
13-1

13 Generic abstraction

 Genericity

 Generic classes

 Generic procedures

Programming Languages 3 © 2012 David A Watt, University of Glasgow

13-2

Genericity

 A program-unit is generic if it is parameterized

with respect to a type on which it depends.

 Many reusable program-units (e.g., stack, queue,

list, and set ADTs/classes) are naturally generic.

 Generic program-units include:

– generic packages (not covered here)

– generic classes

– generic procedures.

13-3

Generic classes

 In Java, a generic class GC is parameterized

with respect to a type T on which it depends:

 class GC <T> {

 … T … T …

}

 The generic class must be instantiated, by

substituting a type argument A for the type

parameter T:

 GC<A>

 This instantiation generates an ordinary class.

13-4

Example: Java generic class (1)

 Consider a class that encapsulates lists with
elements of type T. This class can be made
generic with respect to type T.

 Generic class declaration:

 class List <T> {

 // A List<T> object is a list of elements of type

 // T, where the number of elements ≤ cap.

 private static final cap = 100;

 private int size;

 private T[] elems;

type parameter

13-5

Example: Java generic class (2)

 Generic class declaration (continued):

 public List () {

 // Construct an empty list.

 size = 0;

 elems = (T[]) new Object[cap];

 }

 public void add (T elem) {

 // Add elem to the end of this list.

 elems[size++] = elem;

 }

 }

13-6

Example: Java generic class (3)

 The following instantiation generates a class that
encapsulates lists with String elements:

 List<String>

 The generated class can be used like an ordinary

class:

 List<String> sentence;

sentence = new List<String>();

sentence.add("…");

type argument (substituted
for type parameter T)

13-7

Example: Java generic class (4)

 The following instantiation generates a class that
encapsulates lists with Date elements:

 List<Date> holidays;

holidays = new List<Date>();

holidays.add (new Date(2009, 1, 1));

 In an instantiation, the type argument must be a

class, not a primitive type:

 List<int> primes;

illegal

13-8

Java generic interface Comparable<T>

 Java also supports generic interfaces.

 From java.lang:

 interface Comparable <T> {

 public int compareTo (T that);

 }

 If class C is declared as implementing

Comparable<C>, C must be equipped with a

compareTo method that compares objects of type

C.

13-9

Bounded type parameters (1)

 Consider a generic class GC‹T› that requires T to
be equipped with some specific methods.

 T may be specified as bounded by a class C:

 class GC <T extends C> { … }

– T is known to be equipped with all the methods of C.

– The type argument must be a subclass of C.

 Alternatively, T may be specified as bounded by
an interface I:

 class GC <T extends I > { … }

– T is known to be equipped with all the methods of I.

– The type argument must be a class that implements I.

13-10

Bounded type parameters (2)

 Recall a generic class GC‹T› that does not

require T to be equipped with any specific

methods. As we have seen, it is enough just to

name T:

 class GC <T > { … }

 This is actually an abbreviation for:

 class GC <T extends Object> { … }

– T is known to be equipped with all the Object
methods, such as equals.

– The type argument must be a subclass of Object, i.e.,
any class.

13-11

Example: Java generic class with

bounded type parameter (1)

 Consider a class Pqueue<T> that encapsulates
priority queues with elements of type T. It is
required that T is equipped with a compareTo

method.

 Generic class declaration:

 class PQueue <T extends Comparable<T>> {

 private static final cap = 20;

 private int size;

 private T[] elems;

 public PQueue () {

 size = 0;

 elems = (T[]) new Object[cap];

 }

13-12

Example: Java generic class with

bounded type parameter (2)

 Generic class declaration (continued):

 public void add (T elem) {

 // Add elem to this priority queue.

 if (elem.compareTo(elems[0])<0) …

 …

 }

 public T first () {

 // Return the first element of this priority queue.

 return elems[0];

 }

 }

13-13

Example: Java generic class with

bounded type parameter (3)

 Class String implements Comparable<String>. So

the following generates a class that encapsulates
priority queues with String elements:

 PQueue<String> pq;

pq = new PQueue<String>();

pq.add("beta");

pq.add("alpha");

out.print(pq.first());

13-14

Example: Java generic class with

bounded type parameter (4)

 Suppose that class Date implements

Comparable<Date>. Then the following generates

a class that encapsulates priority queues with
Date elements:

 PQueue<Date> holidays;

 But PQueue cannot be instantiated with a class C

that does not implement Comparable<C>:

 PQueue<Button> buttons;

illegal

13-15

Generic procedures

 A Java method may be parameterized with

respect to a type T on which the method

depends.

13-16

Example: Java generic method

 A method that chooses between two arguments
of type T can be made generic w.r.t. type T:

 public static <T>

 T either (boolean b, T y, T z) {

 return (b ? y : z);

}

 Calls:

 … either (isletter(c), c, '*')

 … either (m > n, m, n)

implicitly subst-
ituting type
Character for T

implicitly subst-
ituting type
Integer for T

