
14-1

14 Run-time organization

 Data representation

 Storage organization:

– stack

– heap

– garbage collection

Programming Languages 3 © 2012 David A Watt, University of Glasgow

14-2

Data representation

 Assumptions:

– The PL is statically-typed.

– The compiler decides the size and layout of each type.

– All variables of the same type have the same size.

 Here consider representation of:

– primitive types

– cartesian products

– arrays

– objects.

14-3

Representation of primitive types

 Representation of each primitive type may be
language-defined or implementation-defined.

 Typically 8, 16, 32, or 64 bits.

 BOOL: 00000000 or 00000001.

 CHAR: 00000000, …, 11111111 (if 8-bit)

 INT: 16-bit or 32-bit or 64-bit twos-complement.

 FLOAT: 32-bit or 64-bit IEEE floating-point.

14-4

Representation of arrays (1)

 Represent an array by juxtaposing its
components.

 Represention of arrays of type {0, 1, 2, …} → T:

component 0

base

component 1

component 2

…

components of the
same type, with the
same size

14-5

Representation of arrays (2)

 The offset of array component i (relative to the
array’s base address) is linearly related to i:

 offset of component i = (size of type T) × i

known to
the compiler

unknown

 Since i is unknown, the offset of component i
must be calculated at run-time.

14-6

Example: representation of C arrays

 C type definition:

 typedef int[] Arr;

 Possible representation of values of type Arr:

Assume size of
INT is 4 bytes

(offset of

component i

is 4i bytes)

component 0

component 1

component 2

…

14-7

Representation of cartesian products (1)

 Represent a tuple (or record or struct) by
juxtaposing its components.

 Representation of tuples of type
T1 T2 Tn:

components of
different types,
with different sizes

component n

component 2

component 1

…

base

component 3

14-8

Representation of cartesian products (2)

 The compiler knows the offset of each tuple
component (relative to the tuple’s base address):

 offset of component 1 = 0

 offset of component 2 = size of type T1

 offset of component 3 = size of type T1 + size of type T2

 …

 offset of component n = size of type T1 + size of type T2
 + ... + size of type Tn–1

all sizes known
to the compiler

14-9

Example: representation of C structs

 C struct type definition:

 struct Str {

 float f;

 int n;

 char c;

};

 Possible representation of structs of type Str:

c (offset 6)
n (offset 4)

f (offset 0)

Assume sizes:
FLOAT 4 bytes
INT 2 bytes
CHAR 1 byte

14-10

Representation of objects (1)

 Recall: Objects are tagged tuples.

 Represent an object by juxtaposing its
components (instance variables) with a class
tag.

14-11

Representation of objects (2)

 Consider class C with components (instance
variables) of types T1, , Tn.

 Representing objects of class C:

 The compiler knows the offset of each
component (relative to the object’s base
address).

component of type Tn

component of type T1

…

base

class tag C

components of
different types,
with different sizes

14-12

Representation of objects (3)

 Now consider class C' (a subclass of C) with
additional instance variables of types T'1, , T'm.

 Representation of objects of classes C and C':

component of type Tn

component of type T1

…

class tag C C'

component of type T'm

component of type T'1

 Each component has a known offset in objects of
a given class C and all subclasses of C.

14-13

Example: representation of Java objects

(1)

 Java class declarations:

 class Shape {

 int x, y;

 …

}

 class Circle extends Shape {

 int r;

 …

}

 class Box extends Shape {

 int w, h;

 boolean rd; // true if corners are rounded

 …

}

14-14

Example: representation of Java objects

(2)

 Representing objects of above classes
(simplified):

x

y

Shape

x

y

r

Circle

x

y

w

h

rd

Box class tag

14-15

Storage organization

 Each variable occupies storage space

throughout its lifetime. That storage space must

be:

– allocated at the start of the variable’s lifetime

– deallocated at the end of the variable’s lifetime.

 Assumptions:

– The PL is statically typed, so every variable’s type is

known to the compiler.

– All variables of the same type occupy the same amount

of storage space.

14-16

Storage for global and local variables (1)

 Recall: A global variable’s lifetime is the

program’s entire run-time.

 For global variables, the compiler allocates fixed

storage space.

 Recall: A local variable’s lifetime is an activation

of the block in which the variable is declared. The

lifetimes of local variables are nested.

 For local variables, the compiler allocates

storage space on a stack.

14-17

Storage for global and local variables (2)

 At any given time, the stack contains one
or more activation frames:

– The frame at the base of the stack contains
the global variables.

– For each active procedure P, there is a frame
containing P’s local variables.

 A frame for procedure P is:

– pushed on to the stack when P is called

– popped off the stack when P returns.

An active
procedure is
one that has
been called
but not yet
returned.

14-18

Storage for global and local variables (3)

 The compiler fixes the size and layout of
each frame.

 The offset of each global/local variable
(relative to the base of the frame) is
known to the compiler.

14-19

Example: storage for global and local

variables in SVM (1)

 SVM data store
when the main
program has called
P, and P has called
Q:

frame

for Q

frame

for P

global

frame

P’s locals

return address

dynamic link

Q’s locals

return address

dynamic link fp

sp

globals

free

 sp (stack pointer)
points to the first
free cell above the
top of the stack.

 fp (frame pointer)
points to the first
cell of the topmost
frame.

14-20

Example: storage for global and local

variables in SVM (2)

 Effect of calls and returns:

call P call Q return

sp

globals
fp

free

fp

sp

P’s locals

globals

free

P’s locals

Q’s locals

fp

sp

globals

free

P’s locals

fp

sp

globals

free

14-21

Storage for heap variables (1)

 Recall: A heap variable’s lifetime starts when the

heap variable is created and ends when it is

destroyed or becomes unreachable. The

lifetimes of heap variables follow no pattern.

 Heap variables occupy a storage region called

the heap. At any given time, the heap contains

all currently-live heap variables, interspersed with

free space.

– When a new heap variable is to be created, some free

space is allocated to it.

– When a heap variable is to be destroyed, its allocated

space reverts to being free.

14-22

Storage for heap variables (2)

 The heap manager (part of the PL’s run-time

system) keeps track of free space within the

heap

– usually by means of a free-list: a linked list of free

areas of various sizes.

 The heap manager provides:

– a routine to create a heap variable

(called by the PL’s allocator)

– a routine to destroy a heap variable

(called by the PL’s deallocator, if any).

14-23

Example: storage for heap variables

 Effect of allocations and deallocations:

d

c

b

a

e

free

d

c

b

a

e

free

d

c

b

a

e

free free

d

c

a

e

free

free

stack

heap

d

c

b

a

allocate e d.succ=a deallocate b c.right=e

14-24

Garbage collection

 If the PL has no deallocator, the heap manager
must be able to find and destroy any unreachable
heap variables automatically. This is done by a
garbage collector.

 A garbage collector must visit all reachable heap
variables. This is inevitably time-consuming.

 A mark-sweep garbage collector is the simplest.
It first marks all reachable heap variables, then
deallocates all unmarked heap variables.

14-25

Mark-sweep garbage collection

algorithm

 Mark-sweep algorithm:

 To mark all heap variables reachable from pointer p:

 1 Let heap variable v be the referent of p.

2 If v is unmarked:

 2.1 Mark v.

 2.2 For each pointer q in v:

 2.2.1 Mark all heap variables reachable from q.

 To collect garbage:

 1 For each pointer p in a global/local variable:

 1.1 Mark all heap variables reachable from p.

2 For each heap variable v:

 2.1 If v is unmarked, destroy v.

 2.2 Else, if v is marked, unmark v.

depth-first
traversal

14-26

Example: mark-sweep garbage

collection

 Effect of mark and sweep:

mark sweep

stack

heap

d

c

b

a

e

free

d

c

b

a

e

free free

d

c

a

e

free

14-27

Issues

 Time complexity of mark-sweep garbage
collection is O(nr + nh)

– nr = number of reachable heap variables

– nh = total number of heap variables.

 The heap tends to become fragmented:

– There might be many small free areas, but none big
enough to allocate a new large heap variable.

– Partial solution: coalesce adjacent free areas in the
heap.

– Better solution: use a copying or generational garbage
collector.

14-28

Copying garbage collector

 A copying garbage collector maintains two
separate heap spaces:

– Initially, space 1 contains all heap variables; space 2 is
spare.

– Whenever the garbage collector reaches an unmarked
heap variable v, it copies v from space 1 to space 2.

– At the end of garbage collection, spaces 1 and 2 are
swapped.

 Pros and cons:

+ Heap variables can be consolidated when copied into
space 2.

– All pointers to a copied heap variable must be found
and redirected from space 1 to space 2.

14-29

Generational garbage collector

 A generational garbage collector maintains two
(or more) separate heap spaces:

– One space (the old generation) contains only long-lived
heap variables; the other space (the young generation)
contains shorter-lived heap variables.

– The old generation is garbage-collected infrequently
(since long-lived heap variables are rarely deallocated).

– The young generation is garbage-collected frequently
(since short-lived heap variables are often deallocated).

– Heap variables that live long enough may be promoted
from the young generation to the old generation.

 Pro:

+ Garbage collection is more focussed.

