Universit :
& soheor 8 VM code generation

Aspects of code generation
= Address allocation

= Code selection

= Example: Fun code generator
= Representing addresses

= Handling jumps

Programming Languages 3 © 2012 David A Watt, University of Glasgow

Universit :
QfGlasgowy Aspects of code generation (1)

= Code generation translates the source program
(represented by an AST) into equivalent object
code.

= |n general, code generation can be broken down
Into:
— address allocation

(deciding the representation and address of each
variable in the source program)

— code selection
(selecting and generating object code)

— register allocation (where applicable)
(assigning registers to local and temporary variables).

Universit :
Qf&l\z,lsrgoxz Aspects of code generation (2)

= Here we cover code generation for stack-based
VMS:

— address allocation is straightforward
— code selection is straightforward
— register allocation is not an issue!
= [ater we will cover code generation for real

machines, where register allocation is an issue
(see §15).

o1a Universit —
qf%f;ssrgoxz Example: Fun compilation (1)

= Source program:

int n = 15
pointless program
proc main () :
while n > 1:
n =n/2

o1a Universit —
qf%f;ssrgoxz Example: Fun compilation (2)

= AST after syntactic analysis (slightly simplified):

PROG
— |
| |
VAR PROC

|
| |
NOFORMAL

o1a| Universit
of Glasgmz

O: |[LOADC 15
3: |CALL 7
6: |[HALT

7: | LOADG O
LOADC 1
COMPGT
JUMPE 30
LOADG O
LOADC 2
DIV
STOREG O
- |JUMP 7/

- |IRETURN O

—

ode for
orocedure-
B ()

code to
—evaluate
“n> 1 b}

code to
—execute
“n:n / 2 b}

—_

Example: Fun compilation (3)

= SVM object code after code generation:

Address table
(simplified)

1

n

O (global)

‘main’

7 (code)

code to execute
- “while n>1:
n=n/2.”"

Umver31ty
of Glasgow

pX O (global)
Yy’ 2 (global)
‘fac O (code)

7 (code)

= Address allocation requires collection and
dissemination of information about declared
variables, procedures, etc.

—_

J \

Address allocation (1)

= The code generator employs an address table.
This contains the address of each declared
variable, procedure, etc. E.g.:

_ variables

— procedures

! Umver51ty

of Glasgow Address allocation (2)

At each variable declaration, allocate a suitable
address, and put the identifier and address into
the address table.

= Wherever a variable is used (e.g., in a command
Or expression), retrieve its address.

= At each procedure declaration, note the address
of its entry point, and put the identifier and
address into the address table.

= Wherever a procedure is called, retrieve its
address.

Universit :
QfGlang\z Address allocation (3)

= Allocate consecutive addresses to variables,
taking account of their sizes. E.g.:

---------------------- _ variable of size 4

| variable of size 1

S B N W O O O

...................... }variable of size 2

= Note: Fun is simpler: all variables are of size 1.

Umver31ty :
of Glasgow Code selection

= The code generator will walk the AST.

= For each construct (expression, command, etc.)
In the AST, the code generator must emit
suitable object code.

= The developer must plan what object code will be
selected by the code generator.

! Umver31ty

fGlasgow Code templates

= For each construct in the source language, the
developer should devise a code template. This
specifies what object code will be selected.

= The code template to evaluate an expression
should include code to evaluate any sub-
expressions, together with any other necessary
Instructions.

= The code template to execute a command
should include code to evaluate any sub-
expressions and code to execute any sub-
commands, together with any other necessary

Instructions.

Univers:
quﬁirgsé% Example: Fun - SVM code templates (1)

= Code template for binary operator:

PLUS === code to evaluate expr,
ﬁ‘ﬁ code to evaluate expr,
expr; expr, ADD

= E.g., code to evaluate “m+ (7*n)":

code to
PLUS === LOADG 3 F gyaluate “m”
. LOADC 7 ot
- code to
TIMES
LOADG 4 evaluate “7*n”
r—J——j MULT
ID NUM ID ADD
‘m, ‘71 ‘n,

= We are assuming that m and n are global
variables at addresses 3 and 4, respectively.

Univers:
quﬁirgsé% Example: Fun —» SVM code templates (2)

= Code generator action for binary operator:

PLUS walk expr, generating code;

[—‘—\ walk expr, generating code;
expr, /expr, emitinstruction “ADD”

= Compare:

— The code template specifies what code should be
selected.

— The action specifies what the code generator will
actually do to generate the selected code.

Univers:
of%lﬁigé% Example: Fun — SVM code templates (3)

= Code template for assignment-command:

ASSN == code to evaluate expr
| STOREG d or STOREL d

ID expr \ ,
where d is the
address offset of ‘X’

7

= E.g., code to execute “m = n-9":

ASSN sl [0ADG 4 } de t
| code 1o
LOADC 9
| 11 _ 1]
TG SUR evaluate “n-9
[—k—\ STOREG 3

1D ID NUM
‘m’ ‘n’ ‘9’

Univers;
of&lﬁigﬁ Example: Fun — SVM code templates (4)

= Code generator action for assignment-command:

ASSN walk expr generating code;

| lookup ‘X" and retrieve its address d;
ID expr emit instruction “sTOREG d” (if x is global)
h or “sTOREL d” (if x is local)

Univers:
of%lﬁigé% Example: Fun — SVM code templates (5)

= Code template for if-command:

IF =P code to evaluate expr
r——L—j JUMPFE
expr com (code to execute com

b

= E.g., code to execute “if m>n: m = n.":

IF sl [0OADG 3

| LOADG 4 code to eval-
| | uate “m>n"
GT ASSN CMPGT

A — o

D ID D ID LOADG 4 }code to exec-
STOREG 3 J ute “m=n"

Univers:
of%lﬁigé% Example: Fun — SVM code templates (6)

= Code generator action for if-command.:

IF walk expr, generating code;
[—k—| emit instruction “JUMPF 07
expr com walk com, generating code;
patch the correct address into
the above JUMPF instruction

! Umver51ty

fGlasgow Code generation with ANTLR

= Recall: In ANTLR we can write a “tree grammar”
which describes the ASTs. Each rule in the tree
grammar is a pattern match for part of the AST.
From the tree grammar, ANTLR generates a
depth-first left-to-right tree walker.

= To build a code generator, we enhance the tree
grammar with actions to perform address
allocation and code selection.

= ANTLR inserts those actions into the tree walker.

University Case study: Fun tree grammar with code
generation actions (1)

of Glasgow

= Fun tree grammar with actions (outline):

tree grammar FunEncoder;

options { Creates an
tokenVocab = Fun; / Instance of the
7 SVM. The code
} / generator will emit
7 Instructions directly
@members | Into its code store.
private SVM obj = new SVM();
private 1nt varaddr = 0;

private SymbolTable<Address> addrTable;

University Case study: Fun tree grammar with code
generation actions (2)

¥ of Glasgow

= Fun tree grammar with actions (continued):

expr
NUM
{ let n = value of the numeral;
emit “LOADC n”; }

{ lookup the identifier in
addrTable and
retrieve its address d;

emit “LOADG d” or

“LOADL d”; }

University Case study: Fun tree grammar with code
generation actions (3)

¥ of Glasgow

= Fun tree grammar with actions (continued):

" (EQ
expr
expr

)
~(PLUS
expr
expr

)

~ (NOT
expr

)

/ /generate code for left expr
/ /generate code for right expr
{ emit “CMPEQ”; }

/ /generate code for left expr
/ /generate code for right expr
{ emit “ADD”; }

/ /generate code for expr
{ emit “INV”; }

University Case study: Fun tree grammar with code
generation actions (4)

¥ of Glasgow

Fun tree grammar with actions (continued):

com
~ (ASSN
ID
expr / /generate code for expr
) { lookup the identifier in
addrTable and
retrieve its address d;
emit “STOREG d” or
“‘STOREL d”; }

University Case study: Fun tree grammar with code
generation actions (5)

¥ of Glasgow

= Fun tree grammar with actions (continued):

| 7 (IF
expr / /generate code for expr
{ emit “"JUMPF 0"
(incomplete); }
com / /generate code for com
) { let ¢ = next instruction address;
patch c into the incomplete
“JUMPF” instruction; }
| 7~ (SEQ
/ /generate code for com*

University Case study: Fun tree grammar with code
generation actions (6)

¥ of Glasgow

= Fun tree grammar with actions (continued):

var decl
~ (VAR

type

ID

expr / /generate code for expr

) { put the identifier into addr-
Table along with varaddr;

Increment varaddr; }

University Case study: Fun tree grammar with code
generation actions (7)

¥ of Glasgow

Fun tree grammar with actions (continued):

prog returns [SVM objprog]
~ (PROG
{ put ‘read’ and ‘write’ into
addrTable; }
var decl* //generate code for var_decl*
{ emit “"CALL 0” (incomplete);
emit “HALT”; }
proc decl+//generate code for proc_decl*
) { lookup ‘main’ in addrTable
and retrieve its address c;
patch c into the incomplete
CALL instruction;
set Sobjprogto obj; }

Universit :
qf%f;srgoxz Case study: Fun compiler (1)

= Put the above tree grammar in a file named
FunEncoder.qg.

= Feed this as input to ANTLR:

..5> java org.antlr.Tool FunEncoder.g

= ANTLR generates a class runkEncoder containing

methods that walk the AST and perform the code
generation actions.

o1a Universit :
QfGlang\z Case study: Fun compiler (2)

= Program to run the Fun syntactic analyser and
code generator:

public class FunRun {
public static void main (String[] args) {
// Syntactic analysis:
CommonTree ast = (CommonTree)
parser.prog () .getTree () ;

// Code generation:
FunEncoder encoder = new FunkEncoder (

new CommonTreeNodeStream(ast))
SVM objcode = encoder.prog();

Universit :
QfGlang\z Representing addresses

= The code generator must distinguish between
three kinds of addresses:

— A code address refers to an instruction within the
space allocated to the object code.

— A global address refers to a location within the space
allocated to global variables.

— Alocal address refers to a location within a space
allocated to a group of local variables.

Universit . implementation of Fun
g_,QfGlasgowy Case study plementation ot Fu

addresses

= |Implementation in Java:

public class Address {

public static final int
CODE = 0, GLOBAL = 1, LOCAL = 2;

public int offset;
public int locale; // CODE, GLOBAL, or LOCAL

public Address (int off, int loc) {
offset = off; locale = 1loc;

}

Univers: : :
Qf%ﬁirg%% Handling jumps (1)

= The code generator emits instructions one by
one. When an instruction is emitted, it is added to
the end of the object code.

= At the destination of a jJump instruction, the code
generator must note the destination address and
Incorporate it into the jJump instruction.

Universi : :
of&ll\z’lesrgscl)twy Handling jumps (2)

= For a backward jump, the destination address Is
already known when the jump instruction is
emitted.

= For a forward jump, the destination address is
unknown when the jump instruction is emitted.
Solution:

— Emit an incomplete jump instruction (with O in its
address field), and note its address.

— When the destination address becomes known later,
patch that address into the jump instruction.

Universit :
QfGlang\z Example: Fun while-command (1)

= Code template for while-command:
WHILE "

o

expr com

code to evaluate expr
JUMPF
code to execute com
JUMP

Universit :
qf%f;ssrgoxz Example: Fun while-command (2)

= AST of while-command “while n>1: n=n/2.":

WHILE
|
|
ASSN
|
|
GT DIV

ID NUM D ID | NUM
‘n’ 11’ ‘n’ ‘n’ 12’

= Assume that the while-command’s object code
will start at address 7.

Universit :
Qf&l\;ssrgoxz Example: Fun while-command (3)

= Code generator action (animated):

note the current instruction address c, 0: |-
walk expr, generating code
note the current instruction address c, 7: |LOADG O
emit “JUMPF 0~ 10: |LOADC 1
walk com, generating code 13: |COMPGT
emit “JUMP c,” 14: |JUMPF 30
note the current instruction addressc; ~ 17: [LOADG 0
patch c, into the jJump at c, 20: |[LOADC 2
23: |DIV
24: |STOREG 0
Ci| 7| Cz|14] ¢c3/30 27: |JUMP 7
30:

