract).

 Note that abstract classes are excluded. (It is not

possible to create an object of an abstract class.)

2-21

Mapping types

 In mathematics, m : S T states that m is a

mapping from type S to type T, i.e., m maps

every value in S to some value in T.

 If m maps value x to value y, we write y = m(x),

and we call y the image of x under m.

 S T is the type of all mappings from S to T:

 S T = { m | x S m(x) T }

 Cardinality of a mapping type:

 #(S T) = (#T)#S

since there are #S
values in S, and each
such value has #T
possible images

2-22

Example: mappings

 Consider the mapping type:

 {u, v} {a, b, c}.

 Its cardinality is 32 = 9.

 Its 9 possible mappings are:

 {u a, v a} {u a, v b} {u a, v c}

 {u b, v a} {u b, v b} {u b, v c}

 {u c, v a} {u c, v b} {u c, v c}

2-23

Array types (1)

 Arrays can be understood as mappings.

 If an array’s components are of type T and its

index values are of type S, the array has one

component of type T for each value in type S.

Thus the array’s type is S T.

 Basic operations on arrays:

– construction of an array from its components

– indexing, to select a component using a computed

index value. We can select an array’s
kth component, where k is
unknown.
(This is unlike a tuple.)

2-24

Array types (2)

 An array is a finite mapping.

 If an array is of type S T, S must be a finite

range of consecutive values {lb, lb+1, …, ub},

called the array’s index range.

 In some PLs, the index range may be any range

of integers.

 In C and Java, the index range must be {0, 1, …,

n–1} for some given n.

2-25

Example: C arrays (1)

 Definition of an array type:

 enum Pixel {DARK, LIGHT};

typedef Pixel[] Row;

 Application code:

 Row r = {DARK, LIGHT, LIGHT, DARK};

int i, j;

r[i] = r[j];

array indexing

array construction

 Values of this array type:

 ROW = {0, 1, 2, …} PIXEL

 = {0, 1, 2, …} {0, 1}

Values are
PIXEL = {0, 1}.

2-26

Function types

 Functions can also be understood as mappings.
They map arguments to results.

 Consider a unary function f whose argument is of
type S and whose result is of type T. Then f ’s
type is S T.

 Basic operations on functions:

– construction (or definition) of a function

– application, i.e., calling the function with an argument.

 A function can represent an infinite mapping
(where #S =), since its results are computed
on demand. unlike an array, where all

components are stored

2-27

Example: C unary functions (1)

 Definition of a function:

 int abs (int n) {

 return (n >= 0 ? n : -n);

}

 This function’s type is:

 INT INT

 This function’s value is a mapping:

 {…, –2 2, –1 1, 0 0, 1 1, 2 2, …}

2-28

Example: C unary functions (2)

 Definition of a function:

 int length (String s) {

 int n = 0;

 while (s[n] != NUL)

 n++;

 return n;

}

 This function’s type is:

 STRING INT

 This function’s value is an infinite mapping:

 {“” 0, “a” 1, “b” 1, “ab” 2, “abc” 3, …}

2-29

Binary functions

 Consider a binary function f whose arguments

are of types S1 and S2, and whose result type is

T.

 In most PLs, we view f as mapping a pair of

arguments to a result:

 f : (S1 S2) T

 This can be generalized to n-ary functions:

 f : (S1 … Sn) T

2-30

Example: C binary function

 Declaration of a function:

 String rep (int n, char c) {

 String s =

 malloc((n+1) * sizeof(char));

 for (int i = 0; i < n; i++)

 s[i] = c;

 s[n] = NUL;

 return s;

}

 This function’s type is:

 (INT CHAR) STRING

 In a call, the function is applied to a pair:

 rep (6, '!') yields "!!!!!!"

2-31

Recursive types

 A recursive type is one defined in terms of itself.

 A recursive type is a disjoint-union type in which:

– at least one variant is recursive

– at least one variant is non-recursive.

 Some recursive types in mathematical notation:

 LIST = VOID + (VALUE LIST)

 TREE = VOID + (VALUE TREE TREE)

 Cardinality of a recursive type T:

 #T =

2-32

Lists

 A list is a sequence of 0 or more component

values.

 A list is either:

– empty, or

– non-empty, in which case it consists of a head (its first

component) and a tail (a list consisting of all but its first

component).

 This leads immediately to the recursive definition:

 LIST = empty VOID

 + nonempty (VALUE LIST)

head tail

2-33

Example: Java lists

 Class declaration for integer-lists:

 class IntList {

 int head;

 IntList tail;

}

 The non-recursive variant is the built-in null

value.

2-34

Strings

 A string is a sequence of 0 or more characters.

 Python treats strings as primitive.

 Haskell treats strings as lists of characters. So
strings are equipped with general list operations
(head selection, tail selection, concatenation, …).

 C treats strings as arrays of characters. So
strings are equipped with general array
operations (indexing, …).

 Java treats strings as objects, of class String.
So strings are equipped with the methods of that
class.

2-35

Type systems

 A type error occurs if a program performs a
meaningless operation

– such as adding a string to a boolean.

 A PL’s type system groups values into types:

– to enable programmers to describe data effectively

– to help prevent type errors.

 Possession of a type system distinguishes high-
level PLs from low-level languages:

– In assembly/machine languages, the only “types” are
bytes and words, so meaningless operations cannot be
prevented.

2-36

Type checking

 Before any operation is performed, its operands

must be type-checked to prevent a type error.

E.g.:

– In a not operation, must check that the operand is a

boolean.

– In an add operation, must check that both operands are

numbers.

– In an indexing operation, must check that (a) the left

operand is an array, and (b) the right operand is an

integer.

2-37

Static typing

 In a statically typed PL:

– every variable has a fixed type

(usually declared by the programmer)

– every expression has a fixed type

(usually inferred by the compiler)

– all operands are type-checked at compile-time.

 Nearly all PLs (including Pascal, Ada, C, Java,

Haskell) are statically typed.

2-38

Dynamic typing

 In a dynamically typed PL:

– only values has fixed types

– variables do not have fixed types

– expressions do not have fixed types

– operands must be type-checked when they are

computed at run-time.

 A few PLs (Smalltalk, Lisp, Prolog) and most

scripting languages (Perl, Python) are

dynamically typed.

2-39

Example: Java static typing

 Java function definition:

 static boolean even (int n) {

 return (n%2 == 0);

}
The compiler doesn’t know
n’s value, but does know that
n’s type is INT; so it can infer
that this expression’s type is
BOOL.

The compiler doesn’t know p’s value,
but does know that p’s type is INT;
so it can infer that this expression’s
type is INT. This is consistent with
the type of even’s parameter.

 Java function call:

 int p;

…

if even(p+1)

then …

else …

 Even without knowing the values of variables, the
Java compiler can guarantee that no type errors
will occur at run-time.

2-40

Python dynamic typing (1)

 Python function definition:

 def even (n):

 return (n%2 == 0)

The type of n is unknown.
So the “%” operation must
be protected by a run-time
type check.

 In Python the types of variables are not declared,

and in general cannot be inferred by the

compiler.

 So run-time type checks are needed to detect

type errors.

2-41

Python dynamic typing (2)

 Python function definition:

 def minimum (values):

 # Return the minimum element of values.

 min = values[0]

 for val in values:

 if val < min:

 min = val

 return min

which may be
a tuple or list

2-42

Python dynamic typing (3)

 Application code:

 readings = (3.0, 2.7, 4.1)

x = minimum (readings)

 primes = [2, 3, 5, 7]

y = minimum (primes)

 words = ["dog", "dog", "ant"]

w = minimum(words)

tuple of floating-
point numbers
yields 2.7

list of integers

yields 2

fails inside the
function

2-43

Static vs dynamic typing

 Pros and cons of static typing:

+ Static typing is more efficient: it requires only compile-

time type checks. Dynamic typing requires run-time

type checks (making the program run slower), and

forces all values to be tagged (using up more space).

+ Static typing is more secure: the compiler can

guarantee that the object program contains no type

errors. Dynamic typing provides no such security.

– Static typing is less flexible: certain computations

cannot be expressed naturally. Dynamic typing is

natural when processing data whose types are not

known at compile-time.

2-44

Expressions (1)

 An expression is a program construct that will

be evaluated to yield a value.

 Simple expressions:

– literals

– variables.

2-45

Expressions (2)

 Compound expressions:

– A function call is an expression that computes a result

by applying a function to argument(s).

– A construction is an expression that constructs a

composite value from its components.

– A conditional expression is an expression that

chooses one of its sub-expressions to evaluate.

– An iterative expression is an expression that performs

a computation over a collection (e.g., an array or list).

– A block expression is an expression that contains

declarations of local variables, etc.

Note that ‘+’, ‘–’, etc.,
are also functions .

2-46

Example: constructions

 Python tuple and list constructions:

 newYearsDay = ("JAN", 1)

tomorrow = (m, d+1)

 primes = [2, 3, 5, 7, 11]

size = [31, 29 if isLeap(y) else 28,

 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

 Java array and object constructions:

 int[] primes = {2, 3, 5, 7, 11};

 Date newYearsDay = new Date(JAN, 1);

Date tomorrow = new Date(m, d+1);

2-47

Example: conditional expressions

 Python if-expressions:

 x if x > y else y

 29 if isLeap(y) else 28

 C/Java if-expression:

 x > y ? x : y

 isLeap(y) ? 29 : 28

2-48

Example: iterative expressions

 Python list comprehensions:

 [toUpper(c) for c in cs]

 [y for y in ys if not isLeap(y)]

