otal Uni 1t : . .
& yGgow 14 Run-time organization

= Data representation

= Storage organization:
— stack
— heap

— garbage collection

Programming Languages 3 © 2012 David A Watt, University of Glasgow

Universit .
QfGlang\z Data representation

= Assumptions:
— The PL is statically-typed.
— The compiler decides the size and layout of each type.
— All variables of the same type have the same size.

= Here consider representation of:
— primitive types

— cartesian products

— arrays
— objects.

University , R
of Glasgow Representation of primitive types

Representation of each primitive type may be
language-defined or implementation-defined.

= Typically 8, 16, 32, or 64 bits.

= BOOL: 00000000 or 00000001.

= CHAR: 00000000, ..., 11111111 (if 8-bit)
= [NT: 16-bit or 32-bit or 64-bit twos-complement.
FLOAT: 32-bit or 64-bit IEEE floating-point.

Umver31ty :
o fGlasgow Representation of arrays (1)

= Represent an array by juxtaposing its
components.

= Represention of arrays of type {0, 1, 2, ...} —» T:

components of the
- same type, with the
same size

————— component 2

————— component 1

————— component O
“--base

Universit :
qulasgoxz Representation of arrays (2)

= The offset of array component i (relative to the
array’s base address) is linearly related to i:

offset of component i = (size of type T) x i\

“known to “unknown
the compiler

= Since I is unknown, the offset of component |
must be calculated at run-time.

University _
7 of Glasgow Example: representation of C arrays

= C type definition:

| Assume size of
typedef int[] Arr; oo INT is 4 bytes

= Possible representation of values of type Arr:

.- a (offset of
2 |- component 2 component i
----- component 1 is 41 bytes)

----- component 0

University
of Glasgow

= Represent a tuple (or record or struct) by
juxtaposing its components.

“pase

Representation of cartesian products (1)

= Representation of tuples of type
Ty xT,x...

X T,

component n

.. components of
= different types,
~ with different sizes

component 3

component 2
component 1

Universit : :
QfGlang\z Representation of cartesian products (2)

= The compiler knows the offset of each tuple
component (relative to the tuple’s base address):

offset of componentl =0
offset of component 2 = size of type T,
offset of component 3 = size of type T, + size of type T,

offset of component n = size of type T, + size of type T,
+ ...+ size of type T, _,

~all sizes known
to the compiler

o1a| Universit
of Glasgmz

[;

= C struct type definition:

Example: representation of C structs

struct Str { Assume sizes:
float £,
int n; INT 2 bytes
char c; CHAR 1 byte

_______________________________ FLOAT 4 bytes

= Possible representation of structs of type Str:

----- c (offset 6)
------ n (offset 4)

----- f (offset 0)

Universit : .
of%ﬁif;é% Representation of objects (1)

= Recall: Objects are tagged tuples.

= Represent an object by juxtaposing its
components (instance variables) with a class

tag.

Universit | |
Qf%ﬁ?g%\% Representation of objects (2)

= Consider class C with components (instance
variables) of types T,, ..., T,.

= Representing objects of class C:

.......... component of type T, .. components of

\:j;:> different types,
with different sizes

___________________ component of type Tl
C |- class tag

= The compiler knows the offset of each
component (relative to the object’s base
address).

Universit : :
Qf&l\z,lsrgoxz Representation of objects (3)

= Now consider class C' (a subclass of C) with
additional instance variables of types T', ..., T'..

= Representation of objects of classes C and C'
component of type T',, ----

component of type T'; ------
—————————— component of type T,

---------- component of type T[]
C |- class tag ------------------o oo C'

= Each component has a known offset in objects of
a given class C and all subclasses of C.

14-12

University Example: representation of Java objects

(1)

¥ of Glasgow

= Java class declarations:

class Shape {
int x, y;

}

class Circle extends Shape {
int r;

}

class Box extends Shape {
int w, h;
boolean rd; // true if corners are rounded

University Example: representation of Java objects

(2)

of Glasgow

= Representing objects of above classes

(simplified):
_________ ---rd
L |—h
T : W
_________ Y Y Y
X X X
Circle ---class tag

Umver31ty ..
of Glasgow Storage organization

= Each variable occupies storage space
throughout its lifetime. That storage space must
be:

— allocated at the start of the variable’s lifetime

— deallocated at the end of the variable’s lifetime.

= Assumptions:

— The PL is statically typed, so every variable’s type is
known to the compiler.

— All variables of the same type occupy the same amount
of storage space.

! Umver31ty

of Glasgow Storage for global and local variables (1)

Recall: A global variable’s lifetime is the
program’s entire run-time.

= For global variables, the compiler allocates fixed
storage space.

= Recall: A local variable’s lifetime is an activation
of the block in which the variable is declared. The
lifetimes of local variables are nested.

= For local variables, the compiler allocates
storage space on a stack.

Umver31t :
! Gang\z Storage for global and local variables (2)

= At any given time, the stack contains one
or more activation frames:

— The frame at the base of the stack contains
the global variables.

— For each active procedure P, there is a frame

containing P’s local variables. e An active

= A frame for procedure P is: Qi,%cfhda‘irﬁgi

— pushed on to the stack when P is called been called
but not yet

— popped off the stack when P returns. returned.

Universit :
of%ﬁif;é\% Storage for global and local variables (3)

= The compiler fixes the size and layout of
each frame.

= The offset of each global/local variable
(relative to the base of the frame) is
known to the compiler.

Umver31ty
o f Glasgow

Example: storage for global and local

variables in SVM (1)

SVM data store
when the main

program has called
P, and P has called

Q: fo—»

sp-

Q’s locals

dynamic linked

sp (stack pointer)
points to the first
free cell above the
top of the stack.

P’s locals

dynamic linke.

fp (frame pointer)
points to the first
cell of the topmost

globals

frame.

_ frame

for Q

_ frame

for P

__global

frame

University Example: storage for global and local
variables in SVM (2)

7 of Glasgow

= Effect of calls and returns:

call P call Q return >

Sp
Q's locals
sp fo»____ sp
IP’s locals] IP’s locals] IP’s locals]
sp fp»_____ | [fo»______
o globals globals globals globals

14-20

! Umver31ty

fGlasgow Storage for heap variables (1)

= Recall: A heap variable’s lifetime starts when the
heap variable is created and ends when it is
destroyed or becomes unreachable. The
lifetimes of heap variables follow no pattern.

= Heap variables occupy a storage region called
the heap. At any given time, the heap contains
all currently-live heap variables, interspersed with
free space.

— When a new heap variable is to be created, some free
space is allocated to it.

— When a heap variable is to be destroyed, its allocated
space reverts to being free.

Umver31t :
! Gang\z Storage for heap variables (2)

= The heap manager (part of the PL’s run-time
system) keeps track of free space within the
heap

— usually by means of a free-list: a linked list of free
areas of various sizes.

= The heap manager provides:

— aroutine to create a heap variable
(called by the PL’s allocator)

— aroutine to destroy a heap variable
(called by the PL’s deallocator, if any).

University .
<7 of Glasgow Example: storage for heap variables

= Effect of allocations and deallocations:
—allocate e ——c.right=e —d.succ=a—deallocate b—>

o o Lo
o o Lo
Lo Lo Lo

! Umver51ty

of Glasgow Garbage collection

= |f the PL has no deallocator, the heap manager
must be able to find and destroy any unreachable
heap variables automatically. This is done by a
garbage collector.

= A garbage collector must visit all reachable heap
variables. This is inevitably time-consuming.

= A mark-sweep garbage collector is the simplest.
It first marks all reachable heap variables, then
deallocates all unmarked heap variables.

University Mark-sweep garbage collection
algorithm

of Glasgow

= Mark-sweep algorithm:
To mark all heap variables reachable from pointer p:

1 Let heap variable v be the referent of p.

2 If vis unmarked: _ depth-first
2.1 Markv. T traversal
2.2 For each pointer q inv:

2.2.1 Mark all heap variables reachable from g.

To collect garbage:

1 For each pointer p in a global/local variable:
1.1 Mark all heap variables reachable from p.

2 For each heap variable v:

2.1 If vis unmarked, destroy v.

2.2 Else, if vis marked, unmark v.

é7a| Universit Example: mark-sweep garbage
QfGlang\z P P9 g

collection

= Effect of mark and sweep:
mark sweep———

Universit
of Glasgowy Issues

= Time complexity of mark-sweep garbage
collection is O(n, + n,)

— n, = number of reachable heap variables

— n,, = total number of heap variables.

= The heap tends to become fragmented:

— There might be many small free areas, but none big
enough to allocate a new large heap variable.

— Partial solution: coalesce adjacent free areas in the
heap.

— Better solution: use a copying or generational garbage
collector.

! Umver31ty

fGlasgow Copying garbage collector

= A copying garbage collector maintains two
separate heap spaces:

— Initially, space 1 contains all heap variables; space 2 is
spare.

— Whenever the garbage collector reaches an unmarked
heap variable v, it copies v from space 1 to space 2.

— At the end of garbage collection, spaces 1 and 2 are
swapped.

= Pros and cons:

+ Heap variables can be consolidated when copied into
Space 2.

— All pointers to a copied heap variable must be found
and redirected from space 1 to space 2.

! Umver31ty

fGlasgow Generational garbage collector

= A generational garbage collector maintains two
(or more) separate heap spaces:

— One space (the old generation) contains only long-lived
heap variables; the other space (the young generation)
contains shorter-lived heap variables.

— The old generation is garbage-collected infrequently
(since long-lived heap variables are rarely deallocated).

— The young generation is garbage-collected frequently
(since short-lived heap variables are often deallocated).

— Heap variables that live long enough may be promoted
from the young generation to the old generation.

= Pro:

+ Garbage collection is more focussed.

