
9-1

9 Variables and lifetime

 Variables and storage

 Simple vs composite variables

 Lifetime: global, local, heap variables

 Pointers

 Commands

 Expressions with side effects

Programming Languages 3 © 2012 David A Watt, University of Glasgow

9-2

What are variables?

 In functional PLs (and in mathematics), a

variable stands for a fixed (but possibly

unknown) value.

 In imperative and OO PLs, a variable contains a

value. The variable may be inspected and

updated as often as desired.

– Such a variable can be used to model a real-world

object whose state changes over time.

9-3

Storage

 To understand such variables,
assume an abstract storage
model:

– A store is a collection of cells, each
of which has a unique address.

– Each cell is either allocated or
unallocated.

– Each allocated cell contains either a
simple value or undefined.

– An allocated cell can be inspected,
unless it contains undefined.

– An allocated cell can be updated at
any time.

true

3.14

7

‘X’

? undefined

unallocated
cells

allocated
cells
allocated
cells

9-4

Simple vs composite variables

 A simple variable is one that contains a

primitive value or pointer.

– A simple variable occupies a single allocated cell.

 A composite variable is one that contains a

composite value.

– A composite variable occupies a group of adjacent

allocated cells.

9-5

Composite variables

 A variable of a composite type has the same

structure as a value of the same type. For

instance:

– A tuple variable is a tuple of component variables.

– An array variable is a mapping from an index range to a

group of component variables.

 Depending on the PL, a composite variable can

be:

– totally updated (all at once), and/or

– selectively updated (one component at a time).

9-6

Example: C composite variables

 Declaration and updating of struct variables:

 struct Date {int y, m, d;}

struct Date xmas, today;

 xmas.d = 25;

xmas.m = 12;

xmas.y = 2008;

 today = xmas;

selective updating

total updating

 Declaration and updating of array variable:

 float a[10];

 a[i] = 3.1417; selective updating

9-7

Lifetimes

 Every variable is created at some definite time,

and destroyed at some later time when it is no

longer needed.

 A variable’s lifetime is the interval between its

creation and destruction.

 A variable occupies cells only during its lifetime.

When the variable is destroyed, these cells may

be deallocated.

– And these cells may subsequently be re-allocated to

other variable(s).

9-8

Global vs local vs heap variables

 A global variable’s lifetime is the program’s

entire run-time. It is created by a global

declaration.

 A local variable’s lifetime is an activation of a

block. It is created by a declaration within that

block, and destroyed on exit from that block.

 A heap variable’s lifetime is arbitrary, but

bounded by the program’s run-time. It can be

created at any time (by an allocator), and may

be destroyed at any later time. It is accessed

through a pointer.

9-9

Example: C global and local variables (1)

 Outline of C program:

 extern int x1, x2;

 void main () {

 int m1; float m2;

 … f(); … e(); …

}

 void f () {

 float f1; int f2;

 … e(); …

}

 void e () {

 int e1;

 …

}

local variable

local variables

local variables

global
variables

9-10

Example: C global and local variables (2)

 Lifetimes of global and local variables:

 Global and local variables’ lifetimes are nested.

They can never be overlapped.

nested overlapped

lifetime of e1

lifetime of m1, m2

lifetime of e1

lifetime of f1, f2

lifetime of x1, x2

e() f()

e()

main()

9-11

Example: local variables and recursion

(1)

 Outline of C program:

 void main () {

 float m;

 … r(3); …

}

 void r (int n) {

 int i;

 if (n > 1) {

 … r(n-1); …

 }

}

9-12

Example: local variables and recursion

(2)

 Lifetimes of global and local variables:

lifetime of i

lifetime of i

lifetime of i

lifetime of m

r(3)

r(2)

main()

r(1)

 Note: A local variable of a recursive

procedure/function has several nested lifetimes.

9-13

Example: C heap variables (1)

 Outline of C program:

 struct IntNode {int elem; IntList succ;}

typedef struct IntNode * IntList;

 IntList c (int h, IntList t) {

 // Return an IntList with head h and tail t.
 IntList ns =

 (IntList) malloc (sizeof IntNode);

 ns->elem = h; ns->succ = t;

 return ns;

}

 void d (IntList ns) {

 ns->succ = ns->succ->succ;

}

9-14

Example: C heap variables (2)

 Outline (continued):

 void main {

 IntList l1, l2;

 l1 = c(3, c(5, c(7, NULL)));

 l2 = c(2, l1);

 d(l1);

}

9-15

Example: C heap variables (3)

 After initializing l1 and l2:

 After calling d(l1):

unreachable

l2

l1

2 3 5 7

heap
variables

2 3 5 7 l2

l1

9-16

Example: C heap variables (4)

 Lifetimes of local and heap variables:

 Heap variables’ lifetimes can overlap one another

and local/global variables’ lifetimes.

lifetime of 7-node

lifetime of l1, l2

lifetime of 5-node

lifetime of 3-node

lifetime of 2-node

c(7,
…)

main()

c(5,
…)

c(3,
…)

c(2,
…)

d(…)

9-17

Allocators and deallocators

 An allocator is an operation that creates a heap

variable, yielding a pointer to that heap variable.

E.g.:

– C’s allocator is a library function, malloc().

– Java’s allocator is an expression of the form
“new C(…)”.

 A deallocator is an operation that explicitly

destroys a designated heap variable. E.g.:

– C’s deallocator is a library function, free().

– Java has no deallocator at all.

9-18

Reachability

 A heap variable remains reachable as long as it

can be accessed by following pointers from a

global or local variable.

 A heap variable’s lifetime extends from its

creation until:

– it is destroyed by a deallocator, or

– it becomes unreachable, or

– the program terminates.

9-19

Pointers (1)

 A pointer is a reference to a particular variable.
(In fact, pointers are sometimes called
references.)

 A pointer’s referent is the variable to which it
refers.

 A null pointer is a special pointer value that has
no referent.

 A pointer is essentially the address of its referent
in the store.

– However, each pointer also has a type, and the type of
a pointer allows us to infer the type of its referent.

9-20

Pointers (2)

 Pointers and heap variables can be used to
represent recursive values such as lists and
trees.

 But the pointer itself is a low-level concept.
Manipulation of pointers is notoriously error-
prone and hard to understand.

 For example, the C assignment “p->succ = q;”
appears to manipulate a list, but which list? Also:

– Does it delete nodes from the list?

– Does it stitch together parts of two different lists?

– Does it introduce a cycle?

9-21

Dangling pointers (1)

 A dangling pointer is a pointer to a variable that
has been destroyed.

 Dangling pointers arise when:

– a pointer to a heap variable still exists after the heap
variable is destroyed by a deallocator

– a pointer to a local variable still exists at exit from the
block in which the local variable was declared.

 A deallocator immediately destroys a heap
variable; all existing pointers to that heap
variable then become dangling pointers.

– Thus deallocators are inherently unsafe.

9-22

Dangling pointers (2)

 C is highly unsafe:

– After a heap variable is destroyed, pointers to it might

still exist.

– At exit from a block, pointers to its local variables might

still exist (e.g., if stored in global variables).

 Java is very safe:

– It has no deallocator.

– Pointers to local variables cannot be obtained.

9-23

Example: C dangling pointers

 Consider this C code:

 struct Date {int y, m, d;}

typedef Date * DatePtr;

 DatePtr date1 = (DatePtr)

 malloc(sizeof Date);

date1->y = 2008;

date1->m = 1;

date1->d = 1;

 DatePtr date2 = date1;

 free(date2);

 printf("%d4", date1->y);

date2->y = 2009;

deallocates that heap
variable – date1 and
date2 now contain
dangling pointers

makes date1 point to
a newly-allocated
heap variable

makes date2 point to
that same heap
variable

behaves unpredictably

9-24

Commands (1)

 A command (often called a statement) is a
program construct that will be executed to
update variables.

 Commands are characteristic of imperative and
OO PLs (but not functional PLs).

 Simple commands:

– A skip command is a command that does nothing.

– An assignment command is a command that uses a
value to update a variable.

– A procedure call is a command that calls a proper
procedure with argument(s). Its net effect is to update
some variables.

9-25

Commands (2)

 Compound commands:

– A sequential command is a command that executes
its sub-commands in sequence.

– A conditional command is a command that chooses
one of its sub-commands to execute.

– An iterative command is a command that executes its
sub-command repeatedly. This may be:

• definite iteration (where the number of repetitions is
known in advance)

• indefinite iteration (where the number of repetitions is
not known in advance).

– A block command is a command that contains
declarations of local variables, etc.

9-26

Example: Java assignment commands

 Java single assignment:

 m = n + 1;

 Java multiple assignment:

 m = n = 0;

 Java assignment combined with binary operator:

 m += 7;

 n /= b;

equivalent to “m = m+7;”

equivalent to “n = n/b;”

9-27

Example: Java conditional commands

 Java if-command:

 if (x > y)

 out.print(x);

else

 out.print(y);

 Java switch-command:

 Date today = …;

switch (today.m) {

 case 1: out.print("JAN"); break;

 case 2: out.print("FEB"); break;

 

 case 11: out.print("NOV"); break;

 case 12: out.print("DEC");

}
Breaks are
essential here!

9-28

Example: Java iterative commands (1)

 Java while-command:

 Date[] dates;

…

 int i = 0;

while (i < dates.length) {

 out.print(dates[i]);

 i++;

}

 Java for-commands (both forms):

 for (int i = 0; i < dates.length; i++)

 out.print(dates[i]);

 for (Date d : dates)

 out.print(d);

9-29

Example: Java iterative commands (2)

 Java do-while-command:

 static String render (int n) {

 String s = "";

 int m = n;

 do {

 char d = (char)(m % 10) + '0';

 s = d + s;

 m /= 10;

 } while (m > 0);

 return s;

}

 Here the loop condition is evaluated after each

repetition of the loop body.

9-30

Example: Java block command

 Java block command:

 if (x > y) {

 int z = x;

 x = y;

 y = z;

}

9-31

Expressions with side effects

 The primary purpose of evaluating an expression
is to yield a value.

 In most imperative and OO PLs, evaluating an
expression can also update variables – these are
side effects.

 In C and Java, the body of a function is a
command. If that command updates global or
heap variables, calling the function has side
effects.

 In C and Java, assignments are in fact
expressions with side effects: “V = E” stores the
value of E in V as well as yielding that value.

9-32

Example: side effects

 The C function getchar(fp) reads a character
and updates the file variable that fp points to.

 The following C code is correct:

 char ch;

while ((ch = getchar(fp)) != NULL)

 putchar(ch);

 The following C code is incorrect (why?):

 enum Gender {FEMALE, MALE};

Gender g;

if (getchar(fp) == 'F') g = FEMALE;

else if (getchar(fp) == 'M') g = MALE;

else 

