
3-1

3 Compilers and interpreters

 Compilers and other translators

 Interpreters

 Tombstone diagrams

 Real vs virtual machines

 Interpretive compilers

 Just-in-time compilers

 Portable compilers

 Bootstrapping

Programming Languages 3 © 2012 David A Watt, University of Glasgow

3-2

Translators (1)

 An S → T translator accepts code expressed in

one language S, and translates it to equivalent

code expressed in another language T:

– S is the source language

– T is the target language.

 Examples of translators:

– compilers

– assemblers

– high-level translators

– decompilers.

3-3

Translators (2)

 A compiler translates high-level PL code to low-

level code. E.g.:

– Java → JVM

– C → x86as

– C → x86

using “x86as” as shorthand
for x86 assembly code

using “x86” as shorthand for
x86 machine code

 An assembler translates assembly language

code to the corresponding machine code. E.g.:

– x86as → x86

3-4

Translators (3)

 A high-level translator translates code in one

PL to code in another PL. E.g.:

– Java → C

 A decompiler translates low-level code to high-

level PL code. E.g.:

– JVM → Java

3-5

Interpreters (1)

 An S interpreter accepts code expressed in

language S, and immediately executes that code.

 An interpreter works by fetching, analysing, and

executing one instruction at a time.

– If an instruction is fetched repeatedly, it will be analysed

repeatedly. This is time-consuming unless instructions

have very simple formats.

3-6

Interpreters (2)

 Interpreting a program is slower than executing

native machine code:

– Interpreting a high-level language is ~ 100 times

slower.

– Interpreting an intermediate-level language (such as

JVM code) is ~ 10 times slower.

 On the other hand, interpreting a program cuts

out compile-time.

3-7

Interpreters (3)

 Interpretation is sensible when (e.g.):

– a user is entering instructions interactively, and wishes

to see the results of each instruction before entering the

next one

– the program is to be used once then discarded (so

execution speed is unimportant)

– each instruction will be executed only once or a few

times

– the instructions have very simple formats

– the program code is required to be highly portable.

3-8

Example of interpreters (1)

 Basic interpreter:

– A Basic program is a sequence of simple commands

linked by unconditional and conditional jumps.

– The Basic interpreter fetches, parses, and executes

one simple command at a time.

 JVM interpreter:

– A JVM program consists of “bytecodes”.

– The interpreter fetches, decodes, and executes one

bytecode at a time.

– Note: The JVM interpreter is available stand-alone
(java) or as a component of a web browser.

3-9

Example of interpreters (2)

 Unix command language interpreter (shell):

– The user enters one command at a time.

– The shell reads the command, parses it to determine
the command name and argument(s), and executes it.

3-10

Compilers vs interpreters

 Do not confuse compilers and interpreters.

 A compiler translates source code to object code.

– It does not execute the source or object code.

 An interpreter executes source code one

instruction at a time.

– It does not translate the source code.

3-11

 Software:

Tombstone diagrams

 Hardware:

L

S → T

L

S

an ordinary program P,
expressed in language L

an S → T translator,
expressed in language L

an S interpreter,
expressed in language L

M a machine M (which can only
execute M ’s machine code)

P

L

3-12

 Ordinary programs:

Examples: tombstones (1)

 Interpreters:

C

JVM

x86

JVM

x86

Basic

sort

Java

sort

JVM

sort

x86

3-13

 Translators:

Examples: tombstones (2)

x86

C → x86as

x86

C → x86

C

Java → JVM

x86

x86as → x86

C

Java → C

C

JVM → Java

3-14

 Given a program P expressed in M machine

code, we can run P on machine M:

M

Tombstone diagrams: running programs

 Here “M ” denotes both the machine itself and its

machine code.

P

M
these must match

3-15

 Possible:

Examples: running ordinary programs

 Impossible:

x86

sort

x86

PPC

sort

PPC

PPC PPC

sort

x86

sort

C

× ×

3-16

 Given:

– an S → T translator, expressed in M machine code

– a program P, expressed in language S

 we can translate P to language T:

M

Tombstone diagrams: translation

M

S → T
object
program

these must
match

P

S

P

T

these
must

match

3-17

 Given a C → x86 compiler, we can use it to

compile a C program into x86 machine code.

Later we can run the object program on an x86:

Example: compiling a program

x86

x86

C → x86

x86

compile-time run-time

sort

C

sort

x86

sort

x86

3-18

 Given a C → x86as compiler and an x86

assembler, we can use them to compile a C

program into x86 machine code, in 2 stages.

Later we can run the object program on an x86:

Example: compiling a program in stages

x86

x86

x86as → x86

compile-time run-time

x86

x86

C → x86as

sort

C

sort

x86as

sort

x86

x86

sort

x86

3-19

 Given a C → iPad compiler running on a PPC,

we can use it to compile a C program into iPad

machine code, then download the object

program to an iPad. Later we can run the object

program on the iPad:

Example: cross-compiling a program

compile-time run-time

PPC

PPC

C → iPad

cross-
compiler

chess

C

chess

iPad

iPad

download

chess

iPad

3-20

 Given a C → PPC compiler, we can use it to

compile any C program into PPC machine code.

 In particular, we can compile a compiler

expressed in C:

PPC

Java → JVM

Example: compiling a compiler

C

Java → JVM

PPC

PPC

C → PPC

3-21

 Possible:

Examples: what can and can’t be done

 Impossible:

PPC

PPC

Java5→JVM

OK – Java4 is a
subset of Java5

phone

JVM

phone

Java4

x86

PPC

C → PPC

×
PPC

PPC

C → PPC

phone

Java

×

3-22

 Given:

– an S interpreter, expressed in M machine code

– a program P, expressed in language S

 we can interpret P:

M

Tombstone diagrams: interpretation

M

S

these must match

P

S
these must match

3-23

 Possible:

Examples: interpreting ordinary

programs

 Impossible:

PPC

PPC

Basic

sort

Basic

PPC

PPC

Basic

sort

C

×

3-24

 A real machine is one whose machine code is

executed by hardware.

 A virtual machine (or abstract machine) is one

whose “machine code” is executed by an

interpreter.

Real machines vs virtual machines

3-25

 Suppose we have designed the architecture and

instruction set of a new machine, ULT.

 A hardware prototype of ULT will be expensive to

build and modify.

Example: hardware emulation (1)

3-26

 Instead, first write an interpreter for ULT machine

code (an emulator), expressed in (say) C:

Example: hardware emulation (2)

 Then compile it on a real machine, say PPC:

C

ULT

PPC

ULT

C

ULT

PPC

PPC

C → PPC

3-27

 Now use the emulator to execute test programs

P expressed in ULT machine-code:

Example: hardware emulation (3)

PPC

PPC

ULT

This has the
same effect
as …

ULT
virtual

machine

ULT ULT real
machine

… except
that it’s much
slower!

P

ULT

P

ULT

3-28

 A compiler takes quite a long time to translate

the source program to native machine code, but

subsequent execution is fast.

 An interpreter starts executing the source

program immediately, but execution is slow.

 An interpretive compiler is a good compromise.

It translates the source program into virtual

machine (VM) code, which is subsequently

interpreted.

Interpretive compilers (1)

3-29

 An interpretive compiler combines fast translation
with moderately fast execution, provided that:

– the VM code is intermediate-level (lower-level than the
source language, higher-level than native machine
code)

– translation from the source language to VM code is
easy and fast

– the VM instructions have simple formats (so can be
analysed quickly by an interpreter).

 An interpretive compiler is well suited for use
during program development.

– But a compiler generating native machine code or
assembly code is better suited for production use.

Interpretive compilers (2)

3-30

 JDK (Java Development Kit) provides an

interpretive compiler for Java.

 This is based on the JVM (Java Virtual Machine),

a virtual machine designed specifically for

running Java programs:

– JVM provides powerful instructions that implement

object creation, method calls, array indexing, etc.

– JVM instructions (often called “bytecodes”) are similar

in format to native machine code: opcode + operand.

– Interpretation of JVM code is “only” ~ 10 times slower

than execution of native machine code.

Example: JDK (1)

3-31

 JDK comprises a Java → JVM compiler and a

JVM interpreter.

 Once JDK has been installed on a real machine

M, we have:

Example: JDK (2)

M

JVM

M

Java → JVM

3-32

 A Java source program P is translated to JVM

code. Later the object program is interpreted:

Example: JDK (3)

M

M

Java → JVM

M

M

JVM
Java
virtual
machine

P

Java

P

JVM

P

JVM

3-33

 A Java applet A is translated to JVM code on a

server machine SM, where it is stored. Later the

object program is downloaded on demand to a

client machine CM, where it is interpreted:

Example: JDK (4)

SM

SM

Java → JVM

CM

CM

JVM

 Java programs are highly portable:

“write once, run anywhere”.

A

Java

A

JVM download

A

JVM

3-34

 A just-in-time (JIT) compiler translates virtual

machine code to native machine code just prior

to execution.

 This enables applets to be stored on a server in

a portable form, but run at full speed on client

machines.

Just-in-time compilers

3-35

 A Java JIT compiler translates JVM code to client

machine code:

Example: a Java JIT compiler

CM

CM

JVM → CM

 A JVM applet A is downloaded on demand from

the server to a client machine CM, compiled to

CM machine code, and then immediately run:

CM

JVM → CM

download

A

JVM

A

CM

CM

A

CM

3-36

 More usually, a Java JIT compiler translates JVM

code selectively:

– The interpreter and JIT compiler work together.

– The interpreter is instrumented to count method calls.

– When the interpreter discovers that a method is “hot”

(called frequently), it tells the JIT compiler to translate

that particular method into native code.

 Selective Java JIT compilers are integrated into

web browsers.

Selective JIT compilers

3-37

 A program is portable if it can be made to run on

different machines with minimal change:

Portable compilers

 A compiler that generates native machine code is

unportable in a special sense. If it must be

changed to target a different machine, its code

generator (≈ half the compiler) must be replaced.

 However, a compiler that generates suitable

virtual machine code can be portable.

is portable
P

Java
is not

P

x86

3-38

 A portable compiler kit for Java:

Example: portable compiler kit (1)

 Let’s install this kit on machine M.

Java

Java → JVM

Java

JVM

JVM

Java → JVM

 We face a chicken-and-egg situation:

– We can’t run the JVM interpreter until we have a

running Java compiler.

– We can’t run the Java compiler until we have a running

JVM interpreter.

3-39

 To progress, first rewrite the

JVM interpreter in (say) C:

Example: portable compiler kit (2)

 Then compile the JVM interpreter on M:

C

JVM

C

JVM

~ 1 week’s work

M

JVM

M

C → M

M

3-40

 Now we have an interpretive compiler, similar to

the one we met before, except that the compiler

itself must be interpreted:

Example: portable compiler kit (3)

 This compiler is very slow. However, it can be

improved by bootstrapping.

M

JVM

M

JVM

Java → JVM

M

M

JVM

P

Java

P

JVM

P

JVM

3-41

 Consider an S → T translator expr-

essed in its own source language S:

Bootstrapping

S

S → T

 Such a translator can be used to translate itself!
This is called bootstrapping.

 Bootstrapping is a useful tool for improving an
existing compiler:

– making it compile faster

– making it generate faster object code.

 In particular, we can bootstrap a portable
compiler to make a true compiler, by translating
virtual machine code to native machine code.

3-42

 Take the Java portable compiler kit:

Example: bootstrapping (1)

 and the interpreter we generated from it:

Java

Java → JVM

Java

JVM

JVM

Java → JVM

M

JVM

3-43

 Write a JVM → M translator,

expressed in Java itself.

 Compile it into JVM code using the existing

(slow) compiler:

Example: bootstrapping (2)

JVM

Java → JVM

M

JVM

M

JVM

JVM → M

~ 3 months’ work

Java

JVM → M

3-44

 Use this JVM → M translator to translate itself:

Example: bootstrapping (3)

 This is the actual bootstrap. It generates a JVM
→ M translator, expressed in M machine code.

M

JVM

M

M

JVM → M

JVM

JVM → M

JVM

JVM → M

3-45

 Finally, translate the Java → JVM compiler into

M machine code:

Example: bootstrapping (4)

JVM

Java → JVM

M

Java → JVM

M

JVM → M

M

3-46

 Now we have a 2-stage Java → M compiler:

Example: bootstrapping (5)

M

JVM → M

M

 This Java compiler is improved in two respects:

– it compiles faster (being expressed in native machine

code)

– it generates faster object code (native machine code).

M

Java → JVM

M

P

Java

P

JVM

P

M

