
10-1

10 Bindings and scope

 Bindings and environments

 Scope and block structure

 Declarations

Programming Languages 3 © 2012 David A Watt, University of Glasgow

10-2

Bindings and environments (1)

 The meaning of an expression/command

depends on the declarations of any identifiers

used by the expression/command.

 A binding is a fixed association between an

identifier and an entity (such as a value, variable,

or procedure).

 An environment (or name-space) is a set of

bindings.

10-3

Bindings and environments (2)

 Each declaration produces some bindings, which

are added to the surrounding environment.

 Each expression/command is interpreted in a

particular environment. Every identifier used in

the expression/command must have a binding in

that environment.

10-4

Example: environments in a C program

 C program outline, showing environments:

 extern int z;

extern const float c = 3.0e6;

 void f () {

 …

}

 void g (float x) {

 char c;

 int i;

 …

}

{ c the FLOAT value 3.0106,
 f a VOIDVOID function,
 g a FLOATVOID function,
 z an INT global variable }

{ c a CHAR local variable,
 f a VOIDVOID function,
 g a FLOATVOID function,
 i an INT local variable,
 x a FLOAT local variable,
 z an INT global variable }

10-5

Scope

 The scope of a declaration (or of a binding) is

the portion of the program text over which it has

effect.

 In some early PLs (such as Cobol), the scope of

every declaration was the whole program.

 In modern PLs, the scope of each declaration is

controlled by the program’s block structure.

10-6

Blocks

 A block is a program construct that delimits the

scope of any declarations within it.

 Each PL has its own forms of blocks:

– C: block commands (“{ … }”), function bodies,

compilation-units.

– Java: block commands (“{ … }”), method bodies, class

declarations.

– Haskell: block expressions (“let … in …”), function

bodies, modules.

 A PL’s block structure is the way in which

blocks are arranged in the program text.

10-7

Monolithic block structure

 Some PLs (such as Cobol) have monolithic

block structure: the whole program is a single

block. The scope of every declaration is the

whole program.

declaration of x

declaration of z

declaration of y

whole program –
scope of declarations
of x, y, z

10-8

Flat block structure

 Some PLs (such as Fortran) have flat block

structure: the program is partitioned into blocks,

but these blocks may not contain inner blocks.

whole program
– scope of
declaration of x

declaration of x

declaration of z

declaration of y

scope of
declaration of y

declaration of y

scope of
declaration of z

declaration of z

10-9

Nested block structure (1)

 Modern PLs have nested block structure:

blocks may be nested freely within other blocks.

declaration of w

declaration of z

declaration of x

declaration
of y

whole program
– scope of
declaration of w

scope of
declaration of x

declaration of x

declaration
of y scope of

declaration of y

declaration
of y

scope of
declaration of z

declaration of z

10-10

Nested block structure (2)

 With nested block structure, the scope of a

declaration excludes any inner block where the

same identifier is declared:

scope of outer
declaration of x

declaration of x

declaration
of x

declaration
of x

excluded from
scope of outer
declaration

10-11

Example: C block structure

 C has flat block structure for functions, but

nested block structure for variables:

 extern int x1, x2;

 void main () {

 int m1; float m2;

 … f(); …

}

 void f () {

 float f1;

 while (…) {

 int f2;

 …

 }

 …

}

10-12

Binding and applied occurrences

 A binding occurrence of identifier I is an

occurrence of I where I is bound to some entity

e.

 An applied occurrence of identifier I is an

occurrence of I where use is made of the entity

e to which I is bound.

 If the PL is statically scoped (see later), every
applied occurrence of I should correspond to

exactly one binding occurrence of I.

10-13

Example: binding and applied

occurrences

 C program outline, showing binding occurrences

and applied occurrences:

 extern int z;

extern const float c = 3.0e6;

 void f () {

 … c … z …

}

 void g (float x) {

 int i;

 char c;

 … c … i … x … z …

}

10-14

Static vs dynamic scoping (1)

 A PL is statically scoped if the body of a
procedure is executed in the environment of the
procedure definition.

– Then we can decide at compile-time which binding
occurrence of an identifier corresponds to a given
applied occurrence.

 A PL is dynamically scoped if the body of a
procedure is executed in the environment of the
procedure call site.

– Then we cannot decide until run-time which binding
occurrence of an identifier corresponds to a given
applied occurrence, since the environment may vary
from one call site to another.

10-15

Example: static scoping

 Program in a statically scoped PL (C):

 const int s = 2;

 int f (int x) {

 return x * s;

}

 void g (int y) {

 print (f (y));

}

 void h (int z) {

 const int s = 3;

 print (f (z));

}

The value of s
here is always 2.

prints 2 y

prints 2 z

10-16

Example: dynamic scoping

 Similar program in a hypothetical dynamically
scoped PL:

 const int s = 2;

 int f (int x) {

 return x * s;

}

 void g (int y) {

 print (f (y));

}

 void h (int z) {

 const int s = 3;

 print (f (z));

}

The value of s
here depends
on the call site.

prints 2 y

prints 3 z

10-17

Static vs dynamic scoping (2)

 Dynamic scoping fits badly with static typing.

– In the previous slide, what if the two declarations of s

had different types?

 Nearly all PLs (including Pascal, Ada, C, Java,

Haskell) are statically scoped.

 Only a few PLs (such as Smalltalk and Lisp) are

dynamically scoped.

10-18

Declarations (1)

 A declaration is a program construct that will be

elaborated to produce binding(s).

– A declaration may also have side effects (such as

creating a variable).

 A definition is a declaration whose only effect is

to produce binding(s).

– A definition has no side effects.

10-19

Declarations (2)

 Simple declarations:

– A type declaration binds an identifier to an existing or

new type.

– A constant definition binds an identifier to a value

(possibly computed).

– A variable declaration binds an identifier to a newly-

created variable.

– A procedure definition binds an identifier to a

procedure.

– And similarly for other entities (depending on the PL).

10-20

Declarations (3)

 Compound declarations:

– A sequential declaration combines several sub-

declarations, such that the later sub-declarations can

use bindings produced by the earlier sub-declarations.

– A recursive declaration is one that uses the bindings

it produces itself.

10-21

Recursive declarations

 A recursive declaration is one that uses the

bindings it produces itself.

 In almost all PLs, recursion is restricted to:

– type (or class) declarations

– procedure (or method) definitions.

10-22

Example: Java recursive declarations

 Java classes may be recursive.

 Java method definitions may be recursive.

 class IntList {

 int head;

 IntList tail;

 static int length (IntList list) {

 if (list == null)

 return 0;

 else

 return 1 + length (list.tail);

 }

 }

10-23

Example: C recursive declarations

 C struct type declarations may be recursive (but

only via pointers).

 C function definitions may be recursive.

 struct IntList {

 int head;

 struct IntList * tail;

}

 int length (IntList * list) {

 if (list == NULL)

 return 0;

 else

 return 1 + length(list->tail);

}

