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14  Run-time organization 

 Data representation 

 Storage organization: 

– stack 

– heap 

– garbage collection 
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Data representation 

 Assumptions: 

– The PL is statically-typed. 

– The compiler decides the size and layout of each type. 

– All variables of the same type have the same size. 

 Here consider representation of: 

– primitive types 

– cartesian products 

– arrays 

– objects. 
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Representation of primitive types 

 Representation of each primitive type may be 
language-defined or implementation-defined. 

 Typically 8, 16, 32, or 64 bits. 

 BOOL: 00000000 or 00000001. 

 CHAR: 00000000, …, 11111111 (if 8-bit) 

 INT: 16-bit or 32-bit or 64-bit twos-complement. 

 FLOAT: 32-bit or 64-bit IEEE floating-point. 
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Representation of arrays (1) 

 Represent an array by juxtaposing its 
components. 

 Represention of arrays of type {0, 1, 2, …} → T: 

component 0 

base 

component 1 

component 2 

… 

components of the 
same type, with the 
same size 
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Representation of arrays (2) 

 The offset of array component i (relative to the 
array’s base address) is linearly related to i: 

 offset of component i = (size of type T) × i 

known to 
the compiler 

unknown 

 Since i is unknown, the offset of component i 
must be calculated at run-time. 
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Example: representation of C arrays 

 C type definition: 

 typedef int[] Arr; 

 Possible representation of values of type Arr: 

Assume size of  
INT is 4 bytes 

(offset of 

component i 

is 4i bytes) 

component 0 

component 1 

component 2 

… 
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Representation of cartesian products (1) 

 Represent a tuple (or record or struct) by 
juxtaposing its components. 

 Representation of tuples of type  
T1  T2    Tn: 

components of 
different types, 
with different sizes 

component n 

component 2 

component 1 

… 

base 

component 3 
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Representation of cartesian products (2) 

 The compiler knows the offset of each tuple 
component (relative to the tuple’s base address): 

 offset of component 1 = 0 

 offset of component 2 = size of type T1 

 offset of component 3 = size of type T1 + size of type T2 

 … 

 offset of component n = size of type T1 + size of type T2  
   + ... + size of type Tn–1 

all sizes known 
to the compiler 
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Example: representation of C structs 

 C struct type definition: 

 struct Str { 

 float f; 

 int n; 

 char c; 

}; 

 Possible representation of structs of type Str: 

c (offset 6) 
n (offset 4) 

f (offset 0) 

Assume sizes: 
FLOAT 4 bytes  
INT 2 bytes  
CHAR 1 byte 
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Representation of objects (1) 

 Recall: Objects are tagged tuples. 

 Represent an object by juxtaposing its 
components (instance variables) with a class 
tag. 
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Representation of objects (2) 

 Consider class C with components (instance 
variables) of types T1, , Tn. 

 Representing objects of class C: 

 The compiler knows the offset of each 
component (relative to the object’s base 
address). 

component of type Tn 

component of type T1 

… 

base 

class tag C 

components of 
different types, 
with different sizes 
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Representation of objects (3) 

 Now consider class C' (a subclass of C) with 
additional instance variables of types T'1, , T'm. 

 Representation of objects of classes C and C': 

component of type Tn 

component of type T1 

… 

class tag C C' 

component of type T'm 

component of type T'1 

 Each component has a known offset in objects of 
a given class C and all subclasses of C. 
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Example: representation of Java objects 

(1) 

 Java class declarations: 

 class Shape { 

 int x, y; 

 … 

} 

 class Circle extends Shape { 

 int r; 

 … 

} 

 class Box extends Shape { 

 int w, h; 

 boolean rd; // true if corners are rounded 

 … 

} 
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Example: representation of Java objects 

(2) 

 Representing objects of above classes 
(simplified): 

x 

y 

Shape 

x 

y 

r 

Circle 

x 

y 

w 

h 

rd 

Box class tag 
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Storage organization 

 Each variable occupies storage space 

throughout its lifetime. That storage space must 

be: 

– allocated at the start of the variable’s lifetime 

– deallocated at the end of the variable’s lifetime. 

 Assumptions: 

– The PL is statically typed, so every variable’s type is 

known to the compiler. 

– All variables of the same type occupy the same amount 

of storage space. 
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Storage for global and local variables (1) 

 Recall: A global variable’s lifetime is the 

program’s entire run-time. 

 For global variables, the compiler allocates fixed 

storage space. 

 Recall: A local variable’s lifetime is an activation 

of the block in which the variable is declared. The 

lifetimes of local variables are nested. 

 For local variables, the compiler allocates 

storage space on a stack. 
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Storage for global and local variables (2) 

 At any given time, the stack contains one 
or more activation frames: 

– The frame at the base of the stack contains 
the global variables. 

– For each active procedure P, there is a frame 
containing P’s local variables. 

 A frame for procedure P is: 

– pushed on to the stack when P is called 

– popped off the stack when P returns. 

An active 
procedure is 
one that has 
been called 
but not yet 
returned. 
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Storage for global and local variables (3) 

 The compiler fixes the size and layout of 
each frame. 

 The offset of each global/local variable 
(relative to the base of the frame) is 
known to the compiler. 
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Example: storage for global and local 

variables in SVM (1) 

 SVM data store 
when the main 
program has called 
P, and P has called 
Q: 

frame 

for Q 

frame 

for P 

global 

frame 

P’s locals 

return address 

dynamic link 

Q’s locals 

return address 

dynamic link fp 

sp 

globals 

free 

 sp (stack pointer) 
points to the first 
free cell above the 
top of the stack. 

 fp (frame pointer) 
points to the first 
cell of the topmost 
frame. 
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Example: storage for global and local 

variables in SVM (2) 

 Effect of calls and returns: 

call P call Q return 

sp 

globals 
fp 

free 

fp 

sp 

P’s locals 

globals 

free 

P’s locals 

Q’s locals 

fp 

sp 

globals 

free 

P’s locals 

fp 

sp 

globals 

free 
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Storage for heap variables (1) 

 Recall: A heap variable’s lifetime starts when the 

heap variable is created and ends when it is 

destroyed or becomes unreachable. The 

lifetimes of heap variables follow no pattern. 

 Heap variables occupy a storage region called 

the heap. At any given time, the heap contains 

all currently-live heap variables, interspersed with 

free space. 

– When a new heap variable is to be created, some free 

space is allocated to it. 

– When a heap variable is to be destroyed, its allocated 

space reverts to being free. 
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Storage for heap variables (2) 

 The heap manager (part of the PL’s run-time 

system) keeps track of free space within the 

heap 

– usually by means of a free-list: a linked list of free 

areas of various sizes. 

 The heap manager provides: 

– a routine to create a heap variable  

(called by the PL’s allocator) 

– a routine to destroy a heap variable  

(called by the PL’s deallocator, if any). 
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Example: storage for heap variables 

 Effect of allocations and deallocations: 

d 

c 

b 

a 

e 

free 

d 

c 

b 

a 

e 

free 

d 

c 

b 

a 

e 

free free 

d 

c 

a 

e 

free 

free 

stack 

heap 

d 

c 

b 

a 

allocate e d.succ=a deallocate b c.right=e 
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Garbage collection 

 If the PL has no deallocator, the heap manager 
must be able to find and destroy any unreachable 
heap variables automatically. This is done by a 
garbage collector. 

 A garbage collector must visit all reachable heap 
variables. This is inevitably time-consuming. 

 A mark-sweep garbage collector is the simplest. 
It first marks all reachable heap variables, then 
deallocates all unmarked heap variables.  
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Mark-sweep garbage collection 

algorithm 

 Mark-sweep algorithm: 

 To mark all heap variables reachable from pointer p: 

 1 Let heap variable v be the referent of p. 

2 If v is unmarked: 

 2.1 Mark v. 

 2.2 For each pointer q in v: 

  2.2.1 Mark all heap variables reachable from q. 

 To collect garbage: 

 1 For each pointer p in a global/local variable: 

 1.1 Mark all heap variables reachable from p. 

2 For each heap variable v: 

 2.1 If v is unmarked, destroy v. 

 2.2 Else, if v is marked, unmark v. 

depth-first 
traversal 
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Example: mark-sweep garbage 

collection 

 Effect of mark and sweep: 

mark sweep 

stack 

heap 

d 

c 

b 

a 

e 

free 

d 

c 

b 

a 

e 

free free 

d 

c 

a 

e 

free 
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Issues 

 Time complexity of mark-sweep garbage 
collection is O(nr + nh) 

– nr = number of reachable heap variables 

– nh = total number of heap variables. 

 The heap tends to become fragmented: 

– There might be many small free areas, but none big 
enough to allocate a new large heap variable. 

– Partial solution: coalesce adjacent free areas in the 
heap. 

– Better solution: use a copying or generational garbage 
collector. 
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Copying garbage collector 

 A copying garbage collector maintains two 
separate heap spaces: 

– Initially, space 1 contains all heap variables; space 2 is 
spare. 

– Whenever the garbage collector reaches an unmarked 
heap variable v, it copies v from space 1 to space 2. 

– At the end of garbage collection, spaces 1 and 2 are 
swapped. 

 Pros and cons: 

+ Heap variables can be consolidated when copied into 
space 2. 

– All pointers to a copied heap variable must be found 
and redirected from space 1 to space 2. 



14-29 

Generational garbage collector 

 A generational garbage collector maintains two 
(or more) separate heap spaces: 

– One space (the old generation) contains only long-lived 
heap variables; the other space (the young generation) 
contains shorter-lived heap variables. 

– The old generation is garbage-collected infrequently 
(since long-lived heap variables are rarely deallocated). 

– The young generation is garbage-collected frequently 
(since short-lived heap variables are often deallocated). 

– Heap variables that live long enough may be promoted 
from the young generation to the old generation. 

 Pro: 

+ Garbage collection is more focussed. 


