
6-1

6 Syntactic analysis

 Aspects of syntactic analysis

 Tokens

 Lexer

 Parser

 Applications of syntactic analysis

 Compiler generation tool ANTLR

 Case study: Calc

 Case study: Fun syntactic analyser

Programming Languages 3 © 2012 David A Watt, University of Glasgow

6-2

Aspects of syntactic analysis (1)

 Syntactic analysis checks that the source

program is well-formed and determines its

phrase structure.

 Syntactic analysis can be decomposed into:

– a lexer

(which breaks the source program down into tokens)

– a parser

(which determines the phrase structure of the source

program).

6-3

Aspects of syntactic analysis (2)

 Recall: The syntactic analyser inputs a source

program and outputs an AST.

 Inside the syntactic analyser, the lexer channels

a stream of tokens to the parser:

source
program

AST

syntactic analysis

syntactic
errors

lexer
token

stream

lexical
errors

parser

6-4

Tokens

 Tokens are textual symbols that influence the
source program’s phrase structure, e.g.:

– literals

– identifiers

– operators

– keywords

– punctuation (parentheses, commas, colons, etc.)

 Each token has a tag and a text. E.g.:

– the addition operator might have tag PLUS and text ‘+’

– a numeral might have tag NUM, and text such as ‘1’ or ‘37’

– an identifier might have tag ID, and text such as ‘x’ or ‘a1’.

6-5

Separators

 Separators are pieces of text that do not
influence the phrase structure, e.g.:

– spaces

– comments.

 An end-of-line is:

– a separator in most PLs

– a token in Python (since it delimits a command).

6-6

Case study: Calc tokens

 Complete list of Calc tokens:

LPAR

‘(’

RPAR

‘)’

ASSN

‘=’

PUT

‘put’

SET

‘set’

ID

‘…’

PLUS

‘+’

MINUS

‘‒’

TIMES

‘*’

NUM

‘…’

EOL

‘\n’

EOF

‘’

tag

text

6-7

Example: Calc tokens

 Calc source program and token stream:

set x = 7
put x*(x+1)

ASSN

‘=’

SET

‘set’

EOL

‘\n’

ID

‘x’

NUM

‘7’

ID

‘x’

NUM

‘1’

PUT

‘put’

TIMES

‘*’

ID

‘x’

LPAR

‘(’

PLUS

‘+’

RPAR

‘)’

EOL

‘\n’
EOF

‘’

6-8

Lexer (1)

 The lexer converts source code to a token

stream.

 At each step, the lexer inspects the next

character of the source code and acts

accordingly (see next slide).

 When no source code remains, the lexer outputs

an EOF token.

6-9

Lexer (2)

 E.g., if the next character of the source code is:

– a space:
discard it.

– the start of a comment:
scan the rest of the comment, and discard it.

– a punctuation mark:
output the corresponding token.

– a digit:
scan the remaining digits, and output the corresponding
token (a numeral).

– a letter:
scan the remaining letters, and output the
corresponding token (which could be an identifier or a
keyword).

6-10

Parser

 The parser converts a token stream to an AST.

 There are many possible parsing algorithms.

 Recursive-descent parsing is particularly

simple and attractive.

 Given a suitable grammar for the source

language, we can quickly and systematically

write a recursive-descent parser for that

language.

6-11

Recursive-descent parsing (1)

 A recursive-descent parser consists of:

– a family of parsing methods N(), one for each

nonterminal symbol N of the source language’s

grammar

– an auxiliary method match() .

 These methods “consume” the token stream

from left to right.

6-12

Recursive-descent parsing (2)

 Method match(t) checks whether the next token

has tag t.

– If yes, it consumes that token.

– If no, it reports a syntactic error.

 For each nonterminal symbol N, method N()

checks whether the next few tokens constitute a

phrase of class N.

– If yes, it consumes those tokens (and returns an AST

representing the parsed phrase).

– If no, it reports a syntactic error.

6-13

Example: Calc parser (1)

 Parsing methods:

 prog()

 com()

 expr()

 prim()

 var()

parses a program

parses a command

parses an expression

parses a primary expression

parses a variable

6-14

Example: Calc parser (2)

 Illustration of how the parsing methods work:

ASSN

‘=’
Token
stream

SET

‘set’

EOL

’\n’

ID

‘x’

NUM

‘7’

expr()

prim()

var()

prog()

com()

...

consumed
by var()

consumed
by expr()

consumed by com()

6-15

Example: Calc parser (3)

 Illustration (continued):

ID

‘x’

NUM

‘1’

PUT

‘put’

TIMES

‘*’

ID

‘x’

LPAR

‘(’

PLUS

‘+’

RPAR

‘)’

EOL

‘\n’

EOF

‘’

expr()

prim()

var()

var()

prim()

prim()

expr()

prim()

com
()

6-16

Example: Calc parser (4)

 Recall the EBNF production rule for commands:

 com = ‘put’ expr eol

 | ‘set’ var ‘=’ expr eol

 Parsing method for commands (outline):

 void com () {

 if (…) {

 match(PUT);

 expr();

 match(EOL);

 }

if the next token is ‘put’

6-17

Example: Calc parser (5)

 Parsing method for commands (continued):

 else if (…) {

 match(SET);

 var();

 match(ASSN);

 expr();

 match(EOL);

 }

 else

 …

}

if the next token is ‘set’

report a syntactic error

6-18

Example: Calc parser (6)

 Recall the EBNF production rule for programs:

 prog = com * eof

 Parsing method for programs (outline):

 void prog () {

 while (…) {

 com();

 }

 match(EOF);

}

while the next token is
‘set’ or ‘put’

6-19

General rules for recursive-descent

parsing (1)

 Consider the EBNF production rule:

 N = RE

 The corresponding parsing method is:

 void N () {

 match the pattern RE

}

6-20

General rules for recursive-descent

parsing (2)

 To match the pattern t

(where t is a terminal symbol):

 match(t);

 To match the pattern N

(where N is a nonterminal symbol):

 N();

 To match the pattern RE1 RE2:

 match the pattern RE1

match the pattern RE2

6-21

General rules for recursive-descent

parsing (3)

 To match the pattern RE1 | RE2:

 if (the next token can start RE1)

 match the pattern RE1

else if (the next token can start RE2)

 match the pattern RE2

else

 report a syntactic error

 Note: This works only if no token can start both

RE1 and RE2.

– In particular, this does not work if a production rule is

left-recursive, e.g., N = X | N Y.

6-22

General rules for recursive-descent

parsing (4)

 To match the pattern RE *:

 while (the next token can start RE)

 match the pattern RE

 Note: This works only if no token can both start

and follow RE.

6-23

Applications of syntactic analysis

 Syntactic analysis has a variety of applications:

– in compilers

– in XML applications (parsing XML documents and

converting them to tree form)

– in web browsers (parsing and rendering HTML

documents)

– in natural language applications (parsing and

translating NL documents).

6-24

Compiler generation tools

 A compiler generation tool automates the
process of building compiler components.

 The input to a compiler generation tool is a
specification of what the compiler component is
to do. E.g.:

– The input to a parser generator is a grammar .

 Examples of compiler generation tools:

– lex and yacc (see Advanced Programming)

– JavaCC

– SableCC

– ANTLR.

6-25

The compiler generation tool ANTLR

 ANTLR (ANother Tool for Language Recognition)
is the tool we shall use here. See www.antlr.org.

 ANTLR can automatically generate a lexer and
recursive-descent parser, given a grammar as
input:

– The developer starts by expressing the source
language’s grammar in ANTLR notation (which
resembles EBNF).

– Then the developer enhances the grammar with actions
and/or tree-building operations.

 ANTLR can also generate contextual analysers
(see §7) and code generators (see §8).

http://www.antlr.org/

6-26

Case study: Calc grammar in ANTLR (1)

 Calc grammar expressed in ANTLR notation:

 grammar Calc;

 prog

 : com* EOF

 ;

 com

 : PUT expr EOL

 | SET var ASSN expr EOL

 ;

 var

 : ID

 ;

6-27

Case study: Calc grammar in ANTLR (2)

 Calc grammar (continued):

 expr

 : prim

 (PLUS prim

 | MINUS prim

 | TIMES prim

)*

 ;

 prim

 : NUM

 | var

 | LPAR expr RPAR

 ;

6-28

Case study: Calc grammar in ANTLR (3)

 Calc grammar (continued – lexicon):

 PUT : 'put' ;

SET : 'set' ;

 ASSN : '=' ;

PLUS : '+' ;

MINUS : '-' ;

TIMES : '*' ;

LPAR : '(' ;

RPAR : ')' ;

 ID : 'a'..'z' ;

NUM : '0'..'9'+ ;

 EOL : '\r'? '\n' ;

SPACE : (' ' | '\t')+ {skip();} ;

This says that
a SPACE is a
separator.

Tokens and
separators
have
upper-case
names.

6-29

Case study: Calc driver (1)

 Put the above grammar in a file named Calc.g.

 Feed this as input to ANTLR:

 …$ java org.antlr.Tool Calc.g

 ANTLR automatically generates the following
classes:

– Class CalcLexer contains methods that convert an
input stream (source code) to a token stream.

– Class CalcParser contains parsing methods prog(),
com(), …, that consume the token stream.

6-30

Case study: Calc driver (2)

 Write a driver program that calls CalcParser’s
method prog():

 public class CalcRun {

 public static void main (String[] args) {

 InputStream source =

 new InputStream(args[0]);

 CalcLexer lexer = new CalcLexer(

 new ANTLRInputStream(source));

 CommonTokenStream tokens =

 new CommonTokenStream(lexer);

 CalcParser parser =

 new CalcParser(tokens);

 parser.prog();

 }

 }

creates an
input stream

creates a
lexer

runs the lexer,
creating a

token stream

creates a
parser

runs the
parser

6-31

Case study: Calc grammar in ANTLR (6)

 When compiled and run, CalcRun performs
syntactic analysis on the source program,
reporting any syntactic errors.

 However, CalcRun does nothing else!

6-32

Enhancing a grammar in ANTLR

 Normally we want to make the parser do
something useful.

 To do this, we enhance the ANTLR grammar
with either actions or tree-building operations.

 An ANTLR action is a segment of Java code:

{ code }

 An ANTLR tree-building operation has the
form:

-> ^(t x y z)

where t is a token and
 x, y, z are subtrees.

t

y x z

6-33

Case study: Calc grammar in ANTLR

with actions (1)

 Suppose that we want CalcRun to perform actual
calculations:

– The command “put expr” should evaluate the
expression expr and then print the result.

– The command “set var = expr” should evaluate the
expression expr and then store the result in the variable
var.

6-34

Case study: Calc grammar in ANTLR

with actions (2)

 We can augment the Calc grammar with actions
to do this:

– Create storage for variables ‘a’, …, ‘z’.

– Declare that expr will return a value of type int. Add
actions to compute its value. And similarly for prim.

– Add an action to the put command to print the value
returned by expr.

– Add an action to the set command to store the value
returned by expr at the variable’s address in the store.

6-35

Case study: Calc grammar in ANTLR

with actions (3)

 Augmented Calc grammar:

 grammar Calc;

 @members {

 private int[] store

 = new int[26];

}

 prog

 : com* EOF

 ;

storage for
variables
‘a’, …, ‘z’

6-36

Case study: Calc grammar in ANTLR

with actions (4)

 Augmented Calc grammar (continued):

 com

 : PUT v=expr EOL { println(v); }

 | SET ID ASSN

 v=expr EOL { int a =

 $ID.text.charAt(0)

 - 'a';

 store[a] = v; }

 ;

$ID.text is the text of ID (a string of letters)
$ID.text.charAt(0) is the 1st letter.
$ID.text.charAt(0)-'a' is in the range 0..25.

6-37

Case study: Calc grammar in ANTLR

with actions (5)

 Augmented Calc grammar (continued):

 expr returns [int val]

 : v1=prim { $val = v1; }

 (PLUS v2=prim { $val += v2; }

 | MINUS v2=prim { $val -= v2; }

 | TIMES v2=prim { $val *= v2; }

)*

 ;

6-38

Case study: Calc grammar in ANTLR

with actions (5)

 Augmented Calc grammar (continued):

 prim returns [int val]

 : NUM { $val = parseInt(

 $NUM.text); }

 | ID { int a =

 $ID.text.charAt(0)

 - 'a';

 $val = store[a]; }

 | LPAR v=expr RPAR { $val = v; }

 ;

6-39

Case study: Calc grammar in ANTLR

with actions (6)

 Run ANTLR as before:

 …$ java org.antlr.Tool Calc.g

 ANTLR inserts the @members{…} code into the
CalcParser class.

 ANTLR inserts the above actions into the com(),
expr(), and prim() methods of CalcParser.

6-40

Case study: Calc grammar in ANTLR

with actions (7)

 When compiled and run, CalcRun again performs
syntactic analysis on the source program, but
now it also performs the actions:

 …$ javac CalcLexer.java CalcParser.java \

 CalcRun.java

 …$ java CalcRun test.calc

 16

56

72

set c = 8
set e = 7
put c*2
put e*8

set m = (c*2) + (e*8)
put m

6-41

ANTLR notation

 At the top of the expr production rule,
“expr returns [int val]” declares that parsing
an expr will return an integer result named value.

 Within actions in the expr production rule, “$val
= …” sets the result.

 In any production rule, “v=expr” sets a local
variable v to the result of parsing the expr.

6-42

AST building with ANTLR

 What if the parser is required to build an AST?

 Start with an EBNF grammar of the source
language, together with a summary of the ASTs
to be generated.

 Express the grammar in ANTLR’s notation. Then
add tree-building operations to specify the
translation from source language to ASTs.

 Recall: An ANTLR tree-building operation has
the form:

-> ^(t x y z)
t

y x z

6-43

Case study: Fun grammar in ANTLR (1)

 Fun grammar (outline):

 grammar Fun;

 prog

 : var_decl* proc_decl+ EOF

 ;

 var_decl

 : type ID ASSN expr

 ;

 type

 : BOOL

 | INT

 ;

6-44

Case study: Fun grammar in ANTLR (2)

 Fun grammar (continued):

 com

 : ID ASSN expr

 | IF expr COLON seq_com DOT

 | …

 ;

 seq_com

 : com*

 ;

6-45

Case study: Fun grammar in ANTLR (3)

 Fun grammar (continued):

 expr : sec_expr …

 sec_expr

 : pri_expr

 ((PLUS | MINUS | TIMES | DIV)

 pri_expr

)*

 ;

 pri_expr

 : NUM

 | ID

 | LPAR expr RPAR

 | …

 ;

6-46

Case study: Fun grammar in ANTLR with

AST building (1)

 Augmented Fun grammar (outline):

 grammar Fun;

 options {

 output = AST;

 …;

}

 tokens {

 PROG;

 SEQ;

 …;

}

lists special tokens to
be used in the AST
(in addition to lexical
tokens)

states that this
grammar will
generate an AST

6-47

Case study: Fun grammar in ANTLR with

AST building (2)

 Augmented Fun grammar (outline):

 prog

 : var_decl* proc_decl+ EOF

 -> ^(PROG

 var_decl*

 proc_decl+)

 ;

proc-
decl

PROG

var-
decl

…
…

builds an AST like this:

6-48

Case study: Fun grammar in ANTLR with

AST building (3)

 Augmented Fun grammar (continued):

 com

 : ID ASSN expr -> ^(ASSN

 ID

 expr)

 | IF expr COLON

 seq_com DOT -> ^(IF

 expr

 seq_com)

 | …

 ;

 seq_com

 : com* -> ^(SEQ

 com*)

 ;

…

SEQ

com

ASSN

expr
ID

IF

seq-
com

expr

6-49

Case study: Fun grammar in ANTLR with

AST building (4)

 Augmented Fun grammar (continued):

 expr : sec-expr …

 sec_expr

 : prim_expr

 ((PLUS^ | MINUS^ | TIMES^ | DIV^)

 prim_expr

)*

 ;

 prim_expr

 : NUM -> NUM

 | ID -> ID

 | LPAR expr RPAR -> expr

 | …

 ;

builds an AST like this:
TIMES

expr2 expr1

6-50

Case study: Fun syntactic analyser (1)

 Put the above grammar in a file named Fun.g.

 Run ANTLR to generate a lexer and a parser:

 …$ java org.antlr.Tool Fun.g

 ANTLR creates the following classes:

– Class FunLexer contains methods that convert an
input stream (source code) to a token stream.

– Class FunParser contains parsing methods prog(),
var_decl(), com(), …, that consume the token
stream.

 The prog() method now returns an AST.

6-51

Case study: Fun syntactic analyser (2)

 Program to run the Fun syntactic analyser:

 public class FunRun {

 public static void main (String[] args) {

 InputStream source =

 new FileInputStream(args[0]);

 FunLexer lexer = new FunLexer(

 new ANTLRInputStream(source));

 CommonTokenStream tokens =

 new CommonTokenStream(lexer);

 FunParser parser =

 new FunParser(tokens);

 CommonTree ast = (CommonTree)

 parser.prog().getTree();

 }

 }

runs the
parser

gets the
resulting AST

