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2  Values and types 

 Types 

 Primitive types 

 Composite types 

– cartesian products 

– disjoint unions 

– mappings 

 Recursive types 

 Type systems 

 Expressions 
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Types (1) 

 Values are grouped into types according to the 

operations that may be performed on them. 

 Different PLs support a bewildering variety of 

types: 

– C: integers, floats, structs, arrays, unions, pointers to 

variables, pointers to functions. 

– Java: booleans, integers, floats, arrays, objects. 

– Python: booleans, characters, integers, floats, tuples, 

strings, lists, dictionaries, objects. 

– Haskell: booleans, characters, integers, floats, tuples, 

lists, algebraic types, functions. 
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Types (2) 

 A type is a set of values, equipped with 

operations that can be applied uniformly to all 

these values. E.g.: 

– The type BOOL has values {false, true} and is equipped 

with logical not, and, or. 

 The cardinality of a type T, written #T, is the 

number of values of type T. E.g.: 

 #BOOL  =  2 
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Types (3) 

 Value v is of type T if v  set of values of T. 

E.g.: 

– the value false is of type BOOL 

– the value 13 is of type INT. 

 Expression E is of type T if, when evaluation of 

E terminates normally, it is guaranteed to yield a 

value of type T.  
E.g. (assuming that variable n is of type INT): 

– the Java expression “n - 1” is of type INT 

– the Java expression “n > 0” is of type BOOL. 
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Primitive types (1) 

 A primitive type is a type whose values are 
primitive (i.e., cannot be decomposed into 
simpler values). 

 Every PL provides built-in primitive types. The 
choice of primitive types is influenced by the PL’s 
intended application area, e.g.: 

– Fortran (scientific computing) has floating-point 
numbers 

– Cobol (data processing) has fixed-length strings 

– C (system programming) has bytes and pointers. 

 Some PLs also allow programs to define new 
primitive types.  
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Primitive types (2) 

 Typical built-in primitive types: 

  VOID = {void} 

  BOOL = {false, true} 

  CHAR = {‘A’, …, ‘Z’, 

    ‘0’, …, ‘9’,  

    …} 

  INT = {–m, …, –2, –1, 0,  

    +1, +2, …, m–1} 

  FLOAT = {…} 

character set  
(language-defined or 
implementation-defined) 

whole numbers (m is 
language-defined or 
implementation-defined) 

floating-point numbers  
(language-defined or 
implementation-defined) 

We’ll use 

these names 

throughout 

this course. 



2-7 

Primitive types (3) 

 Cardinalities: 

  #VOID = 1 

  #BOOL = 2 

  #CHAR = 128 or 256 or 32768 

  #INT = 2m 

 Definitions of primitive types vary from one PL to 
another. 

– In C, booleans and characters (and enumerands) are 
just small integers. 

– In Java, characters are just small integers. 
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Composite types 

 A composite type is a type whose values are 

composite (i.e., can be decomposed into simpler 

values). 

 PLs support a large variety of composite types, 

but all can be understood in terms of just four 

fundamental concepts: 

– cartesian products (tuples, structs, records)  

– disjoint unions (algebraic types, variant records, 

objects) 

– mappings (arrays, functions) 

– recursive types (lists, trees, etc.) 
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Cartesian product types (1) 

 In a cartesian product, values of two (or more) 

given types are grouped into pairs (or tuples). 

 In mathematics, S  T is the type of all pairs (x, y) 

such that x is chosen from type S and y is 

chosen from type T: 

 S  T  =  { (x, y) | x  S; y  T } 

 Cardinality of a cartesian product type: 

 #(S  T)  =  #S  #T 

NB 
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Cartesian product types (2) 

 We can generalize from pairs to tuples: 

 S1  S2    Sn  = 

 { (x1, x2, , xn) | x1  S1; x2  S2; …; xn  Sn } 

 Basic operations on tuples: 

– construction of a tuple from its component values 

– selection of a specific component of a tuple  

(e.g., its 1st component or its 2nd component or …). 

But we cannot select a 
tuple’s kth component 
where k is unknown. 
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Cartesian product types (3) 

 Pascal records, C structs, and Haskell tuples 

can all be understood in terms of Cartesian 

products. 

 Note that Python’s so-called “tuples” are 

anomalous. They can be indexed, like arrays. 

They are not tuples in the mathematical sense. 
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Example: C structs 

 Definition of a struct type: 

 enum Month { 

 JAN, FEB, MAR, APR, MAY, JUN, 

 JUL, AUG, SEP, OCT, NOV, DEC}; 

struct Date {Month m; int d;}; 

 Application code: 

 struct Date date1 = {JAN, 1}; 

 printf ("%d/%d", date1.d, date1.m + 1); 

struct 
construction 

 Values of the struct type: 

  DATE = MONTH  INT 

  = {0, 1, …, 11}  {…, –1, 0, 1, 2, …} 

Values are 
MONTH = 
{0, 1, …, 11} 

component 
selection 
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Disjoint union types (1) 

 In a disjoint union, a value is chosen from one 

of two (or more) different types. 

 In mathematics, S + T is the type of disjoint-union 

values. Each disjoint-union value consists of a 

variant (chosen from either type S or type T) 

together with a tag: 

 S + T  =  { left x | x  S }  { right y | y  T } 

– The value left x consists of tag left and variant x  S. 

– The value right y consists of tag right and variant y  T. 

 If desired, we can make the tags explicit by 

writing “left S + right T ” instead of “S + T ”. 
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Disjoint union types (2) 

 Cardinality of a disjoint union type: 

 #(S + T)  =  #S + #T 

NB 

 We can generalize to disjoint unions with multiple 

variants: T1 + T2 +  + Tn. 

 Haskell algebraic types, Pascal/Ada variant 

records, and Java objects can all be 

understood in terms of disjoint unions. 
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Disjoint union types (3) 

 Basic operations on disjoint-union values in  
T1 + T2 +  + Tn: 

– construction of a disjoint-union value from its tag and 
variant 

– tag test, to inspect the disjoint-union value’s tag 

– projection, to recover a specific variant of a disjoint-
union value (e.g., its T1 variant or its T2 variant or …). 

Attempting to 
recover the wrong 
variant fails. 
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Example: Java objects (1) 

 Class declarations: 

 class Point { 

 Point () { } 

 … 

} 

 class Circle extends Point { 

 int r; 

 Circle (int r) { this.r = r; } 

 … 

} 

methods 
omitted here 
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Example: Java objects (2) 

 Class declarations (continued): 

 class Box extends Point { 

 int w, h; 

 Box (int w, int h) { … } 

 … 

} 
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Example: Java objects (3) 

 Set of objects in this program: 

  OBJECT = … 

   + Point VOID 

   + Circle INT 

   + Box (INT  INT) 

   + … 

 These objects include: 

 Point void, 

Circle 1,  Circle 2,  Circle 3,  …, 

Box (1,1),  Box (1,2),  Box (2,1),  … 

 Each object’s tag identifies its class. 

objects of library 
classes 

objects of other 
declared classes 
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Example: Java objects (4) 

 Application code: 

 Circle c = new Circle(5); 

Box b = new Box(3, 4); 

 Point p = … ? b : c; 

if ( p instanceof Circle ) { 

 int rad = ((Circle)p).r; 

 … 

} 

object 
constructions 

tag test 

projection 
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Example: Java objects (5) 

 Note that the set of objects in a Java program is 

open-ended: 

– Initially the set contains objects of library classes (non-

abstract). 

– Subsequently the set is augmented by each declared 

class (non-abstract). 

 Note that abstract classes are excluded. (It is not 

possible to create an object of an abstract class.) 



2-21 

Mapping types 

 In mathematics, m : S  T states that m is a 

mapping from type S to type T, i.e., m maps 

every value in S to some value in T. 

 If m maps value x to value y, we write y = m(x), 

and we call y the image of x under m. 

 S  T is the type of all mappings from S to T: 

 S  T  =  { m | x  S  m(x)  T }  

 Cardinality of a mapping type: 

 #(S  T)  =  (#T)#S 

 

since there are #S 
values in S, and each 
such value has #T 
possible images 
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Example: mappings 

 Consider the mapping type: 

 {u, v}  {a, b, c}. 

 Its cardinality is 32 = 9. 

 Its 9 possible mappings are: 

 {u  a, v  a} {u  a, v  b} {u  a, v  c} 

 {u  b, v  a} {u  b, v  b} {u  b, v  c} 

 {u  c, v  a} {u  c, v  b} {u  c, v  c} 
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Array types (1) 

 Arrays can be understood as mappings. 

 If an array’s components are of type T and its 

index values are of type S, the array has one 

component of type T for each value in type S. 

Thus the array’s type is S  T. 

 Basic operations on arrays: 

– construction of an array from its components 

– indexing, to select a component using a computed 

index value. We can select an array’s 
kth component, where k is 
unknown.  
(This is unlike a tuple.) 
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Array types (2) 

 An array is a finite mapping. 

 If an array is of type S  T, S must be a finite 

range of consecutive values {lb, lb+1, …, ub}, 

called the array’s index range. 

 In some PLs, the index range may be any range 

of integers. 

 In C and Java, the index range must be {0, 1, …, 

n–1} for some given n. 



2-25 

Example: C arrays (1) 

 Definition of an array type: 

 enum Pixel {DARK, LIGHT}; 

typedef Pixel[] Row;  

 Application code: 

 Row r = {DARK, LIGHT, LIGHT, DARK}; 

int i, j; 

r[i] = r[j]; 

array indexing 

array construction 

 Values of this array type: 

 ROW = {0, 1, 2, …}  PIXEL 

 = {0, 1, 2, …}  {0, 1} 

Values are 
PIXEL = {0, 1}. 
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Function types 

 Functions can also be understood as mappings. 
They map arguments to results. 

 Consider a unary function f whose argument is of 
type S and whose result is of type T. Then f ’s 
type is S  T. 

 Basic operations on functions: 

– construction (or definition) of a function 

– application, i.e., calling the function with an argument. 

 A function can represent an infinite mapping 
(where #S = ), since its results are computed 
on demand. unlike an array, where all 

components are stored 
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Example: C unary functions (1) 

 Definition of a function: 

 int abs (int n) { 

 return (n >= 0 ? n : -n); 

} 

 This function’s type is: 

 INT  INT  

 This function’s value is a mapping: 

 {…,  –2  2, –1  1, 0  0, 1 1, 2 2, …} 
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Example: C unary functions (2) 

 Definition of a function: 

 int length (String s) { 

 int n = 0; 

 while (s[n] != NUL) 

  n++;  

 return n; 

} 

 This function’s type is: 

 STRING  INT  

 This function’s value is an infinite mapping: 

 {“”  0, “a”  1, “b”  1, “ab”  2, “abc”  3, …} 
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Binary functions 

 Consider a binary function f whose arguments 

are of types S1 and S2, and whose result type is 

T. 

 In most PLs, we view f as mapping a pair of 

arguments to a result: 

 f : (S1  S2)  T 

 This can be generalized to n-ary functions: 

 f : (S1  …  Sn)  T 
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Example: C binary function 

 Declaration of a function: 

 String rep (int n, char c) { 

 String s =  

  malloc((n+1) * sizeof(char)); 

 for (int i = 0; i < n; i++) 

  s[i] = c; 

 s[n] = NUL; 

 return s; 

} 

 This function’s type is: 

 (INT  CHAR)  STRING 

 In a call, the function is applied to a pair: 

 rep (6, '!') yields "!!!!!!" 



2-31 

Recursive types 

 A recursive type is one defined in terms of itself. 

 A recursive type is a disjoint-union type in which: 

– at least one variant is recursive 

– at least one variant is non-recursive. 

 Some recursive types in mathematical notation: 

 LIST = VOID + (VALUE  LIST) 

 TREE = VOID + (VALUE  TREE  TREE) 

 Cardinality of a recursive type T: 

 #T  =   
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Lists 

 A list is a sequence of 0 or more component 

values. 

 A list is either: 

– empty, or 

– non-empty, in which case it consists of a head (its first 

component) and a tail (a list consisting of all but its first 

component). 

 This leads immediately to the recursive definition: 

  LIST = empty VOID 

   + nonempty (VALUE  LIST) 

head tail 
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Example: Java lists 

 Class declaration for integer-lists: 

 class IntList { 

 int head; 

 IntList tail; 

} 

 The non-recursive variant is the built-in null 

value. 
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Strings 

 A string is a sequence of 0 or more characters. 

 Python treats strings as primitive. 

 Haskell treats strings as lists of characters. So 
strings are equipped with general list operations 
(head selection, tail selection, concatenation, …). 

 C treats strings as arrays of characters. So 
strings are equipped with general array 
operations (indexing, …). 

 Java treats strings as objects, of class String. 
So strings are equipped with the methods of that 
class. 
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Type systems 

 A type error occurs if a program performs a 
meaningless operation 

– such as adding a string to a boolean. 

 A PL’s type system groups values into types: 

– to enable programmers to describe data effectively 

– to help prevent type errors. 

 Possession of a type system distinguishes high-
level PLs from low-level languages: 

– In assembly/machine languages, the only “types” are 
bytes and words, so meaningless operations cannot be 
prevented. 
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Type checking 

 Before any operation is performed, its operands 

must be type-checked to prevent a type error. 

E.g.: 

– In a not operation, must check that the operand is a 

boolean. 

– In an add operation, must check that both operands are 

numbers. 

– In an indexing operation, must check that (a) the left 

operand is an array, and (b) the right operand is an 

integer. 
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Static typing 

 In a statically typed PL: 

– every variable has a fixed type 

(usually declared by the programmer) 

– every expression has a fixed type 

(usually inferred by the compiler) 

– all operands are type-checked at compile-time. 

 Nearly all PLs (including Pascal, Ada, C, Java, 

Haskell) are statically typed. 
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Dynamic typing 

 In a dynamically typed PL: 

– only values has fixed types 

– variables do not have fixed types 

– expressions do not have fixed types 

– operands must be type-checked when they are 

computed at run-time. 

 A few PLs (Smalltalk, Lisp, Prolog) and most 

scripting languages (Perl, Python) are 

dynamically typed. 
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Example: Java static typing 

 Java function definition: 

 static boolean even (int n) { 

 return (n%2 == 0); 

} 
The compiler doesn’t know 
n’s value, but does know that 
n’s type is INT; so it can infer 
that this expression’s type is 
BOOL. 

The compiler doesn’t know p’s value, 
but does know that p’s type is INT; 
so it can infer that this expression’s 
type is INT. This is consistent with 
the type of even’s parameter. 

 Java function call: 

 int p; 

… 

if even(p+1)  

then …  

else … 

 Even without knowing the values of variables, the 
Java compiler can guarantee that no type errors 
will occur at run-time. 
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Python dynamic typing (1) 

 Python function definition: 

 def even (n): 

 return (n%2 == 0) 

The type of n is unknown. 
So the “%” operation must 
be protected by a run-time 
type check. 

 In Python the types of variables are not declared, 

and in general cannot be inferred by the 

compiler. 

 So run-time type checks are needed to detect 

type errors. 
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Python dynamic typing (2) 

 Python function definition: 

 def minimum (values): 

 # Return the minimum element of values. 

 min = values[0] 

 for val in values: 

  if val < min: 

   min = val 

 return min 

which may be 
a tuple or list 
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Python dynamic typing (3) 

 Application code: 

 readings = (3.0, 2.7, 4.1) 

x = minimum (readings) 

 primes = [2, 3, 5, 7] 

y = minimum (primes) 

 words = ["dog", "dog", "ant"] 

w = minimum(words) 

tuple of floating-
point numbers 
yields 2.7 

list of integers 

yields 2 

fails inside the 
function 
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Static vs dynamic typing 

 Pros and cons of static typing: 

+ Static typing is more efficient: it requires only compile-

time type checks. Dynamic typing requires run-time 

type checks (making the program run slower), and 

forces all values to be tagged (using up more space). 

+ Static typing is more secure: the compiler can 

guarantee that the object program contains no type 

errors. Dynamic typing provides no such security. 

– Static typing is less flexible: certain computations 

cannot be expressed naturally. Dynamic typing is 

natural when processing data whose types are not 

known at compile-time. 
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Expressions (1) 

 An expression is a program construct that will 

be evaluated to yield a value. 

 Simple expressions: 

– literals 

– variables. 
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Expressions (2) 

 Compound expressions: 

– A function call is an expression that computes a result 

by applying a function to argument(s). 

– A construction is an expression that constructs a 

composite value from its components. 

– A conditional expression is an expression that 

chooses one of its sub-expressions to evaluate. 

– An iterative expression is an expression that performs 

a computation over a collection (e.g., an array or list). 

– A block expression is an expression that contains 

declarations of local variables, etc. 

Note that ‘+’, ‘–’, etc., 
are also functions . 
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Example: constructions 

 Python tuple and list constructions: 

 newYearsDay = ("JAN", 1) 

tomorrow = (m, d+1) 

 primes = [2, 3, 5, 7, 11] 

size = [31, 29 if isLeap(y) else 28,   

  31, 30, 31, 30, 31, 31, 30, 31, 30, 31] 

 Java array and object constructions: 

 int[] primes = {2, 3, 5, 7, 11}; 

 Date newYearsDay = new Date(JAN, 1); 

Date tomorrow    = new Date(m, d+1); 
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Example: conditional expressions 

 Python if-expressions: 

 x if x > y else y 

 29 if isLeap(y) else 28 

 C/Java if-expression: 

 x > y ? x : y 

 isLeap(y) ? 29 : 28 
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Example: iterative expressions 

 Python list comprehensions: 

 [toUpper(c) for c in cs] 

 [y for y in ys if not isLeap(y)] 


