University

Y of Glasgow 13 Generic abstraction

= Genericity
= Generic classes

= Generic procedures

Programming Languages 3 © 2012 David A Watt, University of Glasgow

Umver31ty ..
of Glasgow Genericity

= A program-unit is generic if it is parameterized
with respect to a type on which it depends.

= Many reusable program-units (e.g., stack, queue,
list, and set ADTs/classes) are naturally generic.
= Generic program-units include:
— generic packages (not covered here)
— generic classes

— generic procedures.

Umver31ty :
of Glasgow Generic classes

= |n Java, a generic class GC is parameterized
with respect to a type T on which it depends:

class GC <T> {
ST LT

}

= The generic class must be instantiated, by
substituting a type argument A for the type
parameter T:

GC<A>

= This instantiation generates an ordinary class.

Universit :
QfGlang\z Example: Java generic class (1)

= Consider a class that encapsulates lists with
elements of type 1. This class can be made
generic with respect to type T.

= Generic class declaration:

type parameter

// A List<T> objectis a list of elements of type
// T, where the number of elements < cap.

private static final cap = 100;
private int size;
private T[] elems;

University :
< of Glasgow Example: Java generic class (2)

= Generic class declaration (continued):

public List () {
// Construct an empty list.
size = 0;
elems = (T[]) new Object[cap]:;

}

public void add (T elem) {
// Add elem to the end of this list.
elems[size++] = elem;

Universit :
QfGlang\z Example: Java generic class (3)

= The following instantiation generates a class that
encapsulates lists with string elements:

List<Stringd

______________ ==

________________ type argument (substituted
for type parameter T)

= The generated class can be used like an ordinary
class:
List<String> sentence;

sentence = new List<String>();
sentence.add ("...") ;

Universit :
qulasgoxz Example: Java generic class (4)

= The following instantiation generates a class that
encapsulates lists with pate elements:

List<Date> holidays;
holidays = new List<Date> () ;
holidays.add (new Date (2009, 1, 1))

= |n an instantiation, the type argument must be a
class, not a primitive type:

List<int> primes;

~
~
~
~o
~ .
~
~
~

Universit ..
Qf&l\glssrgoxz Java generic interface Comparable<T>

Java also supports generic interfaces.

= From java.lang:
interface Comparable <T> {

public int compareTo (T that);
}

= |f class cIs declared as implementing
Comparable<C>, C must be equipped with a
compareTo Method that compares objects of type
of

Universit
quﬁesrg%wy Bounded type parameters (1)

= Consider a generic class GC«T» that requires T to
be equipped with some specific methods.

= T may be specified as bounded by a class C:
class GC <T extends C> { ... }

— T is known to be equipped with all the methods of C.

— The type argument must be a subclass of C.

= Alternatively, T may be specified as bounded by
an interface I

class GC <T extends |I> { ... }
— T is known to be equipped with all the methods of I.

— The type argument must be a class that implements I.

Universit
Qf%ﬁ?g%\% Bounded type parameters (2)

= Recall a generic class GC«T» that does not
require T to be equipped with any specific
methods. As we have seen, it Is enough just to
name T:

class GC <T> { ... }

= This is actually an abbreviation for:
class GC <T extends Object> { ... }

— T is known to be equipped with all the Object
methods, such as equals.

— The type argument must be a subclass of Object, i.e.,
any class.

!Umversny Example: Java generic class with
bounded type parameter (1)

of Glasgow

= Consider a class pqueue<T> that encapsulates
priority queues with elements of type . It is
required that T Is equipped with a compareTo
method.

= Generic class declaration:

class PQueue <T extends Comparable<T>> {

private static final cap = 20;
private int size;
private T[] elems;

public PQueue () {
size = 0;
elems = (T[]) new Object[cap];

University Example: Java generic class with
bounded type parameter (2)

¥ of Glasgow

= Generic class declaration (continued):

public void add (T elem) {
// Add elem to this priority queue.
i1f (elem.compareTo(elems[0])<0)

}

public T first () {
// Return the first element of this priority queue.
return elems[0];

}

University Example: Java generic class with
bounded type parameter (3)

of Glasgow

= Class string implements Comparable<String>. SO

the following generates a class that encapsulates
priority queues with string elements:

PQueue<String> pqg;
pg = new PQueue<String>();
pg.add ("beta") ;
pg.add ("alpha™);
out.print (pg.first());

!UmVCrSItY Example: Java generic class with
bounded type parameter (4)

Glasgow

= Suppose that class pate implements
Comparable<Date>. Then the following generates
a class that encapsulates priority queues with
Date elements:

PQueue<Date> holidays;

= But poueue cannot be instantiated with a class ¢
that does not implement comparable<c>:

PQueue<Button> buttons;

~
~
~
~
~ .
~
~
~

Universit :
QfGlang\z Generic procedures

= A Java method may be parameterized with
respect to a type T on which the method
depends.

Universit :
QfGlang\z Example: Java generic method

= A method that chooses between two arguments
of type T can be made generic w.r.t. type T:

public static <T>
T either (boolean b, T vy, T z) {

return (b ? vy : 2z);
}
= Calls:
. either (isletter(c), c, '*')-- implicitly subst-
ituting type

. either (m > n, m, n) Character for T

7 implicitly subst-
ituting type
Integer for T

13-16

