
6-1

6 Syntactic analysis

 Aspects of syntactic analysis

 Tokens

 Lexer

 Parser

 Applications of syntactic analysis

 Compiler generation tool ANTLR

 Case study: Calc

 Case study: Fun syntactic analyser

Programming Languages 3 © 2012 David A Watt, University of Glasgow

6-2

Aspects of syntactic analysis (1)

 Syntactic analysis checks that the source

program is well-formed and determines its

phrase structure.

 Syntactic analysis can be decomposed into:

– a lexer

(which breaks the source program down into tokens)

– a parser

(which determines the phrase structure of the source

program).

6-3

Aspects of syntactic analysis (2)

 Recall: The syntactic analyser inputs a source

program and outputs an AST.

 Inside the syntactic analyser, the lexer channels

a stream of tokens to the parser:

source
program

AST

syntactic analysis

syntactic
errors

lexer
token

stream

lexical
errors

parser

6-4

Tokens

 Tokens are textual symbols that influence the
source program’s phrase structure, e.g.:

– literals

– identifiers

– operators

– keywords

– punctuation (parentheses, commas, colons, etc.)

 Each token has a tag and a text. E.g.:

– the addition operator might have tag PLUS and text ‘+’

– a numeral might have tag NUM, and text such as ‘1’ or ‘37’

– an identifier might have tag ID, and text such as ‘x’ or ‘a1’.

6-5

Separators

 Separators are pieces of text that do not
influence the phrase structure, e.g.:

– spaces

– comments.

 An end-of-line is:

– a separator in most PLs

– a token in Python (since it delimits a command).

6-6

Case study: Calc tokens

 Complete list of Calc tokens:

LPAR

‘(’

RPAR

‘)’

ASSN

‘=’

PUT

‘put’

SET

‘set’

ID

‘…’

PLUS

‘+’

MINUS

‘‒’

TIMES

‘*’

NUM

‘…’

EOL

‘\n’

EOF

‘’

tag

text

6-7

Example: Calc tokens

 Calc source program and token stream:

set x = 7
put x*(x+1)

ASSN

‘=’

SET

‘set’

EOL

‘\n’

ID

‘x’

NUM

‘7’

ID

‘x’

NUM

‘1’

PUT

‘put’

TIMES

‘*’

ID

‘x’

LPAR

‘(’

PLUS

‘+’

RPAR

‘)’

EOL

‘\n’
EOF

‘’

6-8

Lexer (1)

 The lexer converts source code to a token

stream.

 At each step, the lexer inspects the next

character of the source code and acts

accordingly (see next slide).

 When no source code remains, the lexer outputs

an EOF token.

6-9

Lexer (2)

 E.g., if the next character of the source code is:

– a space:
discard it.

– the start of a comment:
scan the rest of the comment, and discard it.

– a punctuation mark:
output the corresponding token.

– a digit:
scan the remaining digits, and output the corresponding
token (a numeral).

– a letter:
scan the remaining letters, and output the
corresponding token (which could be an identifier or a
keyword).

6-10

Parser

 The parser converts a token stream to an AST.

 There are many possible parsing algorithms.

 Recursive-descent parsing is particularly

simple and attractive.

 Given a suitable grammar for the source

language, we can quickly and systematically

write a recursive-descent parser for that

language.

6-11

Recursive-descent parsing (1)

 A recursive-descent parser consists of:

– a family of parsing methods N(), one for each

nonterminal symbol N of the source language’s

grammar

– an auxiliary method match() .

 These methods “consume” the token stream

from left to right.

6-12

Recursive-descent parsing (2)

 Method match(t) checks whether the next token

has tag t.

– If yes, it consumes that token.

– If no, it reports a syntactic error.

 For each nonterminal symbol N, method N()

checks whether the next few tokens constitute a

phrase of class N.

– If yes, it consumes those tokens (and returns an AST

representing the parsed phrase).

– If no, it reports a syntactic error.

6-13

Example: Calc parser (1)

 Parsing methods:

 prog()

 com()

 expr()

 prim()

 var()

parses a program

parses a command

parses an expression

parses a primary expression

parses a variable

6-14

Example: Calc parser (2)

 Illustration of how the parsing methods work:

ASSN

‘=’
Token
stream

SET

‘set’

EOL

’\n’

ID

‘x’

NUM

‘7’

expr()

prim()

var()

prog()

com()

...

consumed
by var()

consumed
by expr()

consumed by com()

6-15

Example: Calc parser (3)

 Illustration (continued):

ID

‘x’

NUM

‘1’

PUT

‘put’

TIMES

‘*’

ID

‘x’

LPAR

‘(’

PLUS

‘+’

RPAR

‘)’

EOL

‘\n’

EOF

‘’

expr()

prim()

var()

var()

prim()

prim()

expr()

prim()

com
()

6-16

Example: Calc parser (4)

 Recall the EBNF production rule for commands:

 com = ‘put’ expr eol

 | ‘set’ var ‘=’ expr eol

 Parsing method for commands (outline):

 void com () {

 if (…) {

 match(PUT);

 expr();

 match(EOL);

 }

if the next token is ‘put’

6-17

Example: Calc parser (5)

 Parsing method for commands (continued):

 else if (…) {

 match(SET);

 var();

 match(ASSN);

 expr();

 match(EOL);

 }

 else

 …

}

if the next token is ‘set’

report a syntactic error

6-18

Example: Calc parser (6)

 Recall the EBNF production rule for programs:

 prog = com * eof

 Parsing method for programs (outline):

 void prog () {

 while (…) {

 com();

 }

 match(EOF);

}

while the next token is
‘set’ or ‘put’

6-19

General rules for recursive-descent

parsing (1)

 Consider the EBNF production rule:

 N = RE

 The corresponding parsing method is:

 void N () {

 match the pattern RE

}

6-20

General rules for recursive-descent

parsing (2)

 To match the pattern t

(where t is a terminal symbol):

 match(t);

 To match the pattern N

(where N is a nonterminal symbol):

 N();

 To match the pattern RE1 RE2:

 match the pattern RE1

match the pattern RE2

6-21

General rules for recursive-descent

parsing (3)

 To match the pattern RE1 | RE2:

 if (the next token can start RE1)

 match the pattern RE1

else if (the next token can start RE2)

 match the pattern RE2

else

 report a syntactic error

 Note: This works only if no token can start both

RE1 and RE2.

– In particular, this does not work if a production rule is

left-recursive, e.g., N = X | N Y.

6-22

General rules for recursive-descent

parsing (4)

 To match the pattern RE *:

 while (the next token can start RE)

 match the pattern RE

 Note: This works only if no token can both start

and follow RE.

6-23

Applications of syntactic analysis

 Syntactic analysis has a variety of applications:

– in compilers

– in XML applications (parsing XML documents and

converting them to tree form)

– in web browsers (parsing and rendering HTML

documents)

– in natural language applications (parsing and

translating NL documents).

6-24

Compiler generation tools

 A compiler generation tool automates the
process of building compiler components.

 The input to a compiler generation tool is a
specification of what the compiler component is
to do. E.g.:

– The input to a parser generator is a grammar .

 Examples of compiler generation tools:

– lex and yacc (see Advanced Programming)

– JavaCC

– SableCC

– ANTLR.

6-25

The compiler generation tool ANTLR

 ANTLR (ANother Tool for Language Recognition)
is the tool we shall use here. See www.antlr.org.

 ANTLR can automatically generate a lexer and
recursive-descent parser, given a grammar as
input:

– The developer starts by expressing the source
language’s grammar in ANTLR notation (which
resembles EBNF).

– Then the developer enhances the grammar with actions
and/or tree-building operations.

 ANTLR can also generate contextual analysers
(see §7) and code generators (see §8).

http://www.antlr.org/

6-26

Case study: Calc grammar in ANTLR (1)

 Calc grammar expressed in ANTLR notation:

 grammar Calc;

 prog

 : com* EOF

 ;

 com

 : PUT expr EOL

 | SET var ASSN expr EOL

 ;

 var

 : ID

 ;

6-27

Case study: Calc grammar in ANTLR (2)

 Calc grammar (continued):

 expr

 : prim

 (PLUS prim

 | MINUS prim

 | TIMES prim

)*

 ;

 prim

 : NUM

 | var

 | LPAR expr RPAR

 ;

6-28

Case study: Calc grammar in ANTLR (3)

 Calc grammar (continued – lexicon):

 PUT : 'put' ;

SET : 'set' ;

 ASSN : '=' ;

PLUS : '+' ;

MINUS : '-' ;

TIMES : '*' ;

LPAR : '(' ;

RPAR : ')' ;

 ID : 'a'..'z' ;

NUM : '0'..'9'+ ;

 EOL : '\r'? '\n' ;

SPACE : (' ' | '\t')+ {skip();} ;

This says that
a SPACE is a
separator.

Tokens and
separators
have
upper-case
names.

6-29

Case study: Calc driver (1)

 Put the above grammar in a file named Calc.g.

 Feed this as input to ANTLR:

 …$ java org.antlr.Tool Calc.g

 ANTLR automatically generates the following
classes:

– Class CalcLexer contains methods that convert an
input stream (source code) to a token stream.

– Class CalcParser contains parsing methods prog(),
com(), …, that consume the token stream.

6-30

Case study: Calc driver (2)

 Write a driver program that calls CalcParser’s
method prog():

 public class CalcRun {

 public static void main (String[] args) {

 InputStream source =

 new InputStream(args[0]);

 CalcLexer lexer = new CalcLexer(

 new ANTLRInputStream(source));

 CommonTokenStream tokens =

 new CommonTokenStream(lexer);

 CalcParser parser =

 new CalcParser(tokens);

 parser.prog();

 }

 }

creates an
input stream

creates a
lexer

runs the lexer,
creating a

token stream

creates a
parser

runs the
parser

6-31

Case study: Calc grammar in ANTLR (6)

 When compiled and run, CalcRun performs
syntactic analysis on the source program,
reporting any syntactic errors.

 However, CalcRun does nothing else!

6-32

Enhancing a grammar in ANTLR

 Normally we want to make the parser do
something useful.

 To do this, we enhance the ANTLR grammar
with either actions or tree-building operations.

 An ANTLR action is a segment of Java code:

{ code }

 An ANTLR tree-building operation has the
form:

-> ^(t x y z)

where t is a token and
 x, y, z are subtrees.

t

y x z

6-33

Case study: Calc grammar in ANTLR

with actions (1)

 Suppose that we want CalcRun to perform actual
calculations:

– The command “put expr” should evaluate the
expression expr and then print the result.

– The command “set var = expr” should evaluate the
expression expr and then store the result in the variable
var.

6-34

Case study: Calc grammar in ANTLR

with actions (2)

 We can augment the Calc grammar with actions
to do this:

– Create storage for variables ‘a’, …, ‘z’.

– Declare that expr will return a value of type int. Add
actions to compute its value. And similarly for prim.

– Add an action to the put command to print the value
returned by expr.

– Add an action to the set command to store the value
returned by expr at the variable’s address in the store.

6-35

Case study: Calc grammar in ANTLR

with actions (3)

 Augmented Calc grammar:

 grammar Calc;

 @members {

 private int[] store

 = new int[26];

}

 prog

 : com* EOF

 ;

storage for
variables
‘a’, …, ‘z’

6-36

Case study: Calc grammar in ANTLR

with actions (4)

 Augmented Calc grammar (continued):

 com

 : PUT v=expr EOL { println(v); }

 | SET ID ASSN

 v=expr EOL { int a =

 $ID.text.charAt(0)

 - 'a';

 store[a] = v; }

 ;

$ID.text is the text of ID (a string of letters)
$ID.text.charAt(0) is the 1st letter.
$ID.text.charAt(0)-'a' is in the range 0..25.

6-37

Case study: Calc grammar in ANTLR

with actions (5)

 Augmented Calc grammar (continued):

 expr returns [int val]

 : v1=prim { $val = v1; }

 (PLUS v2=prim { $val += v2; }

 | MINUS v2=prim { $val -= v2; }

 | TIMES v2=prim { $val *= v2; }

)*

 ;

6-38

Case study: Calc grammar in ANTLR

with actions (5)

 Augmented Calc grammar (continued):

 prim returns [int val]

 : NUM { $val = parseInt(

 $NUM.text); }

 | ID { int a =

 $ID.text.charAt(0)

 - 'a';

 $val = store[a]; }

 | LPAR v=expr RPAR { $val = v; }

 ;

6-39

Case study: Calc grammar in ANTLR

with actions (6)

 Run ANTLR as before:

 …$ java org.antlr.Tool Calc.g

 ANTLR inserts the @members{…} code into the
CalcParser class.

 ANTLR inserts the above actions into the com(),
expr(), and prim() methods of CalcParser.

6-40

Case study: Calc grammar in ANTLR

with actions (7)

 When compiled and run, CalcRun again performs
syntactic analysis on the source program, but
now it also performs the actions:

 …$ javac CalcLexer.java CalcParser.java \

 CalcRun.java

 …$ java CalcRun test.calc

 16

56

72

set c = 8
set e = 7
put c*2
put e*8

set m = (c*2) + (e*8)
put m

6-41

ANTLR notation

 At the top of the expr production rule,
“expr returns [int val]” declares that parsing
an expr will return an integer result named value.

 Within actions in the expr production rule, “$val
= …” sets the result.

 In any production rule, “v=expr” sets a local
variable v to the result of parsing the expr.

6-42

AST building with ANTLR

 What if the parser is required to build an AST?

 Start with an EBNF grammar of the source
language, together with a summary of the ASTs
to be generated.

 Express the grammar in ANTLR’s notation. Then
add tree-building operations to specify the
translation from source language to ASTs.

 Recall: An ANTLR tree-building operation has
the form:

-> ^(t x y z)
t

y x z

6-43

Case study: Fun grammar in ANTLR (1)

 Fun grammar (outline):

 grammar Fun;

 prog

 : var_decl* proc_decl+ EOF

 ;

 var_decl

 : type ID ASSN expr

 ;

 type

 : BOOL

 | INT

 ;

6-44

Case study: Fun grammar in ANTLR (2)

 Fun grammar (continued):

 com

 : ID ASSN expr

 | IF expr COLON seq_com DOT

 | …

 ;

 seq_com

 : com*

 ;

6-45

Case study: Fun grammar in ANTLR (3)

 Fun grammar (continued):

 expr : sec_expr …

 sec_expr

 : pri_expr

 ((PLUS | MINUS | TIMES | DIV)

 pri_expr

)*

 ;

 pri_expr

 : NUM

 | ID

 | LPAR expr RPAR

 | …

 ;

6-46

Case study: Fun grammar in ANTLR with

AST building (1)

 Augmented Fun grammar (outline):

 grammar Fun;

 options {

 output = AST;

 …;

}

 tokens {

 PROG;

 SEQ;

 …;

}

lists special tokens to
be used in the AST
(in addition to lexical
tokens)

states that this
grammar will
generate an AST

6-47

Case study: Fun grammar in ANTLR with

AST building (2)

 Augmented Fun grammar (outline):

 prog

 : var_decl* proc_decl+ EOF

 -> ^(PROG

 var_decl*

 proc_decl+)

 ;

proc-
decl

PROG

var-
decl

…
…

builds an AST like this:

6-48

Case study: Fun grammar in ANTLR with

AST building (3)

 Augmented Fun grammar (continued):

 com

 : ID ASSN expr -> ^(ASSN

 ID

 expr)

 | IF expr COLON

 seq_com DOT -> ^(IF

 expr

 seq_com)

 | …

 ;

 seq_com

 : com* -> ^(SEQ

 com*)

 ;

…

SEQ

com

ASSN

expr
ID

IF

seq-
com

expr

6-49

Case study: Fun grammar in ANTLR with

AST building (4)

 Augmented Fun grammar (continued):

 expr : sec-expr …

 sec_expr

 : prim_expr

 ((PLUS^ | MINUS^ | TIMES^ | DIV^)

 prim_expr

)*

 ;

 prim_expr

 : NUM -> NUM

 | ID -> ID

 | LPAR expr RPAR -> expr

 | …

 ;

builds an AST like this:
TIMES

expr2 expr1

6-50

Case study: Fun syntactic analyser (1)

 Put the above grammar in a file named Fun.g.

 Run ANTLR to generate a lexer and a parser:

 …$ java org.antlr.Tool Fun.g

 ANTLR creates the following classes:

– Class FunLexer contains methods that convert an
input stream (source code) to a token stream.

– Class FunParser contains parsing methods prog(),
var_decl(), com(), …, that consume the token
stream.

 The prog() method now returns an AST.

6-51

Case study: Fun syntactic analyser (2)

 Program to run the Fun syntactic analyser:

 public class FunRun {

 public static void main (String[] args) {

 InputStream source =

 new FileInputStream(args[0]);

 FunLexer lexer = new FunLexer(

 new ANTLRInputStream(source));

 CommonTokenStream tokens =

 new CommonTokenStream(lexer);

 FunParser parser =

 new FunParser(tokens);

 CommonTree ast = (CommonTree)

 parser.prog().getTree();

 }

 }

runs the
parser

gets the
resulting AST

