
4-1

4 Interpretation

 Overview

 Virtual machine interpretation

 Case study: SVM

 Case study: SVM interpreter in Java

Programming Languages 3 © 2012 David A Watt, University of Glasgow

4-2

Overview

 Recall: An S interpreter accepts code expressed

in language S, and immediately executes that

code.

 Assume that the code to be interpreted is just a

sequence of simple instructions (including

conditional/unconditional jumps).

 The interpreter works as follows:

– First it initializes the state.

– Then it repeatedly fetches, analyses, and executes the

next instruction.

– Executing an instruction updates the state as required.

4-3

Virtual machine interpretation

 Virtual machine code typically consists of:

– load/store instructions

– arithmetic/logical instructions

– conditional/unconditional jumps

– call/return instructions

– etc.

 The virtual machine state typically consists of:

– storage (code, data)

– registers (status, program counter, stack pointer, etc.).

4-4

Case study: SVM (1)

 SVM (Simple Virtual Machine) will be used as a

case study in this course.

 SVM is suitable for executing programs in simple

imperative PLs.

 For a full description, see SVM Specification

(available from the PL3 Moodle page).

4-5

Case study: SVM (2)

 Source code and corresponding SVM code:

code to execute
‘p = 10*p;’

code to evaluate
‘p < n’

p = 1;

while (p < n)

 p = 10*p;

0:

3:

6:

9:

12:

13:

16:

19:

22:

23:

26:

29:

LOADC 1

STOREG 2

LOADG 2

LOADG 1

COMPLT

JUMPF 29

LOADC 10

LOADG 2

MULT

STOREG 2

JUMP 6

HALT

assume that n and p
are located at global
addresses 1 and 2

4-6

Case study: SVM (3)

 SVM storage:

– the code store is a fixed array of bytes, providing
space for instructions

– the data store is a fixed array of words, providing a
stack to contain global and local data.

 SVM main registers:

– pc (program counter) points to the next instruction to be
executed

– sp (stack pointer) points to the top of the stack

– fp (frame pointer) points to the base of the topmost
frame (see §14)

– status indicates whether the programming is running,
failed, or halted.

4-7

Case study: SVM (4)

 Illustration of code store:

 Each instruction occupies 1, 2, or 3 bytes.

pc

4 0 1 1 0 2 0 0 2 0 0 1 12 18 0 29 16

29 … 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 30

LOADC 1 STOREG 2 LOADG 2 LOADG 1
COMPLT

JUMPF 29 unused HALT

4-8

Case study: SVM (5)

 Illustration of data store (simplified):

0

1

2

3

4

5

6

…

sp

global
data

unused

sp

global
data

unused

stacked
data

0

1

2

3

4

5

6

9

7

8

…

4-9

Case study: SVM (6)

 SVM instruction set (simplified):

 Op-

code

Mnem-

onic

Behaviour

6 ADD pop w2; pop w1; push (w1+w2)

7 SUB pop w2; pop w1; push (w1–w2)

8 MUL pop w2; pop w1; push (w1×w2)

9 DIV pop w2; pop w1; push (w1/w2)

10 CMPEQ pop w2; pop w1; push (if w1=w2 then 1 else 0)

11 CMPLT pop w2; pop w1; push (if w1<w2 then 1 else 0)

14 INV pop w; push (if w=0 then 1 else 0)

4-10

Case study: SVM (7)

 SVM instruction set (continued):

 Op-

code

Mnemonic Behaviour

0 LOADG d w ← word at address d; push w

1 STOREG d pop w; word at address d ← w

4 LOADC v push v

16 HALT status ← halted

17 JUMP c pc ← c

18 JUMPF c pop w; if w = 0 then pc ← c

19 JUMPT c pop w; if w ≠ 0 then pc ← c

4-11

Case study: SVM (8)

 The top of the stack is used for evaluating

expressions.

 E.g., evaluating (7+3)*(5-2):

7

data

data

data

data

sp
7

3

data

data

10

data

data

10

5

data

data

10

5

2

data

data

10

3

data

data

30

data

data

LOADC 7 LOADC 3 ADD LOADC 5 LOADC 2 SUB MUL

4-12

Writing an interpreter

 Interpreters are commonly written in C or Java.

 In such an interpreter:

– the virtual machine state is represented by a group of

variables

– each instruction is executed by inspecting and/or

updating the virtual machine state.

4-13

Case study: SVM interpreter in Java (1)

 Representation of instructions:

 final byte

 LOADG = 0, STOREG = 1,

 LOADL = 2, STOREL = 3,

 LOADC = 4,

 ADD = 6, SUB = 7,

 MUL = 8, DIV = 9,

 CMPEQ = 10,

 CMPLT = 12, CMPGT = 13,

 INV = 14, INC = 14,

 HALT = 16, JUMP = 17,

 JUMPF = 18, JUMPT = 19,

 …;

4-14

Case study: SVM interpreter in Java (2)

 Representation of the virtual machine state:

 byte[] code; // code store

 int[] data; // data store

 int pc, cl, sp, fp, // registers

 status;

 final byte

 RUNNING = 0,

 FAILED = 1,

 HALTED = 2;

4-15

Case study: SVM interpreter in Java (3)

 The interpreter initializes the state, then

repeatedly fetches and executes instructions:

 void interpret () {

 // Initialize the state:

 status = RUNNING;

 sp = 0; fp = 0;

 pc = 0;

 do {

 // Fetch the next instruction:

 byte opcode = code[pc++];

 // Execute this instruction:

 …

 } while (status == RUNNING);

}

4-16

Case study: SVM interpreter in Java (4)

 To execute an instruction, first inspect its
opcode:

 // Execute this instruction:
 switch (opcode) {

 case LOADG: …

 case STOREG: …

 …

 case ADD: …

 case CMPLT: …

 …

 case HALT: …

 case JUMP: …

 case JUMPT: …

 …

 }

4-17

Case study: SVM interpreter in Java (5)

 Executing arithmetic/logical instructions:

 case ADD: {

 int w2 = data[--sp];

 int w1 = data[--sp];

 data[sp++] = w1 + w2;

 break; }

 case CMPLT: {

 int w2 = data[--sp];

 int w1 = data[--sp];

 data[sp++] = (w1 < w2 ? 1 : 0);

 break; }

4-18

Case study: SVM interpreter in Java (6)

 Executing load/store instructions:

 case LOADG: {

 int d = code[pc++]<<8 | code[pc++];

 data[sp++] = data[d];

 break; }

 case STOREG: {

 int d = code[pc++]<<8 | code[pc++];

 data[d] = data[--sp];

 break; }

fetch 2-byte
operand

4-19

Case study: SVM interpreter in Java (7)

 Executing jump/halt instructions:

 case HALT: {
 status = HALTED;
 break; }

 case JUMP: {
 int c = …;
 pc = c;
 break; }

 case JUMPT: {
 int c = …;
 int w = data[--sp];
 if (w != 0) pc = c;
 break; }

fetch 2-byte
operand

