
7-1

7 Contextual analysis

 Aspects of contextual analysis

 Scope checking

 Type checking

 Case study: Fun contextual analyser

 Representing types

 Representing scopes

Programming Languages 3 © 2012 David A Watt, University of Glasgow

7-2

Aspects of contextual analysis

 Contextual analysis checks whether the source

program (represented by an AST) satisfies the

source language’s scope rules and type rules.

 Contextual analysis can be broken down into:

– scope checking

(ensuring that every identifier used in the source

program is declared)

– type checking

(ensuring that every operation has operands with the

expected types).

7-3

Example: Fun compilation (1)

 Source program:

int n = 15
pointless program
proc main ():
 while n > 1:
 n = n/2 .
.

7-4

Example: Fun compilation (2)

 AST after syntactic analysis (slightly simplified):

PROG

NOFORMAL

DIV

ASSN

PROC

WHILE

GT

VAR

ID
‘n’

INT
‘int’

ID
‘n’

NUM
‘1’

NUM
‘2’

ID
‘n’

NUM
‘15’

ID
‘n’

ID
‘main’

7-5

Example: Fun compilation (3)

 AST after contextual analysis: Type table (simplified)

‘n’ INT

‘main’ VOID → VOID

:BOOL

:INT :INT :INT :INT :INT :INT

:INT

PROG

DIV

ASSN

PROC

WHILE

GT

ID
‘n’

INT
‘int’

ID
‘n’

NUM
‘1’

NUM
‘2’

ID
‘n’

NUM
‘15’

ID
‘n’

ID
‘main’

NOFORMAL

VAR

7-6

Scope checking (1)

 Scope checking is the collection and
dissemination of information about declared
identifiers.

 The contextual analyser employs a type table.
This contains the type of each declared identifier.
E.g.:

‘n’ BOOL

‘fac’ INT → INT

‘main’ INT → VOID

7-7

Scope checking (2)

 Wherever an identifier is declared, put the
identifier and its type into the type table.

– If the identifier is already in the type table (in the same
scope), report a scope error.

 Wherever an identifier is used (e.g., in a
command or expression), check that it is in the
type table, and retrieve its type.

– If the identifier is not in the type table, report a scope
error.

7-8

Example: Fun scope checking

 Declaration of a variable identifier:

 Use of a variable identifier:

VAR

type
ID

‘x’

expr

ASSN

expr
ID

‘x’

put the identifier ‘x’ into the

type table, along with the type.

lookup the identifier ‘x’ in the

type table, and retrieve its type.

7-9

Type checking (1)

 Type checking is the process of checking that

every command and expression is well-typed,

i.e., free of type errors.

 Note: The compiler performs type checking only

if the source language is statically-typed.

7-10

Type checking (2)

 At each expression, check the type of any sub-

expression. Infer the type of the expression as a

whole.

– If a sub-expression has unexpected type, report a type

error.

 At each command, check the type of any

constituent expression.

– If an expression has unexpected type, report a type

error.

7-11

Example: Fun type checking

 Expression with binary operator:

 Assignment-command:

lookup ‘x’ and retrieve its type;

walk expr and note its type;

check that the two types are equivalent

GT

expr1 expr2

walk expr1, and check that its type is INT;

walk expr2, and check that its type is INT;

infer that the type of the whole expression

is BOOL

 If-command:

walk expr, and check that its type is BOOL;

walk com

IF

expr com

ASSN

expr
ID

‘x’

7-12

Contextual analysis with ANTLR (1)

 In ANTLR we can write a “tree grammar” which
describes the ASTs.

 Each rule in the tree grammar is a pattern match
for part of the AST.

 From the tree grammar, ANTLR generates a
depth-first left-to-right tree walker.

 We can enhance the tree grammar with actions
to perform scope and type checking. ANTLR will
insert these actions into the tree walker.

 Important: The position of an action determines
when it will be performed during the tree walk.

7-13

Contextual analysis with ANTLR (2)

 Examples of AST pattern matches:

 com

 : ^(ASSN ID expr)

 | ^(IF expr com)

 ;

This pattern
matches

and makes expr refer
to the right subtree.

ASSN

ID

This pattern
matches

and makes expr and
com refer to the left and
right subtrees.

IF

7-14

Case study: Fun tree grammar in ANTLR

(1)

 Fun tree grammar (outline):

 tree grammar FunChecker;

 options {

 tokenVocab = Fun;

 …;

}

 prog

 : ^(PROG var_decl* proc_decl+)

 ;

7-15

Case study: Fun tree grammar in ANTLR

(2)

 Fun tree grammar (continued):

 var_decl

 : ^(VAR type ID expr)

 ;

 type

 : BOOL

 | INT

 ;

7-16

Case study: Fun tree grammar in ANTLR

(3)

 Fun tree grammar (continued):

 com

 : ^(ASSN ID expr)

 | ^(IF expr com)

 | ^(SEQ com*)

 | …

 ;

7-17

Case study: Fun tree grammar in ANTLR

(4)

 Fun tree grammar (continued):

 expr

 : NUM

 | ID

 | ^(EQ expr expr)

 | ^(PLUS expr expr)

 | ^(NOT expr)

 | …

 ;

7-18

Case study: Fun tree grammar with

contextual analysis actions (1)

 Fun tree grammar with actions (outline):

 tree grammar FunChecker;

 options {

 tokenVocab = Fun;

 …;

}

 @members {

 private SymbolTable<Type> typeTable;

 …

}
SymbolTable<A> is
a table that records
identifiers with
attributes of type A.

7-19

Case study: Fun tree grammar with

contextual analysis actions (2)

 Fun tree grammar with actions (continued):

 expr returns [Type typ]

 : NUM

 { set $typ to INT; }

 | ID

 { lookup the identifier in type-

 Table, and let its type be t;

 set $typ to t; }

 | ^(EQ

 t1=expr //check the left expr

 t2=expr //check the right expr

) { check that t1 and t2 are INT;

 set $typ to BOOL;}

 | …

7-20

Case study: Fun tree grammar with

contextual analysis actions (3)

 Fun tree grammar with actions (continued):

 | ^(PLUS

 t1=expr //check the left expr

 t2=expr //check the right expr

) { check that t1 and t2 are INT;

 set $typ to INT; }
 | ^(NOT

 t=expr //check the expr

) { check that t is BOOL;

 set $typ to BOOL; }

 | …

 ;

7-21

Case study: Fun tree grammar with

contextual analysis actions (4)

 Fun tree grammar with actions (continued):

 com

 : ^(ASSN

 ID

 t=expr //check the expr

) { lookup the identifier in type-

 Table, and let its type be ti;

 check that ti is t; }

 | …

7-22

Case study: Fun tree grammar with

contextual analysis actions (5)

 Fun tree grammar with actions (continued):

 | ^(IF

 t=expr //check the expr

 com //check the com

) { check that t is BOOL; }

 | ^(SEQ

 com* //check the com*

)

 | …

 ;

7-23

Case study: Fun tree grammar with

contextual analysis actions (6)

 Fun tree grammar with actions (continued):

 var_decl

 : ^(VAR

 t1=type

 ID

 t2=expr //check the expr

) { put the identifier into

 typeTable along with t1;

 check that t1 is t2; }

 ;

7-24

Case study: Fun tree grammar with

contextual analysis actions (7)

 Fun tree grammar with actions (continued):

 type returns [Type typ]

 : BOOL { set $typ to BOOL; }

 | INT { set $typ to INT; }

 ;

7-25

Case study: Fun tree grammar with

contextual analysis actions (8)

 Fun tree grammar with actions (continued):

 prog

 : ^(PROG

 { put ‘read’ and ‘write’ with their

 types into typeTable; }

 var_decl* //check the var_decl*

 proc_decl+//check the proc_decl+

) { check that ‘main’ is in

 typeTable and has type

 VOID → VOID; }

 ;

7-26

Case study: Fun syntactic and

contextual analysers (1)

 Put the above tree grammar in a file named
FunChecker.g.

 Feed this as input to ANTLR:

 …$ java org.antlr.Tool FunChecker.g

 ANTLR generates a class FunChecker containing
methods that walk the AST and perform the
contextual analysis actions.

7-27

Case study: Fun syntactic and

contextual analysers (2)

 Program to run the Fun syntactic and contextual
analysers:

 public class FunRun {

 public static void main (String[] args) {

 // Syntactic analysis:
 …

 CommonTree ast = (CommonTree)

 parser.prog().getTree();

 // Contextual analysis:
 FunChecker checker =

 new FunChecker(

 new CommonTreeNodeStream(ast));

 checker.prog();

 }

 }

7-28

Representing types

 To implement type checking, we need a way to
represent the source language’s types.

 We can use the concepts of §2:

– primitive types

– cartesian product types (T1 × T2)

– disjoint union types (T1 + T2)

– mapping types (T1 → T2)

7-29

Case study: Fun types (1)

 Represent Fun primitive data types by BOOL and
INT.

 Represent the type of each Fun function by a
mapping type:

func T ' f (T x): … . T → T '

func T ' f (): … . VOID → T '

 Similarly, represent the type of each Fun proper
procedure by a mapping type:

proc p (T x): … . T → VOID

proc p (): … . VOID → VOID

7-30

Case study: Fun types (2)

 Represent the type of each Fun operator by a
combination of product and mapping types:

 + - * / (INT × INT) → INT

 == < > (INT × INT) → BOOL

 not BOOL → BOOL

7-31

Case study: implementation of Fun types

(1)

 Outline of class Type :

 public abstract class Type {

 public abstract boolean equiv (Type t);

 public class Primitive extends Type {

 …

 }

 public class Pair extends Type {

 …

 }

 public class Mapping extends Type {

 …

 }

 }

7-32

Case study: implementation of Fun types

(2)

 Subclass Type.Primitive has a field that
distinguishes different primitive types.

 Class Type exports:

 public static final Type

 VOID = new Type.Primitive(0),

 BOOL = new Type.Primitive(1),

 INT = new Type.Primitive(2);

7-33

Case study: implementation of Fun types

(2)

 Subclass Type.Pair has two Type fields, which are
the types of the pair components. E.g.:

 Type prod =

 new Type.Pair(Type.BOOL, Type.INT);

represents
BOOL × INT

7-34

Case study: implementation of Fun types

(3)

 Subclass Type.Mapping has two Type fields. These
are the domain type and range type of the
mapping type. E.g.:

 Type proctype =

 new Type.Mapping(Type.INT, Type.VOID);

 Type optype =

 new Type.Mapping(

 new Type.Pair(Type.INT, Type.INT),

 Type.BOOL);

represents
INT → VOID

represents
(INT × INT) → BOOL

7-35

Representing scopes (1)

 Consider a PL in which all declarations are either
global or local. Such a PL is said to have flat
block structure (see §10).

 The same identifier can be declared both globally
and locally. E.g., in Fun:

int x = 1

proc main ():
 int x = 2
 write(x)
.

proc p (bool x):
 if x: write(9).
.

writes 2

global variable

local variable

local variable

7-36

Representing scopes (2)

 The type table must distinguish between global
and local entries.

 Global entries are always present.

 Local entries are present only when analysing an
inner scope.

 At any given point during analysis of the source
program, the same identifier may occur in:

– at most one global entry, and

– at most one local entry.

7-37

Case study: Fun scopes (1)

 Type table during contextual analysis of a Fun
program:

int x = 1

proc main ():

 int x = 2
 write(x)
.

proc p (bool x):
 if x: write(9).
.

global ‘x’ INT

global

global

local

‘x’ INT

‘main’ VOID → VOID

‘x’ INT

global

global

global

local

‘x’ INT

‘main’ VOID → VOID

‘p’ BOOL → VOID

‘x’ BOOL

7-38

Case study: Fun scopes (2)

 Such a table can be implemented by a pair of
hash-tables, one for globals and one for locals:

 public class SymbolTable<A> {

 // A SymbolTable<A> object represents a scoped
 // table in which each entry consists of an identifier
 // and an attribute of type A.

 private HashMap<String,A>

 globals, locals;

 public SymbolTable () {

 globals = new HashMap<String,A>();

 locals = null; // Initially there are no locals.
 }

7-39

Case study: Fun scopes (2)

 Implementation in Java (continued):

 public void enterLocalScope () {

 locals = new HashMap<String,A>();

 }

 public void exitLocalScope () {

 locals = null;

 }

7-40

Case study: Fun scopes (3)

 Implementation in Java (continued):

 public void put (String id, A attr) { … }

 // Add an entry (id, attr) to the locals (if not null),
 // otherwise add the entry to the globals.

 public A get (String id) { … }

 // Retrieve the attribute corresponding to id in
 // the locals (if any), otherwise retrieve it from
 // the globals.

 }

 Now the type table can be declared thus:

 SymbolTable<Type> typeTable;

7-41

Case study: Fun scopes (4)

 In the Fun tree grammar (simplified):

 proc_decl

 : ^(PROC

 ID

 {enter local scope in

 typeTable; }
 t=formal

 var_decl* //check the var_decl*

 com //check the com

) {exit local scope in typeTable;

 put the identifier into
 typeTable with t → VOID; }

 | …

 ;

