
3-1

3 Compilers and interpreters

 Compilers and other translators

 Interpreters

 Tombstone diagrams

 Real vs virtual machines

 Interpretive compilers

 Just-in-time compilers

 Portable compilers

 Bootstrapping

Programming Languages 3 © 2012 David A Watt, University of Glasgow

3-2

Translators (1)

 An S → T translator accepts code expressed in

one language S, and translates it to equivalent

code expressed in another language T:

– S is the source language

– T is the target language.

 Examples of translators:

– compilers

– assemblers

– high-level translators

– decompilers.

3-3

Translators (2)

 A compiler translates high-level PL code to low-

level code. E.g.:

– Java → JVM

– C → x86as

– C → x86

using “x86as” as shorthand
for x86 assembly code

using “x86” as shorthand for
x86 machine code

 An assembler translates assembly language

code to the corresponding machine code. E.g.:

– x86as → x86

3-4

Translators (3)

 A high-level translator translates code in one

PL to code in another PL. E.g.:

– Java → C

 A decompiler translates low-level code to high-

level PL code. E.g.:

– JVM → Java

3-5

Interpreters (1)

 An S interpreter accepts code expressed in

language S, and immediately executes that code.

 An interpreter works by fetching, analysing, and

executing one instruction at a time.

– If an instruction is fetched repeatedly, it will be analysed

repeatedly. This is time-consuming unless instructions

have very simple formats.

3-6

Interpreters (2)

 Interpreting a program is slower than executing

native machine code:

– Interpreting a high-level language is ~ 100 times

slower.

– Interpreting an intermediate-level language (such as

JVM code) is ~ 10 times slower.

 On the other hand, interpreting a program cuts

out compile-time.

3-7

Interpreters (3)

 Interpretation is sensible when (e.g.):

– a user is entering instructions interactively, and wishes

to see the results of each instruction before entering the

next one

– the program is to be used once then discarded (so

execution speed is unimportant)

– each instruction will be executed only once or a few

times

– the instructions have very simple formats

– the program code is required to be highly portable.

3-8

Example of interpreters (1)

 Basic interpreter:

– A Basic program is a sequence of simple commands

linked by unconditional and conditional jumps.

– The Basic interpreter fetches, parses, and executes

one simple command at a time.

 JVM interpreter:

– A JVM program consists of “bytecodes”.

– The interpreter fetches, decodes, and executes one

bytecode at a time.

– Note: The JVM interpreter is available stand-alone
(java) or as a component of a web browser.

3-9

Example of interpreters (2)

 Unix command language interpreter (shell):

– The user enters one command at a time.

– The shell reads the command, parses it to determine
the command name and argument(s), and executes it.

3-10

Compilers vs interpreters

 Do not confuse compilers and interpreters.

 A compiler translates source code to object code.

– It does not execute the source or object code.

 An interpreter executes source code one

instruction at a time.

– It does not translate the source code.

3-11

 Software:

Tombstone diagrams

 Hardware:

L

S → T

L

S

an ordinary program P,
expressed in language L

an S → T translator,
expressed in language L

an S interpreter,
expressed in language L

M a machine M (which can only
execute M ’s machine code)

P

L

3-12

 Ordinary programs:

Examples: tombstones (1)

 Interpreters:

C

JVM

x86

JVM

x86

Basic

sort

Java

sort

JVM

sort

x86

3-13

 Translators:

Examples: tombstones (2)

x86

C → x86as

x86

C → x86

C

Java → JVM

x86

x86as → x86

C

Java → C

C

JVM → Java

3-14

 Given a program P expressed in M machine

code, we can run P on machine M:

M

Tombstone diagrams: running programs

 Here “M ” denotes both the machine itself and its

machine code.

P

M
these must match

3-15

 Possible:

Examples: running ordinary programs

 Impossible:

x86

sort

x86

PPC

sort

PPC

PPC PPC

sort

x86

sort

C

× ×

3-16

 Given:

– an S → T translator, expressed in M machine code

– a program P, expressed in language S

 we can translate P to language T:

M

Tombstone diagrams: translation

M

S → T
object
program

these must
match

P

S

P

T

these
must

match

3-17

 Given a C → x86 compiler, we can use it to

compile a C program into x86 machine code.

Later we can run the object program on an x86:

Example: compiling a program

x86

x86

C → x86

x86

compile-time run-time

sort

C

sort

x86

sort

x86

3-18

 Given a C → x86as compiler and an x86

assembler, we can use them to compile a C

program into x86 machine code, in 2 stages.

Later we can run the object program on an x86:

Example: compiling a program in stages

x86

x86

x86as → x86

compile-time run-time

x86

x86

C → x86as

sort

C

sort

x86as

sort

x86

x86

sort

x86

3-19

 Given a C → iPad compiler running on a PPC,

we can use it to compile a C program into iPad

machine code, then download the object

program to an iPad. Later we can run the object

program on the iPad:

Example: cross-compiling a program

compile-time run-time

PPC

PPC

C → iPad

cross-
compiler

chess

C

chess

iPad

iPad

download

chess

iPad

3-20

 Given a C → PPC compiler, we can use it to

compile any C program into PPC machine code.

 In particular, we can compile a compiler

expressed in C:

PPC

Java → JVM

Example: compiling a compiler

C

Java → JVM

PPC

PPC

C → PPC

3-21

 Possible:

Examples: what can and can’t be done

 Impossible:

PPC

PPC

Java5→JVM

OK – Java4 is a
subset of Java5

phone

JVM

phone

Java4

x86

PPC

C → PPC

×
PPC

PPC

C → PPC

phone

Java

×

3-22

 Given:

– an S interpreter, expressed in M machine code

– a program P, expressed in language S

 we can interpret P:

M

Tombstone diagrams: interpretation

M

S

these must match

P

S
these must match

3-23

 Possible:

Examples: interpreting ordinary

programs

 Impossible:

PPC

PPC

Basic

sort

Basic

PPC

PPC

Basic

sort

C

×

3-24

 A real machine is one whose machine code is

executed by hardware.

 A virtual machine (or abstract machine) is one

whose “machine code” is executed by an

interpreter.

Real machines vs virtual machines

3-25

 Suppose we have designed the architecture and

instruction set of a new machine, ULT.

 A hardware prototype of ULT will be expensive to

build and modify.

Example: hardware emulation (1)

3-26

 Instead, first write an interpreter for ULT machine

code (an emulator), expressed in (say) C:

Example: hardware emulation (2)

 Then compile it on a real machine, say PPC:

C

ULT

PPC

ULT

C

ULT

PPC

PPC

C → PPC

3-27

 Now use the emulator to execute test programs

P expressed in ULT machine-code:

Example: hardware emulation (3)

PPC

PPC

ULT

This has the
same effect
as …

ULT
virtual

machine

ULT ULT real
machine

… except
that it’s much
slower!

P

ULT

P

ULT

3-28

 A compiler takes quite a long time to translate

the source program to native machine code, but

subsequent execution is fast.

 An interpreter starts executing the source

program immediately, but execution is slow.

 An interpretive compiler is a good compromise.

It translates the source program into virtual

machine (VM) code, which is subsequently

interpreted.

Interpretive compilers (1)

3-29

 An interpretive compiler combines fast translation
with moderately fast execution, provided that:

– the VM code is intermediate-level (lower-level than the
source language, higher-level than native machine
code)

– translation from the source language to VM code is
easy and fast

– the VM instructions have simple formats (so can be
analysed quickly by an interpreter).

 An interpretive compiler is well suited for use
during program development.

– But a compiler generating native machine code or
assembly code is better suited for production use.

Interpretive compilers (2)

3-30

 JDK (Java Development Kit) provides an

interpretive compiler for Java.

 This is based on the JVM (Java Virtual Machine),

a virtual machine designed specifically for

running Java programs:

– JVM provides powerful instructions that implement

object creation, method calls, array indexing, etc.

– JVM instructions (often called “bytecodes”) are similar

in format to native machine code: opcode + operand.

– Interpretation of JVM code is “only” ~ 10 times slower

than execution of native machine code.

Example: JDK (1)

3-31

 JDK comprises a Java → JVM compiler and a

JVM interpreter.

 Once JDK has been installed on a real machine

M, we have:

Example: JDK (2)

M

JVM

M

Java → JVM

3-32

 A Java source program P is translated to JVM

code. Later the object program is interpreted:

Example: JDK (3)

M

M

Java → JVM

M

M

JVM
Java
virtual
machine

P

Java

P

JVM

P

JVM

3-33

 A Java applet A is translated to JVM code on a

server machine SM, where it is stored. Later the

object program is downloaded on demand to a

client machine CM, where it is interpreted:

Example: JDK (4)

SM

SM

Java → JVM

CM

CM

JVM

 Java programs are highly portable:

“write once, run anywhere”.

A

Java

A

JVM download

A

JVM

3-34

 A just-in-time (JIT) compiler translates virtual

machine code to native machine code just prior

to execution.

 This enables applets to be stored on a server in

a portable form, but run at full speed on client

machines.

Just-in-time compilers

3-35

 A Java JIT compiler translates JVM code to client

machine code:

Example: a Java JIT compiler

CM

CM

JVM → CM

 A JVM applet A is downloaded on demand from

the server to a client machine CM, compiled to

CM machine code, and then immediately run:

CM

JVM → CM

download

A

JVM

A

CM

CM

A

CM

3-36

 More usually, a Java JIT compiler translates JVM

code selectively:

– The interpreter and JIT compiler work together.

– The interpreter is instrumented to count method calls.

– When the interpreter discovers that a method is “hot”

(called frequently), it tells the JIT compiler to translate

that particular method into native code.

 Selective Java JIT compilers are integrated into

web browsers.

Selective JIT compilers

3-37

 A program is portable if it can be made to run on

different machines with minimal change:

Portable compilers

 A compiler that generates native machine code is

unportable in a special sense. If it must be

changed to target a different machine, its code

generator (≈ half the compiler) must be replaced.

 However, a compiler that generates suitable

virtual machine code can be portable.

is portable
P

Java
is not

P

x86

3-38

 A portable compiler kit for Java:

Example: portable compiler kit (1)

 Let’s install this kit on machine M.

Java

Java → JVM

Java

JVM

JVM

Java → JVM

 We face a chicken-and-egg situation:

– We can’t run the JVM interpreter until we have a

running Java compiler.

– We can’t run the Java compiler until we have a running

JVM interpreter.

3-39

 To progress, first rewrite the

JVM interpreter in (say) C:

Example: portable compiler kit (2)

 Then compile the JVM interpreter on M:

C

JVM

C

JVM

~ 1 week’s work

M

JVM

M

C → M

M

3-40

 Now we have an interpretive compiler, similar to

the one we met before, except that the compiler

itself must be interpreted:

Example: portable compiler kit (3)

 This compiler is very slow. However, it can be

improved by bootstrapping.

M

JVM

M

JVM

Java → JVM

M

M

JVM

P

Java

P

JVM

P

JVM

3-41

 Consider an S → T translator expr-

essed in its own source language S:

Bootstrapping

S

S → T

 Such a translator can be used to translate itself!
This is called bootstrapping.

 Bootstrapping is a useful tool for improving an
existing compiler:

– making it compile faster

– making it generate faster object code.

 In particular, we can bootstrap a portable
compiler to make a true compiler, by translating
virtual machine code to native machine code.

3-42

 Take the Java portable compiler kit:

Example: bootstrapping (1)

 and the interpreter we generated from it:

Java

Java → JVM

Java

JVM

JVM

Java → JVM

M

JVM

3-43

 Write a JVM → M translator,

expressed in Java itself.

 Compile it into JVM code using the existing

(slow) compiler:

Example: bootstrapping (2)

JVM

Java → JVM

M

JVM

M

JVM

JVM → M

~ 3 months’ work

Java

JVM → M

3-44

 Use this JVM → M translator to translate itself:

Example: bootstrapping (3)

 This is the actual bootstrap. It generates a JVM
→ M translator, expressed in M machine code.

M

JVM

M

M

JVM → M

JVM

JVM → M

JVM

JVM → M

3-45

 Finally, translate the Java → JVM compiler into

M machine code:

Example: bootstrapping (4)

JVM

Java → JVM

M

Java → JVM

M

JVM → M

M

3-46

 Now we have a 2-stage Java → M compiler:

Example: bootstrapping (5)

M

JVM → M

M

 This Java compiler is improved in two respects:

– it compiles faster (being expressed in native machine

code)

– it generates faster object code (native machine code).

M

Java → JVM

M

P

Java

P

JVM

P

M

