U t : :
& heow 3 Compilers and interpreters

Compilers and other translators
= |nterpreters

= Tombstone diagrams

= Real vs virtual machines

= [nterpretive compilers

= Just-in-time compilers

= Portable compilers

= Bootstrapping

Programming Languages 3 © 2012 David A Watt, University of Glasgow

Universit
qulasgoxz Translators (1)

= An S — T translator accepts code expressed in
one language S, and translates it to equivalent
code expressed In another language T:

— S is the source language

— T is the target language.

= Examples of translators:
— compilers
— assemblers
— high-level translators

decompilers.

Universit
QfGlang\z Translators (2)

= A compiler translates high-level PL code to low-
level code. E.g.:

— Java — JVM

____________________ using “x86as” as shorthand
— C —> x86as for x86 assembly code
— C > X806 s using “x86” as shorthand for

X86 machine code

= An assembler translates assembly language
code to the corresponding machine code. E.g.:

— X86as — x86

Universit
QfGlang\z Translators (3)

= A high-level translator translates code in one
PL to code in another PL. E.qQ.:

— Java — C

= A decompiler translates low-level code to high-
level PL code. E.g.:

— JVM — Java

Universit
qulasgoxz Interpreters (1)

= An S interpreter accepts code expressed in
language S, and immediately executes that code.

= An interpreter works by fetching, analysing, and
executing one instruction at a time.

— If an instruction is fetched repeatedly, it will be analysed
repeatedly. This is time-consuming unless instructions
have very simple formats.

Universit
qulasgoxz Interpreters (2)

= |nterpreting a program is slower than executing
native machine code:

— Interpreting a high-level language is ~ 100 times
slower.

— Interpreting an intermediate-level language (such as
JVM code) is ~ 10 times slower.

= On the other hand, interpreting a program cuts
out compile-time.

e
of Glasgow

= [nterpretation is sensible when (e.q.):

Interpreters (3)

a user is entering instructions interactively, and wishes
to see the results of each instruction before entering the
next one

the program is to be used once then discarded (so
execution speed is unimportant)

each instruction will be executed only once or a few
times

the instructions have very simple formats

the program code is required to be highly portable.

Universit _
QfGl\zllslg;{O\z Example of interpreters (1)

= Basic interpreter:

— A Basic program is a sequence of simple commands
linked by unconditional and conditional jumps.

— The Basic interpreter fetches, parses, and executes
one simple command at a time.

= JVM interpreter:
— A JVM program consists of “bytecodes”.

— The interpreter fetches, decodes, and executes one
bytecode at a time.

— Note: The JVM interpreter is available stand-alone
(java) or as a component of a web browser.

Universit :
of%ﬁif;é% Example of interpreters (2)

= Unix command language interpreter (shell):
— The user enters one command at a time.

— The shell reads the command, parses it to determine
the command name and argument(s), and executes it.

University _ _
of Glasgow Compilers vs interpreters

= Do not confuse compilers and interpreters.

= A compiler translates source code to object code.

— It does not execute the source or object code.

= An interpreter executes source code one
Instruction at a time.

— It does not translate the source code.

Universit :
qulasgoxz Tombstone diagrams

= Software:
------------------ an ordinary program P,
expressed in language L
S - T
------------------ an S — T translator,
L expressed in language L
S .
------------------ an S interpreter,
L expressed in language L
= Hardware:

------------------ a machine M (which can only
execute M ’s machine code)

Universit
QfGlang\z Examples: tombstones (1)

= Ordinary programs:
sort
X86

= |nterpreters:

JVM JVM Basic
C

Universit
QfGlasgowy Examples: tombstones (2)

= Translators:

Java —- JVM| |C — x86as C — x86
C X86 X86

x86as — x86 Java — C JVM — Jaﬁ
X86 C C

Universit : :
qulasgoxz Tombstone diagrams: running programs

= Given a program P expressed in M machine
code, we can run P on machine M:

= Here “M ” denotes both the machine itself and its
machine code.

University . _
7 of Glasgow Examples: running ordinary programs

= Possible:

sort

X86

= |mpossible:

sort

X86

L L

Py

Universit : :
qulasgoxz Tombstone diagrams: translation

= Given:
— an S — T translator, expressed in M machine code

— a program P, expressed in language S

we can translate P to language T:

P P |
_________ object
S | S —>T | T program

1. these must

University .
& of Glasgow Example: compiling a program

= Given a C — x86 compiler, we can use it to
compile a C program into x86 machine code.
Later we can run the object program on an x86:

sort sort sort
-——=>
C | C — x86 | x86 x86

x86

N4

N\ / N\ J
N 2\

compile-time run-time

University . :
& of Glasgow Example: compiling a program in stages

= Given a C — x86as compiler and an x86
assembler, we can use them to compile a C
program into x86 machine code, in 2 stages.
Later we can run the object program on an x86:

sort sort sort sort
C | C — x86as [x86as|x86as — x86| x86 - X86
x86 x86 W

S I N)
V Y

compile-time run-time

3-18

University .
of Glasgow Example: cross-compiling a program

Given a C — IPad compiler running on a PPC,
we can use it to compile a C program into iPad
machine code, then download the object
program to an iPad. Later we can run the object
program on the iPad:

| PPC
Cross- .-~ e
compiler \/

- _ N J
YT Y

compile-time run-time

University . _
& of Glasgow Example: compiling a compiler

= Given a C —» PPC compiler, we can use it to
compile any C program into PPC machine code.

= |n particular, we can compile a compiler
expressed in C:

Java — JVM Java — J\M
c | c=ppPc |PPC
PPC

N4

Universit
QfGlasgowy Examples: what can and can’t be done

= Possible:

phone phone
Java4 Javas—JVM| gy
OK — Javadisa -~ |PPC
subset of Javab Qiify
= |mpossible:

C — PPC %phone
— PPC
PPC Ja"a)LC

PPC

A4

X86

Universit : : :
qulasgoxz Tombstone diagrams: interpretation

= Given:
— an S interpreter, expressed in M machine code

— a program P, expressed in language S

we can interpret P:

P
S
= these must match
s +
M-l
T these must match

XF

!Umvers1ty Examples: interpreting ordinary

Glasgow
programs

= Possible: = |mpossible:
sort sort
Basic C
Basic Basic
PPC PPC

PPC PPC
A4 A4

o1a| Universit : : :
qulasgoxz Real machines vs virtual machines

= A real machine is one whose machine code is
executed by hardware.

= Avirtual machine (or abstract machine) is one
whose “machine code” is executed by an
Interpreter.

Universit :
QfGlang\z Example: hardware emulation (1)

= Suppose we have designed the architecture and
Instruction set of a new machine, ULT.

= A hardware prototype of ULT will be expensive to
build and modify.

Universit :
QfGlasgowy Example: hardware emulation (2)

= |nstead, first write an interpreter for ULT machine
code (an emulator), expressed in (say) C:

ULT
C

= Then compile it on a real machine, say PPC:

ULT ULT
C |C —» PPC|PPC
PPC

N4

Universit :
qulasgoxz Example: hardware emulation (3)

= Now use the emulator to execute test programs
P expressed in ULT machine-code:

[P j This has the
same effect

ULT as ...
4 w }ULT real
ULT machine
virtual < SRS except
machine @ that it's much
slower!

Universit : :
QfGlasgowy Interpretive compilers (1)

= A compiler takes quite a long time to translate
the source program to native machine code, but
subsequent execution is fast.

= An interpreter starts executing the source
program immediately, but execution is slow.

= Aninterpretive compiler is a good compromise.
It translates the source program into virtual
machine (VM) code, which is subsequently
Interpreted.

Universit : :
QfGlasgowy Interpretive compilers (2)

= An interpretive compiler combines fast translation
with moderately fast execution, provided that:

— the VM code is intermediate-level (lower-level than the
source language, higher-level than native machine
code)

— translation from the source language to VM code is
easy and fast

— the VM instructions have simple formats (so can be
analysed quickly by an interpreter).

= An interpretive compiler is well suited for use
during program development.

— But a compiler generating native machine code or
assembly code is better suited for production use.

e
ofClasgow Example: JDK (1)

= JDK (Java Development Kit) provides an
Interpretive compiler for Java.

= This is based on the JVM (Java Virtual Machine),
a virtual machine designed specifically for
running Java programs:

— JVM provides powerful instructions that implement
object creation, method calls, array indexing, etc.

— JVM instructions (often called “bytecodes”) are similar
In format to native machine code: opcode + operand.

— Interpretation of JVM code is “only” ~ 10 times slower
than execution of native machine code.

Univers;
Qf%ﬁirg%% Example: JDK (2)

JVM interpreter.

M, we have:

= JDK comprises a Java — JVM compiler and a

= Once JDK has been installed on a real machine

Java — JVM
M

JVM
M

Universit
of&lﬁirg%wy Example: JDK (3)

= A Java source program P is translated to JVM
code. Later the object program is interpreted:

P P C P
————— =
Java Java — JVM| JVM IVM

N
M JVM

Java
\M/ M > virtual
\I\/I/ machine

Uni 1t
ofGlisgow Example: JDK (4)

= A Java applet A is translated to JVM code on a
server machine SM, where it is stored. Later the
object program is downloaded on demand to a
client machine CM, where it is interpreted:

A A A
————— >
Java Java — JVM| JVM | download JVM

SM JVM

SM CM
- o

= Java programs are highly portable:
“‘write once, run anywhere”.

Umver31ty .. :
of Glasgow Just-in-time compilers

= Ajust-in-time (JIT) compiler translates virtual
machine code to native machine code just prior
to execution.

= This enables applets to be stored on a server in
a portable form, but run at full speed on client
machines.

University _
7 of Glasgow Example: a Java JIT compiler

download

machine code:

A
JVM

= A Java JIT compiler translates JVM code to client

JVM — CM

CM

A

JVM — CM| CM

CM

\CM/

= AJVM applet Ais downloaded on demand from
the server to a client machine CM, compiled to
CM machine code, and then immediately run:

&

! Umver31ty

fGlasgow Selective JIT compilers

= More usually, a Java JIT compiler translates JVM
code selectively:

— The interpreter and JIT compiler work together.
— The interpreter is instrumented to count method calls.

— When the interpreter discovers that a method is “hot”
(called frequently), it tells the JIT compiler to translate
that particular method into native code.

= Selective Java JIT compilers are integrated into
web browsers.

Universit :
QfGlasgowy Portable compilers

= A program is portable if it can be made to run on
different machines with minimal change:

P
IS portable IS not
X86

= A compiler that generates native machine code Is
unportable in a special sense. If it must be
changed to target a different machine, its code
generator (= half the compiler) must be replaced.

= However, a compiler that generates suitable
virtual machine code can be portable.

Universit | |
ofgl\zllesgrgscl)wy Example: portable compiler kit (1)

= A portable compiler kit for Java.

Java — JVM| Java — JVM JVM
Java JVM Java

= | et’s install this kit on machine M.
= We face a chicken-and-egg situation:

— We can'’t run the JVM interpreter until we have a
running Java compiler.

— We can’t run the Java compiler until we have a running
JVM interpreter.

Universit : :
qf%l\z’lsrgoxz Example: portable compiler kit (2)

= To progress, first rewrite the
JVM interpreter in (say) C.

~ 1 week’s work

JVM
C

= Then compile the JVM interpreter on M:

JVM JVM
C M

Universit _ _
of%ﬁigé\% Example: portable compiler kit (3)

= Now we have an interpretive compiler, similar to
the one we met before, except that the compiler
itself must be interpreted:

P P C P)
Java Java — JVM| JVM JVM

JVM JVM
JVM M
M \M/

V4
= This compiler is very slow. However, it can be
Improved by bootstrapping.

Universit)
QfGl\;SIéO\z Bootstrapping

Consider an S — T translator expr-
essed In its own source language S: S

= Such a translator can be used to translate itself!
This is called bootstrapping.

= Bootstrapping is a useful tool for improving an
existing compiler:

— making it compile faster
— making it generate faster object code.
= |n particular, we can bootstrap a portable

compiler to make a true compiler, by translating
virtual machine code to native machine code.

Universit |
Qf%ﬁirg%\% Example: bootstrapping (1)

= Take the Java portable compiler Kkit:

Java — JVM| Java — JVM JVM
Java JVM Java

and the interpreter we generated from it:

JVM
M

Universit |
ofgl\zllesgrgscl)wy Example: bootstrapping (2)

/

\

S~—p» | JVM > M

= Write a JVM — M translator,
, expressed in Java itself.

JVM - M

Java Java —» JVM JVM

JVM

JVM
M

\V

------------- ~ 3 months’ work

, Compile it into JVM code using the existing
. (slow) compiler:

Utiversit |
of&lﬁirg%wy Example: bootstrapping (3)

= Use this JVM — M translator to translate itself:

JVM —- M JVM — M
==—=—=p [. 00000 >
S o JVM | JVM - M | M
~
S-—-=—=% | JUM
JVM
M

N4
= This is the actual bootstrap. It generates a JVM
— M translator, expressed in M machine code.

Universit .
Qf%ﬁirg%\% Example: bootstrapping (4)

= Finally, translate the Java — JVM compiler into
M machine code:

Java — JVM M

Utiversit |
of%lﬁesrgséwy Example: bootstrapping (5)

= Now we have a 2-stage Java — M compiler:

P P P
Java dJava — JVM| gymM | IVM — M M

N4 4

= This Java compiler is improved in two respects:

— It compiles faster (being expressed in native machine
code)

— It generates faster object code (native machine code).

