
11-1

11 Procedural abstraction

 Function procedures

 Proper procedures

 Parameters and arguments

Programming Languages 3 © 2012 David A Watt, University of Glasgow

11-2

Abstraction

 In programming, abstraction means the

distinction between what a program-unit does

and how it does it.

 This supports a separation of concerns between

the implementor (who codes the program-unit)

and the application programmer (who uses it).

 Program-units include:

– procedures (here)

– packages, abstract data types, classes (see §12)

– generic packages and classes (see §13).

11-3

Proper procedures vs function

procedures

 A proper procedure (or just procedure)

embodies a command to be executed.

– A procedure call is a command.

– It causes the procedure’s body to be executed.

– Its net effect is to update some variables.

 A function procedure (or just function)

embodies an expression to be evaluated.

– A function call is an expression.

– It causes the function’s body to be evaluated.

– Its net effect is to yield a value (the function’s result).

11-4

Procedures in PLs

 Imperative PLs usually support both proper

procedures and function procedures.

– In Pascal and Ada, proper procedures and function

procedures are syntactically distinct.

– In C and Java, the only distinction is that a proper

procedure’s result type is VOID.

 Functional PLs support function procedures only.

 OO PLs also support procedures, in the guise of

methods:

– Static methods are procedures exported by classes.

– Instance methods are procedures attached to objects.

and Fun

11-5

Example: proper procedure

 Proper procedure in C:

 void print (Date date)

{ int y = date.y,

 m = date.m,

 d = date.d;

 printf ("%d4-%d2-%d2", y, m, d);

}

The procedure
body is a block-
command.

11-6

Example: function procedures

 Function in Haskell:

 power :: (Float, Int) -> Float

power (b, n) =

 if n == 0

 then 1.0

 else b * power(b, n-1)

The function’s
body is an
expression.

 Function in C:

 float power (float b, int n)

{ float p = 1;

 while (n > 0) {

 p *= b; n--;

 }

 return p;

}

The function’s
body is a block-
command.

11-7

Design of function procedures (1)

 In most imperative and OO PLs, the function’s
body is syntactically a block-command. This is
executed until a return determines the function’s
result.

 Pros and cons:

+ The full expressive power of commands is available to
define the function.

– This is a roundabout way to compute a result.

– A return might never be executed.

– Side effects are possible.

11-8

Design of function procedures (2)

 In functional PLs, the function’s body is
syntactically an expression. This is evaluated to
yield the function’s result.

 Pros and cons of this design:

+ This design is simple and natural.

– Expressive power is limited, unless the PL has
conditional expressions, iterative expressions, etc.

11-9

Parameters and arguments (1)

 An argument is a value (or other entity) that is

passed to a procedure.

 An actual parameter is an expression that yields

an argument.

 A formal parameter is an identifier through

which a procedure can access an argument.

 What may be passed as arguments?

– values (in all PLs)

– variables, or pointers to variables (in many PLs)

– procedures, or pointers to procedures (in some PLs).

11-10

Parameters and arguments (2)

 A parameter mechanism is a means by which a
formal parameter provides access to the
corresponding argument.

 Different PLs support a bewildering variety of
parameter mechanisms: value, result, value-
result, constant, variable, procedural, and
functional parameters.

 These can all be understood in terms of two
underlying concepts:

– copy parameter mechanisms

– reference parameter mechanisms.

11-11

Copy parameter mechanisms (1)

 With a copy parameter mechanism, a value is

copied into and/or out of a procedure:

– The formal parameter FP is bound to a local variable of

the procedure.

– A value is copied into that local variable on calling the

procedure; or copied out of that local variable (to an

argument variable) on return.

 Principal copy parameter mechanisms:

– copy-in parameter

– copy-out parameter.

11-12

Copy parameter mechanisms (2)

 Copy-in parameter (or value parameter):

– The argument is a value.

– On call, a local variable is created and initialized with
the argument value.

– On return, that local variable is destroyed.

 Copy-out parameter (or result parameter):

– The argument is a variable.

– On call, a local variable is created but not initialized.

– On return, that local variable’s final value is assigned to
the argument variable, then the local variable is
destroyed.

11-13

Example: copy-in parameters in C

 C function:

 void print (Date date) {

 printf ("%d-%d-%d",

 date.y, date.m,

 date.d);

}

 Call:

 Date today = {2008, 11, 5};

print (today);

Local variable
date is initialized
to the argument
value.

The argument
value is the triple
(2008, 11, 5).

11-14

Reference parameter mechanisms (1)

 With a reference parameter mechanism, the

formal parameter is a reference to the argument.

– The formal parameter FP is bound to a reference to the

argument.

– Every access to FP is an indirect access to the

argument.

 Principal reference parameter mechanisms:

– constant parameters

– variable parameters

– procedural parameters.

11-15

Reference parameter mechanisms (2)

 Constant parameter:

the argument is a value.

 Variable parameter:

the argument is a variable.

 Procedural parameter:

the argument is a procedure.

Thus any inspection
of FP is actually an
indirect inspection of
the argument value.

Thus any access
(inspection or update)
to FP is actually an
indirect access to the
argument variable.

Thus any call to FP is
actually an indirect
call to the argument
procedure.

11-16

Example: reference parameters in Java

 Java method:

 void print (Date date) {

 out.print (date.y

 & "-" & date.m

 & "-" & date.d);

 date.y++;

}

 Call:

 Date today = new Date (2008, 11, 5);

print (today);

date is a
reference to the
argument object.

The argument is
the object to which
today refers.

11-17

C parameter mechanisms

 C supports only the copy-in parameter

mechanism.

 However, we can achieve the effect of a variable

parameter by passing a pointer:

– If a C function has a parameter of type T*, the

corresponding argument must be a pointer to a variable

of type T. The function can then indirectly inspect or

update that variable.

11-18

Java parameter mechanisms

 Java supports the copy-in parameter mechanism
for primitive types (such as int, float, …).

 In effect, Java supports the reference parameter
mechanism for object types (such as T[],

String, List, …).

