Umv rs1 . . .
!onsgo% O Variables and lifetime

Variables and storage

= Simple vs composite variables

= Lifetime: global, local, heap variables
= Pointers

= Commands

= EXxpressions with side effects

Programming Languages 3 © 2012 David A Watt, University of Glasgow

Universit :
of Glasgoxz What are variables?

= |n functional PLs (and in mathematics), a
variable stands for a fixed (but possibly
unknown) value.

= |n imperative and OO PLs, a variable contains a
value. The variable may be inspected and
updated as often as desired.

— Such a variable can be used to model a real-world
object whose state changes over time.

University
<) of Glasgow Storage

= To understand such variables,
assume an abstract storage
model:

— A store is a collection of cells, each
of which has a unique address.

— Each cell is either allocated or
unallocated.

— Each allocated cell contains either a
simple value or undefined.

— An allocated cell can be inspected,
unless it contains undefined.

— An allocated cell can be updated at
any time.

true

‘X’

3.14 |

~--:- unallocated
~ cells

> allocated
- cells

undefined

Universit : : :
qulasgoxz Simple vs composite variables

= A simple variable is one that contains a
primitive value or pointer.

— A simple variable occupies a single allocated cell.

= A composite variable is one that contains a
composite value.

— A composite variable occupies a group of adjacent
allocated cells.

! Umver31ty

of Glasgow Composite variables

= A variable of a composite type has the same
structure as a value of the same type. For
Instance:

— A tuple variable is a tuple of component variables.

— An array variable is a mapping from an index range to a
group of component variables.

= Depending on the PL, a composite variable can
be:

— totally updated (all at once), and/or

— selectively updated (one component at a time).

o1a| Universit : :
QfGlang\z Example: C composite variables

= Declaration and updating of struct variables:

struct Date {int vy, m, d;}
struct Date xmas, today;

xmas.d = 25;
xmas.m = 12;
xmas.y = 2008;

selective updating

today = xmas; T total updating

= Declaration and updating of array variable:

float a[10];
a[i] = 3.1417; w-mmmmmmmmmmmmmmmmm selective updating

Universit D
of Glasgowy Lifetimes

= Every variable is created at some definite time,
and destroyed at some later time when it is no
longer needed.

= A variable’s lifetime is the interval between its
creation and destruction.

= A variable occupies cells only during its lifetime.
When the variable is destroyed, these cells may
be deallocated.

— And these cells may subsequently be re-allocated to
other variable(s).

Umver31t :
! Gasgowy Global vs local vs heap variables

= Aglobal variable’s lifetime is the program’s
entire run-time. It is created by a global
declaration.

= Alocal variable’s lifetime is an activation of a
block. It is created by a declaration within that
block, and destroyed on exit from that block.

= A heap variable’s lifetime is arbitrary, but
bounded by the program’s run-time. It can be
created at any time (by an allocator), and may
be destroyed at any later time. It is accessed
through a pointer.

Universit :
QfGlasgowy Example: C global and local variables (1)

= Qutline of C program:

extern int x1, x2; o global
variables

void main () {
int ml; f£float m2;, i local variables

£07 ... e();

}
void £ () {
float f1; int f2; - local variables
.e()s
}

--- local variable

Universit :
QfGlasgowy Example: C global and local variables (2)

= |ifetimes of and local variables:

lifetime of e1

lifetime of x1, x2

= Global and local variables’ lifetimes are nested.
They can never be overlapped.

. nested m— overlapped
ﬁ q

University Example: local variables and recursion

(1)

¥ of Glasgow

= Qutline of C program:

void main () {
float m;
. r(3);
}

void r (int n) {
int 1i;
if (n > 1) {
. r(n-1),; ..

}

University Example: local variables and recursion

(2)

¥ of Glasgow

= |ifetimes of and local variables:

lifetime of m

= Note: A local variable of a recursive
procedure/function has several nested lifetimes.

Universit .
qf%ﬁslgovz Example: C heap variables (1)

= Qutline of C program:

struct IntNode {int elem; IntlList succ;}
typedef struct IntNode * IntList;

IntList ¢ (int h, IntList t) {
// Return an IntList with head h and tail t.
IntList ns =
(IntList) malloc (sizeof IntNode);
ns->elem = h; ns->succ = t;
return ns;

}

void d (IntList ns) {
ns—->succ = nNs—->sSuUucc->sSucc;

Universit .
qf%ﬁslgovz Example: C heap variables (2)

= Qutline (continued):

void main {

IntList 11, 12;

11 = ¢c(3, c(b5, c (7, NULL)));
12 = c(2, 11);

d(1l1l);

Universit :
quﬁirgsé\z Example: C heap variables (3)

= After initializing 11 and 12:
1% —> 2 3 / 5 / 7

18 o

N N e N heap
variables

= Aftercalling d(11):

2 > 2 3 5 4
[— P— o—/ °

“ unreachable

Universit _
qf%ﬁslgovz Example: C heap variables (4)

= Lifetimes of local and heap variables:

B/ , c(5, c (3, c(2,
))))

d(..)

lifetime of 11, 12

B ()

lifetime of 7-node >
lifetime of 5-node >
lifetime of 3-node >

lifetime of 2-node :

= Heap variables’ lifetimes can overlap one another
and local/global variables’ lifetimes.

Universit
QfGlasgowy Allocators and deallocators

= An allocator is an operation that creates a heap
variable, yielding a pointer to that heap variable.
E.Q.:

— C’s allocator is a library function, malloc ().

— Java’s allocator is an expression of the form

”

‘new C (...)".

= A deallocator is an operation that explicitly
destroys a designated heap variable. E.g.:

— C’s deallocator is a library function, free ().

— Java has no deallocator at all.

Universit -
of Glasgoxz Reachability

= A heap variable remains reachable as long as it
can be accessed by following pointers from a
global or local variable.

= A heap variable’s lifetime extends from its
creation until:
— It Is destroyed by a deallocator, or
— It becomes unreachable, or

— the program terminates.

Universit :
QfGlasgowy Pointers (1)

A pointer Is a reference to a particular variable.
(In fact, pointers are sometimes called
references.)

= A pointer’s referent is the variable to which it
refers.

= A null pointer is a special pointer value that has
no referent.

= A pointer is essentially the address of its referent
In the store.

— However, each pointer also has a type, and the type of
a pointer allows us to infer the type of its referent.

Universit _
QfGl\zliSIémz Pointers (2)

= Pointers and heap variables can be used to
represent recursive values such as lists and
trees.

= But the pointer itself is a low-level concepit.
Manipulation of pointers is notoriously error-
prone and hard to understand.

= For example, the C assignment “p->succ =qg;”
appears to manipulate a list, but which list? Also:

— Does it delete nodes from the list?
— Does it stitch together parts of two different lists?

— Does it introduce a cycle?

Universit : :
Qfgl\zlisrgowy Dangling pointers (1)

= A dangling pointer is a pointer to a variable that
has been destroyed.
= Dangling pointers arise when:

— a pointer to a heap variable still exists after the heap
variable is destroyed by a deallocator

— a pointer to a local variable still exists at exit from the
block in which the local variable was declared.

= A deallocator immediately destroys a heap
variable; all existing pointers to that heap
variable then become dangling pointers.

— Thus deallocators are inherently unsafe.

Universit . :
qf%ﬁ?g%\% Dangling pointers (2)

= C is highly unsafe:

— After a heap variable is destroyed, pointers to it might
still exist.

— At exit from a block, pointers to its local variables might
still exist (e.q., if stored in global variables).

= Java is very safe:
— It has no deallocator.

— Pointers to local variables cannot be obtained.

University : .
< of Glasgow Example: C dangling pointers

= Consider this C code:

struct Date {int vy, m, d;}
typedef Date * DatePtr;

DatePtr datel = (DatePtr) .. makes datel pointto

L

malloc (sizeof Date); a newly-allocated
heap variable

datel->y = 2008;
datel->m = 1; .- makes date?2 point to
datel->d = 1; that same heap

. variable
DatePtr date?2 = datel;

deallocates that heap
variable — datel and
date2 now contain

printf ("%d4", datel->y); dangling pointers
date2->y = 2009; RN _
o moomoooooeooooeooeoooooiooooooee- behaves unpredictably

9-23

free (date?) ;

! Umver51ty

fGlasgow Commands (1)

= A command (often called a statement) is a
program construct that will be executed to
update variables.

= Commands are characteristic of imperative and
OO PLs (but not functional PLS).

= Simple commands:
— A skip command is a command that does nothing.

— An assignment command is a command that uses a
value to update a variable.

— A procedure call is a command that calls a proper
procedure with argument(s). Its net effect is to update
some variables.

! Umver31ty

fGlasgow Commands (2)

= Compound commands:

— A sequential command is a command that executes
its sub-commands in sequence.

— A conditional command is a command that chooses
one of its sub-commands to execute.

— An iterative command is a command that executes its
sub-command repeatedly. This may be:

« definite iteration (where the number of repetitions is
known in advance)

* indefinite iteration (where the number of repetitions is
not known in advance).

— A block command is a command that contains
declarations of local variables, etc.

University _
of Glasgow Example: Java assignment commands

= Java single assignment:

m=n + 1;
= Java multiple assignment:
m=n = 0;

= Java assignment combined with binary operator:

m 4= 7 e equivalent to “m = m+7;

P oo equivalentto “'n = n/b;"

University .
< of Glasgow Example: Java conditional commands

= Java if-command:

if (x > vy)
out.print (x);
else
out.print (y);

= Java switch-command:

Date today = ..;

switch (today.m) {
case 1: out.print("JAN"),; break;
case 2: out.print("FEB"),; break;

case 11: out.print("NOV"),; break;

case 12: out.print ("DEC"); Breaks are

} essential here!

9-27

University) _
< of Glasgow Example: Java iterative commands (1)

= Java while-command:
Date|[] dates;

int 1 = 0;

while (i < dates.length) {
out.print (dates[i]);
i++;

}

= Java for-commands (both forms):

for (int 1 = 0; 1 < dates.length; 1++)
out.print (dates[1])

for (Date d : dates)
out.print (d);

o1a| Universit
of Glasgmz

Example: Java iterative commands (2)

}

static String render

= Java do-while-command:

(int n) {
String s = "";
int m = n;
do {
char d = (char) (m % 10) +
s = d + s;
m /= 10;
} while (m > 0);
return s;

lOl;

= Here the loop condition is evaluated after each
repetition of the loop body.

University
< of Glasgow Example: Java block command

= Java block command:

if (x > y) |
int z = x;
X = y;
Y = Z;

Universit : : :
QfGlasgowy Expressions with side effects

The primary purpose of evaluating an expression
IS to yield a value.

= |[n most imperative and OO PLs, evaluating an
expression can also update variables — these are
side effects.

= |In C and Java, the body of a function is a
command. If that command updates global or
heap variables, calling the function has side
effects.

= |n C and Java, assignments are in fact
expressions with side effects: “V = E” stores the

value of E in V as well as yielding that value.

Universit :
of Glasgoxz Example: side effects

= The C function getchar (fp) reads a character
and updates the file variable that £p points to.

= The following C code is correct:

char ch;
while ((ch = getchar(fp)) != NULL)
putchar (ch) ;

= The following C code is incorrect (why?):
enum Gender {FEMALE, MALE};

Gender g;
if (getchar(fp) == 'F') g = FEMALE;
else if (getchar(fp) == 'M') g = MALE;

else ...

