
12-1

12 Data abstraction

 Packages and encapsulation

 Classes, subclasses, and inheritance

Programming Languages 3 © 2012 David A Watt, University of Glasgow

12-2

Packages

 A package (or module) is a named group of

components declared for a common purpose.

 These components may be types, constants,

variables, procedures, inner packages, etc.

(depending on the PL).

 The meaning of a package is the set of bindings

exported by the package

– often called the package’s application program

interface (API).

12-3

Example: simple Python module

 Outline of a module (dictionary.py)

 words = […]

 def contains (word):

 global words

 return (word in words)

 def add (word):

 global words

 if word not in words:

 words += [word]

 This module’s API:
{ words a list of words,
 contains a function that tests whether a word is in the list,
 add a procedure that adds a word to the list }

12-4

Encapsulation (1)

 Some of the components of a program-unit

(package/class) may be private. This is called

encapsulation.

 Levels of privacy:

– A component is private if it is visible only inside the

program-unit.

– A component is protected if it is visible only inside the

program-unit and certain “friendly” program-units.

– A component is public if it is visible to application code

outside the program-unit.

 A program-unit’s API consists of its public

bindings only.

12-5

Encapsulation (2)

 Most PLs (such as Ada, Java, Haskell) allow

individual components of a program-unit to be

specified as private/protected/public.

 Python has a convention that components whose

names start with “_” are private, whilst those

whose names start with letters are public.

– This convention is not enforced by the Python compiler.

12-6

Example: Python module with

encapsulation

 Outline of a module (dictionary.py)

 _words = […]

 def contains (word):

 global _words

 return (word in _words)

 def add (word):

 global _words

 if word not in _words:

 _words += [word]

 This module’s API:
{ contains a function that tests whether a word is in the list,
 add a procedure that adds a word to the list }

12-7

Example: Java packages

 In Java, the components of a package are

classes and inner packages.

 Package components are added incrementally.

 Outline of a class declaration within a package:

 package sprockets;

 import widgets.*;

 public class C {

 …

}

declares that class C is a
component of package
sprockets

declares that class C uses
public components of
package widgets

12-8

Classes (1)

 An object is a tagged tuple of variable
components (instance variables), equipped with
operations that access these instance variables.

 A constructor is an operation that initializes a
newly created object.

 An instance method is an operation that
inspects and/or updates an existing object of
class C. That object (known as the receiver
object) is determined by the method call.

 A class is a set of similar objects. All objects of a
given class C have similar instance variables,
and are equipped with the same operations.

12-9

Classes (2)

 A Java class declaration:

– declares its instance variables

– defines its constructors and instance methods

– specifies whether each of these is private, protected, or
public.

 A Java instance method call has the form
“O.M(…)”:

– The expression O yields the receiver object.

– M is the name of the instance method to be called.

– The call executes the method body, with this bound to
the receiver object.

12-10

Example: Java class (1)

 Class declaration:

 class Dict {

 private int size;

 private String[] words;

 public Dict (int capacity)

 { … }

 public void add (String w)

 { if (! this.contains(w))

 this.words[this.size++] = w; }

 public boolean contains (String w)

 { … }

 }

12-11

Example: Java class (2)

 Possible application code:

 Dict mainDict = new Dict (10000);

Dict userDict = new Dict (1000);

…

if (! mainDict.contains (currentWord)

 && ! userDict.contains (currentWord))

 userDict.add (currentWord);

 Illegal application code:

 userDict.size = 0;

out.print (userDict.words[0]);

illegal

12-12

Subclasses

 If C' is a subclass of C (or C is a superclass of

C'), then C' is a set of objects that are similar to

one another but richer than the objects of class

C:

– An object of class C' has all the instance variables of an

object of class C, but may have extra instance

variables.

– An object of class C' is equipped with all the instance

methods of class C, but may override some of them,

and may be equipped with extra instance methods.

12-13

Inheritance

 By default, a subclass inherits (shares) its

superclass’s instance methods.

 Alternatively, a subclass may override some of

its superclass’s instance methods, by providing

more specialized versions of these methods.

12-14

Example: Java class and subclasses (1)

 Class declaration:

 class Shape {

 protected float x, y;

 public Shape ()

 { x = 0.0; y = 0.0; }

 public final void move (

 float dx, float dy)

 { x += dx; y += dy; }

 public void draw ()

 { … } // draws a point at (x, y)

 }

abbreviations for
this.x and this.y

12-15

Example: Java class and subclasses (2)

 Subclass declaration:

 class Circle extends Shape {

 private float r;

 public Circle (float radius)

 { x = 0.0; y = 0.0; r = radius; }

 public void draw ()

 { … } // draws a circle centred at (x, y)

 public float diameter ()

 { return 2.0*r; }

 }

12-16

Example: Java class and subclasses (3)

 Subclass declaration:

 class Box extends Shape {

 private float w, h;

 public Box (…)

 { … }

 public void draw ()

 { … } // draws a box centred at (x, y)

 public float width ()

 { return w; }

 public float height ()

 { return h; }

 }

12-17

Example: Java class and subclasses (4)

 Possible application code:

 Shape s = new Shape();

Circle c = new Circle(10.0);

s.move(12.0, 5.0);

c.move(3.0, 4.0);

… c.diameter() …

 s.draw();

c.draw();

 s = c;

s.draw();

draws a point at (12, 5)

draws a circle centred at (3, 4)

ditto! (dynamic dispatch)

12-18

Overriding

 Each instance method of a class C is inherited by

the subclass C', unless it is overridden by C'.

 The overriding method in class C' has the same

name and type as the original method in class C.

 Most OO PLs allow the programmer to specify

whether an instance method is virtual (may be

overridden) or not:

– In C++, an instance method specified as virtual may

be overridden.

– In Java, an instance method specified as final may

not be overridden.

12-19

Dynamic dispatch

 In every OO PL, a variable of type C may refer to
an object of any subclass of C.

 If method M is virtual, then the method call
“O.M(…)” entails dynamic dispatch:

– The compiler infers the type of O, say class C. It then
checks that class C is equipped with an instance
method named M, of the appropriate type.

– At run-time, however, it might turn out that the receiver
object is of class C', a subclass of C. The receiver
object’s tag is used to determine its actual class, and
hence determine which of the methods named M is to
be called.

12-20

Single inheritance

 An OO PL supports single inheritance if each

class has at most one superclass.

 Single inheritance gives rise to a hierarchy of

classes.

 Single inheritance is supported by most OO PLs,

including Java.

12-21

Example: Java single inheritance

 Declared classes:

– Date (subclass of Object)

– Shape (subclass of Object)

– Circle, Box

(both subclasses of Shape).

 Hierarchy of classes:

clone
equals
…

Object

…

Date

y, m, d

draw
width
height

Box

w, h

draw
diameter

Circle

r

move
draw

Shape

x, y

12-22

Multiple inheritance

 Multiple inheritance allows each class to have

any number of superclasses.

 Multiple inheritance is supported by C++.

 Nevertheless, multiple inheritance gives rise to

both conceptual and implementation problems.

12-23

Example: C++ multiple inheritance (1)

 Declared classes:
– Animal

– Mammal, Flier, Bird

(subclasses of Animal)

– Cat (subclass of Mammal)

– Bat (subclass of

Mammal, Flier)

– etc.

 Class

relationships:

…

Mammal

gestation

…

Flier

span

…

Bird

egg-size

…

Cat

…

…

Bat

sonar

…

Animal

weight
speed

…

Eagle

…

…

Penguin

…

12-24

Example: C++ multiple inheritance (2)

 Suppose:

– the Animal class defines a method named move

– the Mammal and Flier classes both override that

method.

 Which method does the Bat class inherit?

 Bat b = …; b.move(…);

 Possible answers:

– Make it call the Mammal method.

– Force the programmer to choose.

– Make this method call illegal.

