U t :
& 7oleor 7 Contextual analysis

Aspects of contextual analysis
= Scope checking

= Type checking

= Case study: Fun contextual analyser
= Representing types

= Representing scopes

Programming Languages 3 © 2012 David A Watt, University of Glasgow

Universit :
QfGlasgowy Aspects of contextual analysis

= Contextual analysis checks whether the source
program (represented by an AST) satisfies the
source language’s scope rules and type rules.

= Contextual analysis can be broken down into:

— scope checking
(ensuring that every identifier used in the source
program is declared)

— type checking
(ensuring that every operation has operands with the
expected types).

o1a Universit —
qf%f;ssrgoxz Example: Fun compilation (1)

= Source program:

int n = 15
pointless program
proc main () :
while n > 1:
n =n/2

o1a Universit —
qf%f;ssrgoxz Example: Fun compilation (2)

= AST after syntactic analysis (slightly simplified):

PROG
— |
| |
VAR PROC

|
| |
NOFORMAL

University

of Glasgow

—

Example: Fun compilation (3)

= AST after contextual analysis:

Type table (simplified)

‘n’ INT
PROG -
| ‘main’ | VOID — VOID
| |
VAR PROC
| | |
NOFORMAL WHILE
|
‘BOOL |
ASSN
|
:[INT
GT DIV
(ANT JANT ANT JANT JANT ANT
INT ID NUM ID ID NUM ID ID NUM
‘Int’ ‘n’ 15’ ‘main’ ‘n’ 1’ ‘n’ ‘n’ ‘2’

U :
! %ﬁirg%iz Scope checking (1)

= Scope checking is the collection and
dissemination of information about declared
Identifiers.

= The contextual analyser employs a type table.
This contains the type of each declared identifier.
E.Q.:

‘n’ BOOL
‘fac’ INT — INT
' INT — VOID

! Umver31ty

fGlasgow Scope checking (2)

= Wherever an identifier is declared, put the
Identifier and its type into the type table.

— If the identifier is already in the type table (in the same
scope), report a scope error.

= Wherever an identifier is used (e.g., in a
command or expression), check that it is in the
type table, and retrieve its type.

— If the identifier is not In the type table, report a scope
error.

Universit :
qulasgoxz Example: Fun scope checking

= Declaration of a variable identifier:

VAR
| put the identifier X’ into the

| | | type table, a i
type D Sxpr yp , along with the type.
X

= Use of a variable identifier:
ASSN) . .
lookup the identifier ‘X" in the

| type table, and retrieve its type.

D expr

Uni ' :
Qf%ﬁirg%% Type checking (1)

= Type checking is the process of checking that
every command and expression is well-typed,
l.e., free of type errors.

= Note: The compiler performs type checking only
If the source language is statically-typed.

Uni ' :
Qf%ﬁirg%% Type checking (2)

= At each expression, check the type of any sub-
expression. Infer the type of the expression as a
whole.

— If a sub-expression has unexpected type, report a type
error.

= At each command, check the type of any
constituent expression.

— If an expression has unexpected type, report a type
error.

Universit :
Qf&l\z,isrgowy Example: Fun type checking

= EXxpression with binary operator:

GT walk expr;, and check that its type is INT,;
,% walk expr,, and check that its type is INT,;
expr, expr, Infer that the type of the whole expression
IS BOOL
= Assignment-command:
ASSN

lookup X’ and retrieve its type;
ID | walk expr and note its type;
o | WSPEL check that the two types are equivalent
= |[f-command:

i walk expr, and check that its type is BOOL,;

walk com
expr com

! Umver31ty

of Glasgow Contextual analysis with ANTLR (1)

In ANTLR we can write a “tree grammar” which
describes the ASTSs.

= Each rule in the tree grammar is a pattern match
for part of the AST.

= From the tree grammar, ANTLR generates a
depth-first left-to-right tree walker.

= We can enhance the tree grammar with actions
to perform scope and type checking. ANTLR will
Insert these actions into the tree walker.

= |mportant: The position of an action determines
when it will be performed during the tree walk.

Universit .
of%ﬁif;é% Contextual analysis with ANTLR (2)

= Examples of AST pattern matches:

com .- This pattern
~(ASSN ID expr) ’ matches | Assn

|
ID

and makes expr refer
to the right subtree.

- This pattern

——

and makes expr and
com refer to the left and
right subtrees.

7-13

University Case study: Fun tree grammar in ANTLR
(1)

of Glasgow

= Fun tree grammar (outline):
tree grammar FunChecker;

options {
tokenVocab = Fun;

L]
ces J

e
» (PROG var decl* proc decl+)

University Case study: Fun tree grammar in ANTLR
(2)

of Glasgow

= Fun tree grammar (continued):

var decl
(VAR type ID expr)

University Case study: Fun tree grammar in ANTLR
(3)

of Glasgow

= Fun tree grammar (continued):

com
~(ASSN ID expr)
*(IF expr com)

°
4

éfa| University Case study: Fun tree grammar in ANTLR

€y

of Glasgow

= Fun tree grammar (continued):

expr
NUM
ID
" (EQ expr expr)
»(PLUS expr expr)
~ (NOT expr)

University Case study: Fun tree grammar with
contextual analysis actions (1)

of Glasgow

= Fun tree grammar with actions (outline):
tree grammar FunChecker;

options {
tokenVocab = Fun;

L]
ces J

}

@members {
private SymbolTable<Type> typeTable;

} ™ SymbolTable<A> is
a table that records
Identifiers with
attributes of type A.

University Case study: Fun tree grammar with
contextual analysis actions (2)

¥ of Glasgow

= Fun tree grammar with actions (continued):

expr returns [Type typ]
NUM
{ set Stypto INT; }

| ID
{ lookup the identifier in type-
Table, and let its type be t;
set Styptot; }
| 7 (EQ

tl=expr //checkthe left expr

t2=expr //check the right expr
) { checkthat t1 and t2 are INT;
set Styp to BOOL;}

University Case study: Fun tree grammar with
contextual analysis actions (3)

¥ of Glasgow

= Fun tree grammar with actions (continued):

| 7~ (PLUS
tl=expr //check the left expr
t2=expr //check the right expr
) { checkthat t1 and t2 are INT;
set Styp to INT; }
| "~ (NOT
t=expr / /check the expr
) { checkthat t is BOOL;
set Styp to BOOL; }

University Case study: Fun tree grammar with
contextual analysis actions (4)

¥ of Glasgow

Fun tree grammar with actions (continued):

com
~ (ASSN
ID
t=expr / /check the expr
) { lookup the identifier in type-
Table, and let its type be ti;
check that tiis t; }

University Case study: Fun tree grammar with
contextual analysis actions (5)

¥ of Glasgow

= Fun tree grammar with actions (continued):

| ~(IF
t=expr / /check the expr
com / /check the com
) { checkthat t is BOOL: }
|~ (SEQ

com* / /check the com*
)

University Case study: Fun tree grammar with
contextual analysis actions (6)

¥ of Glasgow

= Fun tree grammar with actions (continued):

var decl
~ (VAR

tl=type

ID

t2=expr //check the expr

) { put the identifier into

typeTable along with t1;
check that t1is t2; }

University Case study: Fun tree grammar with
contextual analysis actions (7)

¥ of Glasgow

= Fun tree grammar with actions (continued):

type returns [Type typl
BOOL { set Stypto BOOL,; }
| INT { set Stypto INT; }

°
4

University Case study: Fun tree grammar with
contextual analysis actions (8)

¥ of Glasgow

= Fun tree grammar with actions (continued):

prog
~ (PROG
{ put ‘read’ and ‘write’ with their
types into typeTable; }
var decl* //checkthe var_decl
proc decl+//checkthe proc_decl+
) { check that ‘main’is in
typeTable and has type
VOID — VOID; }

!Umver31ty Case study: Fun syntactic and

of Glasgow contextual analysers (1)

= Put the above tree grammar in a file named
FunChecker.qg.

= Feed this as input to ANTLR:

..5> java org.antlr.Tool FunChecker.g

= ANTLR generates a class runchecker containing

methods that walk the AST and perform the
contextual analysis actions.

University Case study: Fun syntactic and
contextual analysers (2)

of Glasgow

= Program to run the Fun syntactic and contextual
analysers:

public class FunRun {
public static void main (String[] args) {

// Syntactic analysis:

CommonTree ast = (CommonTree)
parser.prog () .getTree () ;

// Contextual analysis:
FunChecker checker =
new FunChecker (
new CommonTreeNodeStream(ast))
checker.prog() ;

Universit _
qf%f;srgoxz Representing types

= To implement type checking, we need a way to
represent the source language’s types.

= \We can use the concepts of 82:

— primitive types

— cartesian product types (T, x T,)

— disjoint union types (T, + T,)

— mapping types (T, — T,)

Umver31ty
of Glasgow Case study: Fun types (1)

= Represent Fun primitive data types by BOOL and
INT.

= Represent the type of each Fun function by a
mapping type:
func T' £ (T x): .. . T—>T'
func T" £ (): .. . VOID - T

= Similarly, represent the type of each Fun proper
procedure by a mapping type:

proc p (T x): .. . T — VOID
proc p (): .. . VOID — VOID

Universit
of%ﬁif;é% Case study: Fun types (2)

= Represent the type of each Fun operator by a
combination of product and mapping types:

+ - * / (INT X INT) — INT
== < > (INT x INT) —» BOOL
BOOL — BOOL

University Case study: implementation of Fun types

(1)

¥ of Glasgow

= Qutline of class Type :

public abstract class Type /{
public abstract boolean equiv (Type t);

public class Primitive extends Type {

}

public class Pair extends Type ({

}
public class Mapping extends Type {

}

University Case study: implementation of Fun types

(2)

of Glasgow

= Subclass Type.Primitive has a field that
distinguishes different primitive types.

= Class Type exports:

public static final Type
VOID = new Type.Primitive (0)
BOOL = new Type.Primitive (1)
INT = new Type.Primitive (2);

4
4

University Case study: implementation of Fun types

(2)

of Glasgow

= Subclass Type.Pair has two Type fields, which are
the types of the pair components. E.g.:

Type prod =
new Type.Pair (Type.BOOL, Type.INT);

. represents
BOOL x INT

University Case study: implementation of Fun types

&)

of Glasgow

= Subclass Type.Mapping has two Type fields. These
are the domain type and range type of the

mapping type. E.qQ.: represents

Type proctype = T INT — VOID
new Type.Mapping (Type.INT, Type.VOID);

Type optype = represents
new Type.Mapping((INT x INT) - BOOL
new Type.Pair (Type.INT, Type.INT),
Type.BOOL) ;

Universit :
QfGlasgowy Representing scopes (1)

= Consider a PL in which all declarations are either
global or local. Such a PL is said to have flat
block structure (see 810).

= The same identifier can be declared both globally
and locally. E.g., in Fun:

int x = 1 -ooeeeeeeeoro global variable

proc main () : _
int x = 2 o local variable

L R B g B writes 2

________ local variable

proc p (bool x):
1f x: write(9).

Universit :
QfGlasgowy Representing scopes (2)

The type table must distinguish between global
and local entries.

= Global entries are always present.

= |ocal entries are present only when analysing an
Inner scope.

= At any given point during analysis of the source
program, the same identifier may occur in:

— at most one global entry, and

— at most one local entry.

e
ety

program:

int x =1

proc main
int x =
write (x)

proc p (bool x):
if x: write(9).
|

global
global
local

global

"B global

global

Case study: Fun scopes (1)

= Type table during contextual analysis of a Fun

X INT

X’ INT

‘main’ | VOID — VOID

X’ INT

X INT

‘main’ | VOID — VOID
BOOL

o1a| Universit
QfGlang\z Case study: Fun scopes (2)

= Such a table can be implemented by a pair of
hash-tables, one for globals and one for locals:

public class SymbolTable<A> ({

// A SymbolTable<A> object represents a scoped
// table in which each entry consists of an identifier
// and an attribute of type A.

private HashMap<String, A>
globals, locals;

public SymbolTable () {
globals = new HashMap<String,A>();
locals = null; // Initially there are no locals.

University
% of Glasgow Case study: Fun scopes (2)

= |mplementation in Java (continued):

public void enterLocalScope () {
locals = new HashMap<String,A>();

}

public void exitLocalScope () {
locals = null;

}

o1a| Universit
QfGlang\z Case study: Fun scopes (3)

= |mplementation in Java (continued):

public void put (String id, A attr) { .. }
// Add an entry (id, attr) to the locals (if not null),
// otherwise add the entry to the globals.

public A get (String id) { .. }

// Retrieve the attribute corresponding to id in
// the locals (if any), otherwise retrieve it from
// the globals.

}

= Now the type table can be declared thus:
SymbolTable<Type> typeTable;

University
2 of Glasgow Case study: Fun scopes (4)

= |n the Fun tree grammar (simplified):

proc decl

~ (PROC
D
{enter local scope in
typeTable; }
t=formal
var decl* //checkthe var_decl*
com / /check the com

) {exit local scope in typeTable;

put the identifier into
typeTable with t — VOID; }

