Universit : :
& elkew 6 Syntactic analysis

Aspects of syntactic analysis
= Tokens

= Lexer

= Parser

= Applications of syntactic analysis
= Compiler generation tool ANTLR
= Case study: Calc

= Case study: Fun syntactic analyser

Programming Languages 3 © 2012 David A Watt, University of Glasgow

Universit . :
Qf&l\z,lsrgoxz Aspects of syntactic analysis (1)

= Syntactic analysis checks that the source
program is well-formed and determines its
phrase structure.

= Syntactic analysis can be decomposed into:

— alexer
(which breaks the source program down into tokens)

— aparser
(which determines the phrase structure of the source
program).

Universit . :
Qf&l\z,lsrgoxz Aspects of syntactic analysis (2)

= Recall: The syntactic analyser inputs a source
program and outputs an AST.

= |nside the syntactic analyser, the lexer channels
a stream of tokens to the parser:

4 syntactic analysis)
))
{ lexer 4{ parser =
source token AST
program stream)

lexical syntactic

Universit
of Glasgowy Tokens

= Tokens are textual symbols that influence the
source program’s phrase structure, e.g.:

— literals

— identifiers

— operators

— keywords

— punctuation (parentheses, commas, colons, etc.)

= Each token has a tag and a text. E.g.:
— the addition operator might have tag PLUS and text ‘+’

— a numeral might have tag NUM, and text such as ‘1" or ‘37’

— an identifier might have tag ID, and text such as X’ or ‘at1’.

6-4

Universit
of Glasgoxz Separators

= Separators are pieces of text that do not
Influence the phrase structure, e.g.:

— spaces
— comments.

= An end-of-line is:

— a separator in most PLs

— atoken in Python (since it delimits a command).

o1a| Universit
QfGlang\z Case study: Calc tokens

= Complete list of Calc tokens:

PUT SET
‘put’ ‘Set’

ASSN PLUS MINUS TIMES| - tag

‘=’ ﬁ+! ‘(0 122 2 L text

LPAR RPAR
‘(, ‘)’

NUM ID

Universit
QfGlang\z Example: Calc tokens

set x = 7/
put x* (x+1)

!

SET ID ASSN NUM EOL PUT
‘Set’ ‘X’ ‘=’ ‘7’ G\n’ ‘put!

TIMES | LPAR ID PLUS NUM RPAR
%) ‘(’ GX! ‘+’ ‘1’ ‘)’

= Calc source program and token stream:

Universit
of Glang\z Lexer (1)

= The |lexer converts source code to a token
stream.

= At each step, the lexer inspects the next
character of the source code and acts
accordingly (see next slide).

= When no source code remains, the lexer outputs
an EOF token.

Universit
of Glang\z Lexer (2)

= E.g., if the next character of the source code is:

— a space:
discard it.

— the start of a comment:;
scan the rest of the comment, and discard it.

— a punctuation mark:
output the corresponding token.

— adigit:
scan the remaining digits, and output the corresponding
token (a numeral).

— aletter:
scan the remaining letters, and output the
corresponding token (which could be an identifier or a

keyword).

Universit
of Glasgowy Parser

The parser converts a token stream to an AST.

= There are many possible parsing algorithms.

= Recursive-descent parsing is particularly
simple and attractive.

= Given a suitable grammar for the source
language, we can quickly and systematically
write a recursive-descent parser for that

language.

Universit . :
qulasgoxz Recursive-descent parsing (1)

= A recursive-descent parser consists of:

— a family of parsing methods N (), one for each
nonterminal symbol N of the source language’s
grammar

— an auxiliary method match () .

= These methods “consume” the token stream
from left to right.

Universit . :
QfGlang\z Recursive-descent parsing (2)

= Method match () checks whether the next token
has tag t.

— If yes, it consumes that token.
— If no, it reports a syntactic error.
= For each nonterminal symbol N, method v ()

checks whether the next few tokens constitute a
phrase of class N.

— If yes, it consumes those tokens (and returns an AST
representing the parsed phrase).

— If no, it reports a syntactic error.

University
< of Glasgow Example: Calc parser (1)

= Parsing methods:

PLOG () mmmmemmmemmmeneee parses a program
©10) (11 () N parses a command

EXPY () oo parses an expression
PLim() ---eemeememeeeeeas parses a primary expression

....................... parses a variable

o1a| Universit
of Glasgmz

prosL

= [llustration of how the parsing methods work:

Example: Calc parser (2)

com () —
var () expr()t _______
prim()
Token SET ID ASSN NUM EOL
stream ‘set’ X' = 7 \n’
S S
consumed consumed
by var () by expr ()

|
consumed by com ()

Universit
QfGlasgowy Example: Calc parser (3)

= [llustration (continued):

ID TIMES | LPAR ID PLUS NUM RPAR EOL EOF
‘X’ %) ‘(7 ‘X’ i+’ ‘17 ‘)’ ‘\n!)

Universit
QfGlang\z Example: Calc parser (4)

= Recall the EBNF production rule for commands:

com = ‘put’ expr eol

| ‘set’ var ‘=" expr eol

= Parsing method for commands (outline):

void com () {
if (L) {0 e if the next token is ‘put’
match (PUT) ;
expr () ;

match (EOL) ;

o1a Universit
QfGlang\z Example: Calc parser (5)

= Parsing method for commands (continued):

else if (..) { —eormeee- if the next token is ‘set’
match (SET) ;
var () ;
match (ASSN) ;
expr () ;
match (EOL) ;

else
.................................... report a syntactic error

Universit
QfGlang\z Example: Calc parser (6)

= Recall the EBNF production rule for programs:

prog = com?* eof

= Parsing method for programs (outline):

void prog () {
while (..) { oo while the next token is
com () ; 'set’ or ‘put’

}
match (EOF) ;

University General rules for recursive-descent
parsing (1)

of Glasgow

= Consider the EBNF production rule:
N = RE
= The corresponding parsing method is:

void N () {
match the pattern RE

}

!Umversny General rules for recursive-descent

of Glasgow

parsing (2)

= To match the pattern t
(where t is a terminal symbol):

match(t);

= To match the pattern N
(where N is a nonterminal symbol):

N();

= To match the pattern RE; RE.:

match the pattern RE;
match the pattern RE,

!Umversny General rules for recursive-descent

of Glasgow

parsing (3)

= To match the pattern RE, | RE,:

if (the nexttoken can start RE,)
match the pattern RE,

else if (the nexttoken can start RE,)
match the pattern RE,

else
report a syntactic error

= Note: This works only if no token can start both
RE, and RE.,.

— In particular, this does not work if a production rule is
left-recursive, e.g., N=X|NY.

University General rules for recursive-descent
a parsing (4)

¥ of Glasgow

= To match the pattern RE *:

while (the nexttoken can start RE)
match the pattern RE

= Note: This works only if no token can both start
and follow RE.

e
of Glasgow

= Syntactic analysis has a variety of applications:

Applications of syntactic analysis

in compilers

in XML applications (parsing XML documents and
converting them to tree form)

in web browsers (parsing and rendering HTML
documents)

In natural language applications (parsing and
translating NL documents).

! Umver31ty

of Glasgow Compiler generation tools

= A compiler generation tool automates the
process of building compiler components.

= The input to a compiler generation tool is a
specification of what the compiler component is
to do. E.g.:

— The Input to a parser generator is a grammar .

= Examples of compiler generation tools:
— lex and yacc (see Advanced Programming)
— JavaCC
— SableCC

ANTLR.

Utiversit | |
qf&ﬁrg%wy The compiler generation tool ANTLR

= ANTLR (ANother Tool for Language Recognition)
IS the tool we shall use here. See

= ANTLR can automatically generate a lexer and
recursive-descent parser, given a grammar as
Input:
— The developer starts by expressing the source

language’s grammar in ANTLR notation (which
resembles EBNF).

— Then the developer enhances the grammar with actions
and/or tree-building operations.

= ANTLR can also generate contextual analysers
(see §7) and code generators (see 88).

http://www.antlr.org/

S |
qul\ggé\z Case study: Calc grammar in ANTLR (1)

= Calc grammar expressed in ANTLR notation:

grammar Calc;

Prog
com* EOF

com
PUT expr EOL
SET wvar ASSN expr EOL

S |
qul\ggé\z Case study: Calc grammar in ANTLR (2)

= Calc grammar (continued):

expr
prim
(PLUS prim
| MINUS prim
| TIMES prim
)*

prim

NUM
| wvar
LPAR expr RPAR

Universit .
of%ﬁif;é% Case study: Calc grammar in ANTLR (3)

= Calc grammar (continued — lexicon):

PUT . 'put' ;
BSET : 'set' ;
Tokens and #ASSN @ '='
separators PLUS : '+' 5
have MINUS : '-' ;
upper-case TIMES : '*x' ;
Names. LPAR : '"(' ;
RPAR : ")' ;
v o This says that
- PG e 2 a SPACE is a
o2 0T T9N separator.
A EOL .] \r] ? 1 \I_l] ; .

.,
’

{skip();} 7

Umver31t :
! Gasgoxz Case study: Calc driver (1)

= Put the above grammar in a file named calc.g.
= Feed this as input to ANTLR:

..5 jJava org.antlr.Tool Calc.g

= ANTLR automatically generates the following
classes:

— Class CalcLexer contains methods that convert an
Input stream (source code) to a token stream.

— Class CalcParser contains parsing methods prog (),
com (), ..., that consume the token stream.

Universit :
QfGlasgowy Case study: Calc driver (2)

= Write a driver program that calls caicrarser’s
method prog():

public class CalcRun ({

creates an Public static void main (String[] args) ({
put stream InputStream source =

o new InputStream(args[0]);
lexer Calclexer lexer = new Calclexer (
s the lexer, new ANTLRInputStream(source)) ;
Begiinga CommonTokenStream tokens =
ken stream new CommonTokenStream (lexer) ;
creates a .-~ CalcParser parser =
parser new CalcParser (tokens) ;
runs the .- parser.prog () ;

parser

Universit .
of%ﬁif;é% Case study: Calc grammar in ANTLR (6)

= When compiled and run, calcrun performs

syntactic analysis on the source program,
reporting any syntactic errors.

= However, calcrun does nothing else!

University _ _
& of Glasgow Enhancing a grammar in ANTLR

Normally we want to make the parser do
something useful.

= To do this, we enhance the ANTLR grammar
with either actions or tree-building operations.

= An ANTLR action is a segment of Java code:
{ code }

= An ANTLR tree-building operation has the
form:

-> "~ (t x y zZ)

t
|
where t is a token and |

x, v, z are subtrees. X y Z

Uni\’ersity Case study: Calc grammar in ANTLR
&/ Of .)
Sl with actions (1)

Glasgow

= Suppose that we want calcrun to perform actual
calculations:

— The command “put expr’ should evaluate the
expression expr and then print the result.

— The command “set var = expr” should evaluate the
expression expr and then store the result in the variable
var.

!Umvers1ty Case study: Calc grammar in ANTLR
Glasgow

with actions (2)

= We can augment the Calc grammar with actions
to do this:

— Create storage for variables ‘a’, ..., ‘Z.

— Declare that expr will return a value of type int. Add
actions to compute its value. And similarly for prim.

— Add an action to the put command to print the value
returned by expr.

— Add an action to the set command to store the value
returned by expr at the variable’s address in the store.

University Case study: Calc grammar in ANTLR
with actions (3)

¥ of Glasgow

= Augmented Calc grammar:

grammar Calc;

@members {
private int[] store -~ sto_rage for
variables

= new 1nt[26]; ‘o’)

prog
com* EOF

University Case study: Calc grammar in ANTLR
with actions (4)

of Glasgow

= Augmented Calc grammar (continued):

EOIm

PUT v=expr EOL { println(v); }

| SET ID ASSN

v=expr EOL { int a =
$ID.text.charAt (0)
_ vav’.
storela] = v; }

$TD.text is the text of ID (a string of letters)
SID.text.charAt (0) is the 1% letter.
$ID.text.charAt (0)-"a' isin the range 0..25.

6-36

University Case study: Calc grammar in ANTLR
with actions (5)

¥ of Glasgow

= Augmented Calc grammar (continued):

expr returns [int vall]
vl=prim { Sval = v1; }
(PLUS vZ2=prim { $val += v2; }
| MINUS v2=prim { Sval -= v2; }

| TIMES v2=prim { Sval *= v2; }

)*

University Case study: Calc grammar in ANTLR
with actions (5)

¥ of Glasgow

= Augmented Calc grammar (continued):

prim returns [int vall]

NUM { $val = parselnt (
SNUM. text); }

| ID { 1nt a =
SID.text.charAt (0)

_ 'a';
Sval = storela]l; }

| LPAR v=expr RPAR { Sval = v; }

.
14

!Umversny Case study: Calc grammar in ANTLR

gGapow with actions (6)

= Run ANTLR as before:

..> java org.antlr.Tool Calc.g

= ANTLR inserts the @members{...} code into the
CalcParser class.

= ANTLR inserts the above actions into the com (),
expr (), and prim () methods of calcrarser.

!Umvers1ty Case study: Calc grammar in ANTLR
with actions (7)

Glasgow

= When compiled and run, caicrun again performs
syntactic analysis on the source program, but
now it also performs the actions:

..5 javac CalcLexer.java CalcParser.java \
CalcRun.java

..5 java CalcRun test.calc

16 N
56 set ¢ = 8
¥ set e = 7/

put c*2

Universit _
qf%l\z’lsrgoxz ANTLR notation

= At the top of the expr production rule,
“expr returns [int wval] ” declares that parsing
an expr WIll return an integer result named value.

= Within actions in the expr production rule, “sva1
= .. sets the resuilt.

= |n any production rule, “v=expr” sets a local
variable v to the result of parsing the expr.

! Umver51ty

of Glasgow AST building with ANTLR

What if the parser is required to build an AST?

= Start with an EBNF grammar of the source
language, together with a summary of the ASTs
to be generated.

= Express the grammar in ANTLR’s notation. Then
add tree-building operations to specify the
translation from source language to ASTSs.

= Recall: An ANTLR tree-building operation has
the form:

t
-> "~ (t x y zZ) | i
y

 Universic |
qf%ﬁigé\z Case study: Fun grammar in ANTLR (1)

= Fun grammar (outline):

grammar Fun;

Prog
var decl* proc decl+ EOF

°
4

var decl
type ID ASSN expr

 Universic |
qf%ﬁigé\z Case study: Fun grammar in ANTLR (2)

= Fun grammar (continued):

com
ID ASSN expr
IF expr COLON seq com DOT

o1a| Universit :
qf%ﬁigé\z Case study: Fun grammar in ANTLR (3)

= Fun grammar (continued):
exXpr : sec expr ..

sec expr
pri expr
((PLUS | MINUS | TIMES | DIV)
pri expr
)*

°
4

pri expr

: NUM

| ID
| LPAR expr RPAR
|

University Case study: Fun grammar in ANTLR with
AST building (1)

of Glasgow

= Augmented Fun grammar (outline):

grammar Fun;

gotions states that this
output = AST; grammar will
generate an AST

}
lists special tokens to
tokens { = ccememememmmmme be used in the AST
PROG ; (in addition to lexical
SEQ: tokens)

L]
ces J

University Case study: Fun grammar in ANTLR with
AST building (2)

of Glasgow

= Augmented Fun grammar (outline):

Prog
var decl* proc decl+ EOF
-> "~ (PROG
var decl*
proc decl+)

builds an AST like this:

PR|OG

!Umversny Case study: Fun grammar in ANTLR with

of Glasgow

AST building (3)

= Augmented Fun grammar (continued):

EOIm

ID ASSN expr -> ~ (ASSN ASSN
ID —
expr) ID expr

| IF expr COLON
seq com DOT -> ~(IF

IF
expr r——L—j

seq com)expr [S€0°
com

SEQ

Umver31ty
o f Glasgow

AST building (4)

exXpr : sec-expr ..

sec expr
prim expr
((PLUS”™ |
prim expr
)*

°
4

prim expr
NUM
| ID
| LPAR expr RPAR
|

= Augmented Fun grammar (continued):

MINUS” |

Case study: Fun grammar in ANTLR with

TIMES” | DIV"™)

builds an AST like this:

TIMES
|
expr; expr,
—-> NUM
-> 1D
-> expr

Umver31ty :
of Glasgow Case study: Fun syntactic analyser (1)

Put the above grammar in a file named rFun.g.

Run ANTLR to generate a lexer and a parser:

..5 java org.antlr.Tool Fun.g

ANTLR creates the following classes:

— Class FunLexer contains methods that convert an
Input stream (source code) to a token stream.

— Class FunParser contains parsing methods prog (),
var decl (), com(), ..., that consume the token
stream.

The prog () method now returns an AST.

S |
qul\zﬁgé\z Case study: Fun syntactic analyser (2)

= Program to run the Fun syntactic analyser:
public class FunRun {

public static void main (String[] args) {

InputStream source =

new FileInputStream(args([0]);
FunlLexer lexer = new Funlexer (

new ANTLRInputStream (source)) ;
CommonTokenStream tokens =

new CommonTokenStream (lexer) ;
FunParser parser =

new FunParser (tokens) ;

CommonTree ast = (CommonTree)
parser.prog() .getTree();
} “runsthe ™ gets the

} parser resulting AST

