
8-1

8 VM code generation

 Aspects of code generation

 Address allocation

 Code selection

 Example: Fun code generator

 Representing addresses

 Handling jumps

Programming Languages 3 © 2012 David A Watt, University of Glasgow

8-2

Aspects of code generation (1)

 Code generation translates the source program

(represented by an AST) into equivalent object

code.

 In general, code generation can be broken down

into:

– address allocation

(deciding the representation and address of each

variable in the source program)

– code selection

(selecting and generating object code)

– register allocation (where applicable)

(assigning registers to local and temporary variables).

8-3

Aspects of code generation (2)

 Here we cover code generation for stack-based

VMs:

– address allocation is straightforward

– code selection is straightforward

– register allocation is not an issue!

 Later we will cover code generation for real

machines, where register allocation is an issue

(see §15).

8-4

Example: Fun compilation (1)

 Source program:

int n = 15

pointless program

proc main ():

 while n > 1:

 n = n/2 .

.

8-5

Example: Fun compilation (2)

 AST after syntactic analysis (slightly simplified):

PROG

NOFORMAL

DIV

ASSN

PROC

WHILE

GT

VAR

ID
‘n’

INT
‘int’

ID
‘n’

NUM
‘1’

NUM
‘2’

ID
‘n’

NUM
‘15’

ID
‘n’

ID
‘main’

8-6

Example: Fun compilation (3)

 SVM object code after code generation:

Address table

(simplified)

‘n’ 0 (global)

‘main’ 7 (code)

0:

3:

6:

7:

10:

13:

14:

17:

20:

23:

24:

27:

30:

LOADC 15

CALL 7

HALT

LOADG 0

LOADC 1

COMPGT

JUMPF 30

LOADG 0

LOADC 2

DIV

STOREG 0

JUMP 7

RETURN 0

code to
evaluate
“n>1”

code to
execute
“n=n/2”

code to execute
“while n>1:
n=n/2.”

code for
procedure
main()

8-7

Address allocation (1)

 Address allocation requires collection and

dissemination of information about declared

variables, procedures, etc.

 The code generator employs an address table.

This contains the address of each declared

variable, procedure, etc. E.g.:

‘x’ 0 (global)

‘y’ 2 (global)

‘fac’ 0 (code)

‘main’ 7 (code)

variables

procedures

8-8

Address allocation (2)

 At each variable declaration, allocate a suitable
address, and put the identifier and address into
the address table.

 Wherever a variable is used (e.g., in a command
or expression), retrieve its address.

 At each procedure declaration, note the address
of its entry point, and put the identifier and
address into the address table.

 Wherever a procedure is called, retrieve its
address.

8-9

Address allocation (3)

 Allocate consecutive addresses to variables,
taking account of their sizes. E.g.:

0

1

2

3

4

5

6

…

 Note: Fun is simpler: all variables are of size 1.

variable of size 4

variable of size 1

variable of size 2

8-10

Code selection

 The code generator will walk the AST.

 For each construct (expression, command, etc.)
in the AST, the code generator must emit
suitable object code.

 The developer must plan what object code will be
selected by the code generator.

8-11

Code templates

 For each construct in the source language, the
developer should devise a code template. This
specifies what object code will be selected.

 The code template to evaluate an expression
should include code to evaluate any sub-
expressions, together with any other necessary
instructions.

 The code template to execute a command
should include code to evaluate any sub-
expressions and code to execute any sub-
commands, together with any other necessary
instructions.

8-12

Example: Fun → SVM code templates (1)

 Code template for binary operator:

expr1

PLUS

expr2

 E.g., code to evaluate “m+(7*n)”:

PLUS

TIMES

NUM
‘7’

ID
‘n’

ID
‘m’

LOADG 3

LOADC 7

LOADG 4

MULT

ADD

code to
evaluate “7*n”

code to
evaluate “m”

code to evaluate expr1

code to evaluate expr2
ADD

 We are assuming that m and n are global
variables at addresses 3 and 4, respectively.

8-13

Example: Fun → SVM code templates (2)

 Code generator action for binary operator:

PLUS

expr1 expr2

walk expr1 generating code;

walk expr2 generating code;
emit instruction “ADD”

 Compare:

– The code template specifies what code should be
selected.

– The action specifies what the code generator will
actually do to generate the selected code.

8-14

Example: Fun → SVM code templates (3)

 Code template for assignment-command:

 E.g., code to execute “m = n-9”:

ASSN

MINUS

NUM
‘9’

ID
‘n’

ID
‘m’

LOADG 4

LOADC 9

SUB

STOREG 3

code to
evaluate “n-9”

ASSN

expr
ID

‘x’

code to evaluate expr
STOREG d or STOREL d

where d is the
address offset of ‘x’

8-15

Example: Fun → SVM code templates (4)

 Code generator action for assignment-command:

walk expr generating code;

lookup ‘x’ and retrieve its address d;
emit instruction “STOREG d” (if x is global)

or “STOREL d” (if x is local)

ASSN

expr
ID

‘x’

8-16

Example: Fun → SVM code templates (5)

 Code template for if-command:

 E.g., code to execute “if m>n: m = n.”:

IF

com expr

IF

ASSN

ID
‘n’

ID
‘m’

GT

ID
‘n’

ID
‘m’

LOADG 3

LOADG 4

CMPGT

JUMPF

LOADG 4

STOREG 3

code to evaluate expr
JUMPF

code to execute com

code to eval-
uate “m>n”

code to exec-
ute “m = n”

8-17

Example: Fun → SVM code templates (6)

 Code generator action for if-command:

walk expr, generating code;
emit instruction “JUMPF 0”;

walk com, generating code;

patch the correct address into
the above JUMPF instruction

IF

com expr

8-18

Code generation with ANTLR

 Recall: In ANTLR we can write a “tree grammar”
which describes the ASTs. Each rule in the tree
grammar is a pattern match for part of the AST.
From the tree grammar, ANTLR generates a
depth-first left-to-right tree walker.

 To build a code generator, we enhance the tree
grammar with actions to perform address
allocation and code selection.

 ANTLR inserts those actions into the tree walker.

8-19

Case study: Fun tree grammar with code

generation actions (1)

 Fun tree grammar with actions (outline):

 tree grammar FunEncoder;

 options {

 tokenVocab = Fun;

 …;

}

 @members {

 private SVM obj = new SVM();

 private int varaddr = 0;

 private SymbolTable<Address> addrTable;

 …

}

Creates an
instance of the
SVM. The code
generator will emit
instructions directly
into its code store.

8-20

Case study: Fun tree grammar with code

generation actions (2)

 Fun tree grammar with actions (continued):

 expr

 : NUM

 { let n = value of the numeral;

 emit “LOADC n”; }

 | ID

 { lookup the identifier in

 addrTable and

 retrieve its address d;

 emit “LOADG d” or

 “LOADL d”; }
 | …

8-21

Case study: Fun tree grammar with code

generation actions (3)

 Fun tree grammar with actions (continued):

 | ^(EQ

 expr //generate code for left expr

 expr //generate code for right expr

) { emit “CMPEQ”; }

 | ^(PLUS

 expr //generate code for left expr

 expr //generate code for right expr

) { emit “ADD”; }

 | ^(NOT

 expr //generate code for expr

) { emit “INV”; }

 | …

 ;

8-22

Case study: Fun tree grammar with code

generation actions (4)

 Fun tree grammar with actions (continued):

 com

 : ^(ASSN

 ID

 expr //generate code for expr

) { lookup the identifier in

 addrTable and

 retrieve its address d;

 emit “STOREG d” or

 “STOREL d”; }

 | …

8-23

Case study: Fun tree grammar with code

generation actions (5)

 Fun tree grammar with actions (continued):

 | ^(IF

 expr //generate code for expr

 { emit “JUMPF 0”

 (incomplete); }

 com //generate code for com

) { let c = next instruction address;

 patch c into the incomplete

 “JUMPF” instruction; }

 | ^(SEQ

 com* //generate code for com*
)

 | …

 ;

8-24

Case study: Fun tree grammar with code

generation actions (6)

 Fun tree grammar with actions (continued):

 var_decl

 : ^(VAR

 type

 ID

 expr //generate code for expr

) { put the identifier into addr-

 Table along with varaddr;

 increment varaddr; }

 ;

 type

 : BOOL

 | INT

 ;

8-25

Case study: Fun tree grammar with code

generation actions (7)

 Fun tree grammar with actions (continued):

 prog returns [SVM objprog]

 : ^(PROG

 { put ‘read’ and ‘write’ into

 addrTable; }

 var_decl* //generate code for var_decl*

 { emit “CALL 0” (incomplete);

 emit “HALT”; }

 proc_decl+//generate code for proc_decl*

) { lookup ‘main’ in addrTable

 and retrieve its address c;

 patch c into the incomplete

 CALL instruction;

 set $objprog to obj; }

 ;

8-26

Case study: Fun compiler (1)

 Put the above tree grammar in a file named
FunEncoder.g.

 Feed this as input to ANTLR:

 …$ java org.antlr.Tool FunEncoder.g

 ANTLR generates a class FunEncoder containing
methods that walk the AST and perform the code
generation actions.

8-27

Case study: Fun compiler (2)

 Program to run the Fun syntactic analyser and
code generator:

 public class FunRun {

 public static void main (String[] args) {

 // Syntactic analysis:
 …

 CommonTree ast = (CommonTree)

 parser.prog().getTree();

 // Code generation:
 FunEncoder encoder = new FunEncoder(

 new CommonTreeNodeStream(ast));

 SVM objcode = encoder.prog();

 }

 }

8-28

Representing addresses

 The code generator must distinguish between
three kinds of addresses:

– A code address refers to an instruction within the
space allocated to the object code.

– A global address refers to a location within the space
allocated to global variables.

– A local address refers to a location within a space
allocated to a group of local variables.

8-29

Case study: implementation of Fun

addresses

 Implementation in Java:

 public class Address {

 public static final int

 CODE = 0, GLOBAL = 1, LOCAL = 2;

 public int offset;

 public int locale; // CODE, GLOBAL, or LOCAL

 public Address (int off, int loc) {

 offset = off; locale = loc;

 }

 }

8-30

Handling jumps (1)

 The code generator emits instructions one by
one. When an instruction is emitted, it is added to
the end of the object code.

 At the destination of a jump instruction, the code
generator must note the destination address and
incorporate it into the jump instruction.

8-31

Handling jumps (2)

 For a backward jump, the destination address is
already known when the jump instruction is
emitted.

 For a forward jump, the destination address is
unknown when the jump instruction is emitted.
Solution:

– Emit an incomplete jump instruction (with 0 in its
address field), and note its address.

– When the destination address becomes known later,
patch that address into the jump instruction.

8-32

Example: Fun while-command (1)

 Code template for while-command:

WHILE

expr com

code to evaluate expr

JUMPF

code to execute com

JUMP

…

8-33

Example: Fun while-command (2)

 AST of while-command “while n>1: n=n/2.”:

DIV

ASSN

WHILE

GT

ID
‘n’

ID
‘n’

NUM
‘1’

NUM
‘2’

ID
‘n’

 Assume that the while-command’s object code
will start at address 7.

8-34

Example: Fun while-command (3)

 Code generator action (animated):

…

…

0:

7:

note the current instruction address c1

walk expr, generating code

note the current instruction address c2

emit “JUMPF 0”

walk com, generating code

emit “JUMP c1”

note the current instruction address c3

patch c3 into the jump at c2

…

…

0:

7:

note the current instruction address c1

walk expr, generating code

note the current instruction address c2

emit “JUMPF 0”

walk com, generating code

emit “JUMP c1”

note the current instruction address c3

patch c3 into the jump at c2

7 c1

…

…

LOADG 0

LOADC 1

COMPGT

0:

7:

10:

13:

14:

note the current instruction address c1

walk expr, generating code

note the current instruction address c2

emit “JUMPF 0”

walk com, generating code

emit “JUMP c1”

note the current instruction address c3

patch c3 into the jump at c2

7 c1

…

…

LOADG 0

LOADC 1

COMPGT

0:

7:

10:

13:

14:

note the current instruction address c1

walk expr, generating code

note the current instruction address c2

emit “JUMPF 0”

walk com, generating code

emit “JUMP c1”

note the current instruction address c3

patch c3 into the jump at c2

14 c2 7 c1

…

…

LOADG 0

LOADC 1

COMPGT

JUMPF 0

0:

7:

10:

13:

14:

17:

note the current instruction address c1

walk expr, generating code

note the current instruction address c2

emit “JUMPF 0”

walk com, generating code

emit “JUMP c1”

note the current instruction address c3

patch c3 into the jump at c2

14 c2 7 c1

…

…

LOADG 0

LOADC 1

COMPGT

JUMPF 0

LOADG 0

LOADC 2

DIV

STOREG 0

0:

7:

10:

13:

14:

17:

20:

23:

24:

27:

note the current instruction address c1

walk expr, generating code

note the current instruction address c2

emit “JUMPF 0”

walk com, generating code

emit “JUMP c1”

note the current instruction address c3

patch c3 into the jump at c2

14 c2 7 c1

…

…

LOADG 0

LOADC 1

COMPGT

JUMPF 0

LOADG 0

LOADC 2

DIV

STOREG 0

JUMP 7

0:

7:

10:

13:

14:

17:

20:

23:

24:

27:

30:

note the current instruction address c1

walk expr, generating code

note the current instruction address c2

emit “JUMPF 0”

walk com, generating code

emit “JUMP c1”

note the current instruction address c3

patch c3 into the jump at c2

14 c2 7 c1

…

…

LOADG 0

LOADC 1

COMPGT

JUMPF 0

LOADG 0

LOADC 2

DIV

STOREG 0

JUMP 7

0:

7:

10:

13:

14:

17:

20:

23:

24:

27:

30:

note the current instruction address c1

walk expr, generating code

note the current instruction address c2

emit “JUMPF 0”

walk com, generating code

emit “JUMP c1”

note the current instruction address c3

patch c3 into the jump at c2

30 c3 14 c2 7 c1

…

…

LOADG 0

LOADC 1

COMPGT

JUMPF 30

LOADG 0

LOADC 2

DIV

STOREG 0

JUMP 7

0:

7:

10:

13:

14:

17:

20:

23:

24:

27:

30:

note the current instruction address c1

walk expr, generating code

note the current instruction address c2

emit “JUMPF 0”

walk com, generating code

emit “JUMP c1”

note the current instruction address c3

patch c3 into the jump at c2

30 c3 14 c2 7 c1

