o1a| Universi . .
@ gtsgow 10 Bindings and scope

= Bindings and environments
= Scope and block structure

= Declarations

Programming Languages 3 © 2012 David A Watt, University of Glasgow

Universit .. :
qulasgoxz Bindings and environments (1)

= The meaning of an expression/command
depends on the declarations of any identifiers
used by the expression/command.

= A binding is a fixed association between an
Identifier and an entity (such as a value, variable,
or procedure).

= An environment (or name-space) is a set of
bindings.

Universit .. :
qulasgoxz Bindings and environments (2)

= Each declaration produces some bindings, which
are added to the surrounding environment.

= Each expression/command is interpreted in a
particular environment. Every identifier used in
the expression/command must have a binding in
that environment.

University _ _
& of Glasgow Example: environments in a C program

= C program outline, showing environments:

extern int z;
extern const float ¢ = 3.0e0;

void £ () {
{ ¢ — the FLOAT value 3.0x1069,
f - a VOID—VOID function,
} g — a FLOAT—VOID function,
z — an INT global variable }

void g (float x) {

char c; .- { ¢ > aCHAR local variable,
int 1i; f —» a VOID—VOID function,
g — a FLOAT—VOID function,
i — an INT local variable,
} x — a FLOAT local variable,
z — an INT global variable }

10-4

Universit
of %ll\zllesgcl)\z Scope

= The scope of a declaration (or of a binding) is
the portion of the program text over which it has
effect.

= |n some early PLs (such as Cobol), the scope of
every declaration was the whole program.

= |In modern PLs, the scope of each declaration is
controlled by the program’s block structure.

Universit
of Glasgowy Blocks

= A block is a program construct that delimits the
scope of any declarations within it.

= Each PL has its own forms of blocks:

— C: block commands (“{ ... }7), function bodies,
compilation-units.

— Java: block commands (“{ ... }”), method bodies, class
declarations.

— Haskell: block expressions (“1let ... in ...”), function
bodies, modules.

= A PL’s block structure is the way in which
blocks are arranged in the program text.

Universit .
QfGlang\z Monolithic block structure

whole program.

declaration of x
declaration of v

declaration of z

= Some PLs (such as Cobol) have monolithic
block structure: the whole program is a single
block. The scope of every declaration is the

whole program —
scope of declarations
of x, v, z

Universit
QfGlasgowy Flat block structure

declaration of x

declaration of y

declaration of z

= Some PLs (such as Fortran) have flat block
structure: the program is partitioned into blocks,
but these blocks may not contain inner blocks.

whole program
— scope of
declaration of x

scope of
declaration of y

scope of
declaration of z

Universit
QfGlasgowy Nested block structure (1)

= Modern PLs have nested block structure:
blocks may be nested freely within other blocks.

declarationofw | . whole program

— scope of
declaration of w

declaration of x

S scope of
declaration of x

declaration |
of v T scope of
declaration of y
declaration of z | |- scope of

declaration of z

Universit
QfGlang\z Nested block structure (2)

= With nested block structure, the scope of a
declaration excludes any inner block where the
same identifier is declared:

declarationofx | scope of outer
declaration of x

declaration excluded from
of x 2 e il scope of outer
declaration

e
of Glasgow

= C has flat block structure for functions, but
nested block structure for variables:

Example: C block structure

}

void main

extern int x1, x2;

)

{

int ml;

. T0) s

float m2;

void f ()

{

float f1;
(...

while

) |

int f£2;

Universit .. :
QfGlasgowy Binding and applied occurrences

= A binding occurrence of identifier I is an
occurrence of I where I is bound to some entity
e.

= An applied occurrence of identifier I is an
occurrence of I where use is made of the entity
e to which I is bound.

= |fthe PL is statically scoped (see later), every
applied occurrence of I should correspond to

exactly one binding occurrence of I.

e R _
i s R ieindinglanEappiieo

occurrences

= C program outline, showing binding occurrences
and applied occurrences:

extern int z;
A%
extern const:float c = 3.0e6;

void f () i{ "

R A

}

void g (float x)"‘-._ {
int i A

.
‘e

! Umver51ty

of Glasgow Static vs dynamic scoping (1)

= A PL s statically scoped if the body of a
procedure is executed in the environment of the
procedure definition.

— Then we can decide at compile-time which binding
occurrence of an identifier corresponds to a given
applied occurrence.

= APL isdynamically scoped if the body of a
procedure is executed in the environment of the
procedure call site.

— Then we cannot decide until run-time which binding
occurrence of an identifier corresponds to a given
applied occurrence, since the environment may vary
from one call site to another.

University : .
<7 of Glasgow Example: static scoping

= Program in a statically scoped PL (C):

const int S, = 2

*

int £ (int x)*{
return x * s;

} The value of s
here is always 2.
void g (int y) {
print (£ (y)); prints 2 x y
}
void h (int z) {
const int s = 3;

print (£ (z)); - prints 2 x z

o1a Universit : :
QfGlang\z Example: dynamic scoping

= Similar program in a hypothetical dynamically
scoped PL.:
const int Sy = 2;

i] .-~ The value of s
int £ (int X)"‘.‘{ e T here depends

return x * s; 7 on the call site.
} .’
void g (int vy) i{
print (£ (¥))7 -ermmmmmmmees prints 2 x y
} f
void h (int z); {
const int s = 3;

print (f (z)); prints 3 x z

U 1versit . : :
! %\;srgoxz Static vs dynamic scoping (2)

Dynamic scoping fits badly with static typing.

— In the previous slide, what if the two declarations of s
had different types?

= Nearly all PLs (including Pascal, Ada, C, Java,
Haskell) are statically scoped.

= Only a few PLs (such as Smalltalk and Lisp) are
dynamically scoped.

Universit :
of Glasgoxz Declarations (1)

= A declaration is a program construct that will be
elaborated to produce binding(s).

— A declaration may also have side effects (such as
creating a variable).

= A definition is a declaration whose only effect is
to produce binding(s).

— A definition has no side effects.

Universit :
of Glasgoxz Declarations (2)

= Simple declarations:

— Atype declaration binds an identifier to an existing or
new type.

— A constant definition binds an identifier to a value
(possibly computed).

— Avariable declaration binds an identifier to a newly-
created variable.

— A procedure definition binds an identifier to a
procedure.

— And similarly for other entities (depending on the PL).

Universit :
of Glasgoxz Declarations (3)

= Compound declarations:

— A sequential declaration combines several sub-
declarations, such that the later sub-declarations can
use bindings produced by the earlier sub-declarations.

— Arecursive declaration is one that uses the bindings
it produces itself.

Universit : :
qulasgoxz Recursive declarations

= A recursive declaration is one that uses the
bindings it produces itself.

= |n almost all PLs, recursion is restricted to:
— type (or class) declarations

— procedure (or method) definitions.

University _ _
of Glasgow Example: Java recursive declarations

= Java classes may be recursive.

= Java method definitions may be recursive.

class IQFList {

int head;
IntList tail;
static int length (IntList 1list) {
if (list =Z-null)
return 0;*
else xx
return 1 + length (list.tail);

a| University : _
ofGlasgow Example: C recursive declarations

= C struct type declarations may be recursive (but
only via pointers).

= C function definitions may be recursive.

struct IntLi%E {

int head; ™

struct IntlList * tail;
¥

int length (IntList * list) {
if (llSt .== NULL)
return B.;
else
return 1 + length(llst >tail) ;

.0
.
.0
*

