
10-1

10 Bindings and scope

 Bindings and environments

 Scope and block structure

 Declarations

Programming Languages 3 © 2012 David A Watt, University of Glasgow

10-2

Bindings and environments (1)

 The meaning of an expression/command

depends on the declarations of any identifiers

used by the expression/command.

 A binding is a fixed association between an

identifier and an entity (such as a value, variable,

or procedure).

 An environment (or name-space) is a set of

bindings.

10-3

Bindings and environments (2)

 Each declaration produces some bindings, which

are added to the surrounding environment.

 Each expression/command is interpreted in a

particular environment. Every identifier used in

the expression/command must have a binding in

that environment.

10-4

Example: environments in a C program

 C program outline, showing environments:

 extern int z;

extern const float c = 3.0e6;

 void f () {

 …

}

 void g (float x) {

 char c;

 int i;

 …

}

{ c  the FLOAT value 3.0106,
 f  a VOIDVOID function,
 g  a FLOATVOID function,
 z  an INT global variable }

{ c  a CHAR local variable,
 f  a VOIDVOID function,
 g  a FLOATVOID function,
 i  an INT local variable,
 x  a FLOAT local variable,
 z  an INT global variable }

10-5

Scope

 The scope of a declaration (or of a binding) is

the portion of the program text over which it has

effect.

 In some early PLs (such as Cobol), the scope of

every declaration was the whole program.

 In modern PLs, the scope of each declaration is

controlled by the program’s block structure.

10-6

Blocks

 A block is a program construct that delimits the

scope of any declarations within it.

 Each PL has its own forms of blocks:

– C: block commands (“{ … }”), function bodies,

compilation-units.

– Java: block commands (“{ … }”), method bodies, class

declarations.

– Haskell: block expressions (“let … in …”), function

bodies, modules.

 A PL’s block structure is the way in which

blocks are arranged in the program text.

10-7

Monolithic block structure

 Some PLs (such as Cobol) have monolithic

block structure: the whole program is a single

block. The scope of every declaration is the

whole program.

declaration of x

declaration of z

declaration of y

whole program –
scope of declarations
of x, y, z

10-8

Flat block structure

 Some PLs (such as Fortran) have flat block

structure: the program is partitioned into blocks,

but these blocks may not contain inner blocks.

whole program
– scope of
declaration of x

declaration of x

declaration of z

declaration of y

scope of
declaration of y

declaration of y

scope of
declaration of z

declaration of z

10-9

Nested block structure (1)

 Modern PLs have nested block structure:

blocks may be nested freely within other blocks.

declaration of w

declaration of z

declaration of x

declaration
of y

whole program
– scope of
declaration of w

scope of
declaration of x

declaration of x

declaration
of y scope of

declaration of y

declaration
of y

scope of
declaration of z

declaration of z

10-10

Nested block structure (2)

 With nested block structure, the scope of a

declaration excludes any inner block where the

same identifier is declared:

scope of outer
declaration of x

declaration of x

declaration
of x

declaration
of x

excluded from
scope of outer
declaration

10-11

Example: C block structure

 C has flat block structure for functions, but

nested block structure for variables:

 extern int x1, x2;

 void main () {

 int m1; float m2;

 … f(); …

}

 void f () {

 float f1;

 while (…) {

 int f2;

 …

 }

 …

}

10-12

Binding and applied occurrences

 A binding occurrence of identifier I is an

occurrence of I where I is bound to some entity

e.

 An applied occurrence of identifier I is an

occurrence of I where use is made of the entity

e to which I is bound.

 If the PL is statically scoped (see later), every
applied occurrence of I should correspond to

exactly one binding occurrence of I.

10-13

Example: binding and applied

occurrences

 C program outline, showing binding occurrences

and applied occurrences:

 extern int z;

extern const float c = 3.0e6;

 void f () {

 … c … z …

}

 void g (float x) {

 int i;

 char c;

 … c … i … x … z …

}

10-14

Static vs dynamic scoping (1)

 A PL is statically scoped if the body of a
procedure is executed in the environment of the
procedure definition.

– Then we can decide at compile-time which binding
occurrence of an identifier corresponds to a given
applied occurrence.

 A PL is dynamically scoped if the body of a
procedure is executed in the environment of the
procedure call site.

– Then we cannot decide until run-time which binding
occurrence of an identifier corresponds to a given
applied occurrence, since the environment may vary
from one call site to another.

10-15

Example: static scoping

 Program in a statically scoped PL (C):

 const int s = 2;

 int f (int x) {

 return x * s;

}

 void g (int y) {

 print (f (y));

}

 void h (int z) {

 const int s = 3;

 print (f (z));

}

The value of s
here is always 2.

prints 2  y

prints 2  z

10-16

Example: dynamic scoping

 Similar program in a hypothetical dynamically
scoped PL:

 const int s = 2;

 int f (int x) {

 return x * s;

}

 void g (int y) {

 print (f (y));

}

 void h (int z) {

 const int s = 3;

 print (f (z));

}

The value of s
here depends
on the call site.

prints 2  y

prints 3  z

10-17

Static vs dynamic scoping (2)

 Dynamic scoping fits badly with static typing.

– In the previous slide, what if the two declarations of s

had different types?

 Nearly all PLs (including Pascal, Ada, C, Java,

Haskell) are statically scoped.

 Only a few PLs (such as Smalltalk and Lisp) are

dynamically scoped.

10-18

Declarations (1)

 A declaration is a program construct that will be

elaborated to produce binding(s).

– A declaration may also have side effects (such as

creating a variable).

 A definition is a declaration whose only effect is

to produce binding(s).

– A definition has no side effects.

10-19

Declarations (2)

 Simple declarations:

– A type declaration binds an identifier to an existing or

new type.

– A constant definition binds an identifier to a value

(possibly computed).

– A variable declaration binds an identifier to a newly-

created variable.

– A procedure definition binds an identifier to a

procedure.

– And similarly for other entities (depending on the PL).

10-20

Declarations (3)

 Compound declarations:

– A sequential declaration combines several sub-

declarations, such that the later sub-declarations can

use bindings produced by the earlier sub-declarations.

– A recursive declaration is one that uses the bindings

it produces itself.

10-21

Recursive declarations

 A recursive declaration is one that uses the

bindings it produces itself.

 In almost all PLs, recursion is restricted to:

– type (or class) declarations

– procedure (or method) definitions.

10-22

Example: Java recursive declarations

 Java classes may be recursive.

 Java method definitions may be recursive.

 class IntList {

 int head;

 IntList tail;

 static int length (IntList list) {

 if (list == null)

 return 0;

 else

 return 1 + length (list.tail);

 }

 }

10-23

Example: C recursive declarations

 C struct type declarations may be recursive (but

only via pointers).

 C function definitions may be recursive.

 struct IntList {

 int head;

 struct IntList * tail;

}

 int length (IntList * list) {

 if (list == NULL)

 return 0;

 else

 return 1 + length(list->tail);

}

