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14  Run-time organization 

 Data representation 

 Storage organization: 

– stack 

– heap 

– garbage collection 
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Data representation 

 Assumptions: 

– The PL is statically-typed. 

– The compiler decides the size and layout of each type. 

– All variables of the same type have the same size. 

 Here consider representation of: 

– primitive types 

– cartesian products 

– arrays 

– objects. 
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Representation of primitive types 

 Representation of each primitive type may be 
language-defined or implementation-defined. 

 Typically 8, 16, 32, or 64 bits. 

 BOOL: 00000000 or 00000001. 

 CHAR: 00000000, …, 11111111 (if 8-bit) 

 INT: 16-bit or 32-bit or 64-bit twos-complement. 

 FLOAT: 32-bit or 64-bit IEEE floating-point. 
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Representation of arrays (1) 

 Represent an array by juxtaposing its 
components. 

 Represention of arrays of type {0, 1, 2, …} → T: 

component 0 

base 

component 1 

component 2 

… 

components of the 
same type, with the 
same size 
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Representation of arrays (2) 

 The offset of array component i (relative to the 
array’s base address) is linearly related to i: 

 offset of component i = (size of type T) × i 

known to 
the compiler 

unknown 

 Since i is unknown, the offset of component i 
must be calculated at run-time. 
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Example: representation of C arrays 

 C type definition: 

 typedef int[] Arr; 

 Possible representation of values of type Arr: 

Assume size of  
INT is 4 bytes 

(offset of 

component i 

is 4i bytes) 

component 0 

component 1 

component 2 

… 
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Representation of cartesian products (1) 

 Represent a tuple (or record or struct) by 
juxtaposing its components. 

 Representation of tuples of type  
T1  T2    Tn: 

components of 
different types, 
with different sizes 

component n 

component 2 

component 1 

… 

base 

component 3 
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Representation of cartesian products (2) 

 The compiler knows the offset of each tuple 
component (relative to the tuple’s base address): 

 offset of component 1 = 0 

 offset of component 2 = size of type T1 

 offset of component 3 = size of type T1 + size of type T2 

 … 

 offset of component n = size of type T1 + size of type T2  
   + ... + size of type Tn–1 

all sizes known 
to the compiler 
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Example: representation of C structs 

 C struct type definition: 

 struct Str { 

 float f; 

 int n; 

 char c; 

}; 

 Possible representation of structs of type Str: 

c (offset 6) 
n (offset 4) 

f (offset 0) 

Assume sizes: 
FLOAT 4 bytes  
INT 2 bytes  
CHAR 1 byte 
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Representation of objects (1) 

 Recall: Objects are tagged tuples. 

 Represent an object by juxtaposing its 
components (instance variables) with a class 
tag. 
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Representation of objects (2) 

 Consider class C with components (instance 
variables) of types T1, , Tn. 

 Representing objects of class C: 

 The compiler knows the offset of each 
component (relative to the object’s base 
address). 

component of type Tn 

component of type T1 

… 

base 

class tag C 

components of 
different types, 
with different sizes 
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Representation of objects (3) 

 Now consider class C' (a subclass of C) with 
additional instance variables of types T'1, , T'm. 

 Representation of objects of classes C and C': 

component of type Tn 

component of type T1 

… 

class tag C C' 

component of type T'm 

component of type T'1 

 Each component has a known offset in objects of 
a given class C and all subclasses of C. 



14-13 

Example: representation of Java objects 

(1) 

 Java class declarations: 

 class Shape { 

 int x, y; 

 … 

} 

 class Circle extends Shape { 

 int r; 

 … 

} 

 class Box extends Shape { 

 int w, h; 

 boolean rd; // true if corners are rounded 

 … 

} 
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Example: representation of Java objects 

(2) 

 Representing objects of above classes 
(simplified): 

x 

y 

Shape 

x 

y 

r 

Circle 

x 

y 

w 

h 

rd 

Box class tag 
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Storage organization 

 Each variable occupies storage space 

throughout its lifetime. That storage space must 

be: 

– allocated at the start of the variable’s lifetime 

– deallocated at the end of the variable’s lifetime. 

 Assumptions: 

– The PL is statically typed, so every variable’s type is 

known to the compiler. 

– All variables of the same type occupy the same amount 

of storage space. 
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Storage for global and local variables (1) 

 Recall: A global variable’s lifetime is the 

program’s entire run-time. 

 For global variables, the compiler allocates fixed 

storage space. 

 Recall: A local variable’s lifetime is an activation 

of the block in which the variable is declared. The 

lifetimes of local variables are nested. 

 For local variables, the compiler allocates 

storage space on a stack. 
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Storage for global and local variables (2) 

 At any given time, the stack contains one 
or more activation frames: 

– The frame at the base of the stack contains 
the global variables. 

– For each active procedure P, there is a frame 
containing P’s local variables. 

 A frame for procedure P is: 

– pushed on to the stack when P is called 

– popped off the stack when P returns. 

An active 
procedure is 
one that has 
been called 
but not yet 
returned. 
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Storage for global and local variables (3) 

 The compiler fixes the size and layout of 
each frame. 

 The offset of each global/local variable 
(relative to the base of the frame) is 
known to the compiler. 
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Example: storage for global and local 

variables in SVM (1) 

 SVM data store 
when the main 
program has called 
P, and P has called 
Q: 

frame 

for Q 

frame 

for P 

global 

frame 

P’s locals 

return address 

dynamic link 

Q’s locals 

return address 

dynamic link fp 

sp 

globals 

free 

 sp (stack pointer) 
points to the first 
free cell above the 
top of the stack. 

 fp (frame pointer) 
points to the first 
cell of the topmost 
frame. 
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Example: storage for global and local 

variables in SVM (2) 

 Effect of calls and returns: 

call P call Q return 

sp 

globals 
fp 

free 

fp 

sp 

P’s locals 

globals 

free 

P’s locals 

Q’s locals 

fp 

sp 

globals 

free 

P’s locals 

fp 

sp 

globals 

free 
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Storage for heap variables (1) 

 Recall: A heap variable’s lifetime starts when the 

heap variable is created and ends when it is 

destroyed or becomes unreachable. The 

lifetimes of heap variables follow no pattern. 

 Heap variables occupy a storage region called 

the heap. At any given time, the heap contains 

all currently-live heap variables, interspersed with 

free space. 

– When a new heap variable is to be created, some free 

space is allocated to it. 

– When a heap variable is to be destroyed, its allocated 

space reverts to being free. 
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Storage for heap variables (2) 

 The heap manager (part of the PL’s run-time 

system) keeps track of free space within the 

heap 

– usually by means of a free-list: a linked list of free 

areas of various sizes. 

 The heap manager provides: 

– a routine to create a heap variable  

(called by the PL’s allocator) 

– a routine to destroy a heap variable  

(called by the PL’s deallocator, if any). 
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Example: storage for heap variables 

 Effect of allocations and deallocations: 

d 

c 

b 

a 

e 

free 

d 

c 

b 

a 

e 

free 

d 

c 

b 

a 

e 

free free 

d 

c 

a 

e 

free 

free 

stack 

heap 

d 

c 

b 

a 

allocate e d.succ=a deallocate b c.right=e 
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Garbage collection 

 If the PL has no deallocator, the heap manager 
must be able to find and destroy any unreachable 
heap variables automatically. This is done by a 
garbage collector. 

 A garbage collector must visit all reachable heap 
variables. This is inevitably time-consuming. 

 A mark-sweep garbage collector is the simplest. 
It first marks all reachable heap variables, then 
deallocates all unmarked heap variables.  
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Mark-sweep garbage collection 

algorithm 

 Mark-sweep algorithm: 

 To mark all heap variables reachable from pointer p: 

 1 Let heap variable v be the referent of p. 

2 If v is unmarked: 

 2.1 Mark v. 

 2.2 For each pointer q in v: 

  2.2.1 Mark all heap variables reachable from q. 

 To collect garbage: 

 1 For each pointer p in a global/local variable: 

 1.1 Mark all heap variables reachable from p. 

2 For each heap variable v: 

 2.1 If v is unmarked, destroy v. 

 2.2 Else, if v is marked, unmark v. 

depth-first 
traversal 
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Example: mark-sweep garbage 

collection 

 Effect of mark and sweep: 

mark sweep 

stack 

heap 

d 

c 

b 

a 

e 

free 

d 

c 

b 

a 

e 

free free 

d 

c 

a 

e 

free 
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Issues 

 Time complexity of mark-sweep garbage 
collection is O(nr + nh) 

– nr = number of reachable heap variables 

– nh = total number of heap variables. 

 The heap tends to become fragmented: 

– There might be many small free areas, but none big 
enough to allocate a new large heap variable. 

– Partial solution: coalesce adjacent free areas in the 
heap. 

– Better solution: use a copying or generational garbage 
collector. 
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Copying garbage collector 

 A copying garbage collector maintains two 
separate heap spaces: 

– Initially, space 1 contains all heap variables; space 2 is 
spare. 

– Whenever the garbage collector reaches an unmarked 
heap variable v, it copies v from space 1 to space 2. 

– At the end of garbage collection, spaces 1 and 2 are 
swapped. 

 Pros and cons: 

+ Heap variables can be consolidated when copied into 
space 2. 

– All pointers to a copied heap variable must be found 
and redirected from space 1 to space 2. 
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Generational garbage collector 

 A generational garbage collector maintains two 
(or more) separate heap spaces: 

– One space (the old generation) contains only long-lived 
heap variables; the other space (the young generation) 
contains shorter-lived heap variables. 

– The old generation is garbage-collected infrequently 
(since long-lived heap variables are rarely deallocated). 

– The young generation is garbage-collected frequently 
(since short-lived heap variables are often deallocated). 

– Heap variables that live long enough may be promoted 
from the young generation to the old generation. 

 Pro: 

+ Garbage collection is more focussed. 


