
14-1

14 Run-time organization

 Data representation

 Storage organization:

– stack

– heap

– garbage collection

Programming Languages 3 © 2012 David A Watt, University of Glasgow

14-2

Data representation

 Assumptions:

– The PL is statically-typed.

– The compiler decides the size and layout of each type.

– All variables of the same type have the same size.

 Here consider representation of:

– primitive types

– cartesian products

– arrays

– objects.

14-3

Representation of primitive types

 Representation of each primitive type may be
language-defined or implementation-defined.

 Typically 8, 16, 32, or 64 bits.

 BOOL: 00000000 or 00000001.

 CHAR: 00000000, …, 11111111 (if 8-bit)

 INT: 16-bit or 32-bit or 64-bit twos-complement.

 FLOAT: 32-bit or 64-bit IEEE floating-point.

14-4

Representation of arrays (1)

 Represent an array by juxtaposing its
components.

 Represention of arrays of type {0, 1, 2, …} → T:

component 0

base

component 1

component 2

…

components of the
same type, with the
same size

14-5

Representation of arrays (2)

 The offset of array component i (relative to the
array’s base address) is linearly related to i:

 offset of component i = (size of type T) × i

known to
the compiler

unknown

 Since i is unknown, the offset of component i
must be calculated at run-time.

14-6

Example: representation of C arrays

 C type definition:

 typedef int[] Arr;

 Possible representation of values of type Arr:

Assume size of
INT is 4 bytes

(offset of

component i

is 4i bytes)

component 0

component 1

component 2

…

14-7

Representation of cartesian products (1)

 Represent a tuple (or record or struct) by
juxtaposing its components.

 Representation of tuples of type
T1  T2    Tn:

components of
different types,
with different sizes

component n

component 2

component 1

…

base

component 3

14-8

Representation of cartesian products (2)

 The compiler knows the offset of each tuple
component (relative to the tuple’s base address):

 offset of component 1 = 0

 offset of component 2 = size of type T1

 offset of component 3 = size of type T1 + size of type T2

 …

 offset of component n = size of type T1 + size of type T2
 + ... + size of type Tn–1

all sizes known
to the compiler

14-9

Example: representation of C structs

 C struct type definition:

 struct Str {

 float f;

 int n;

 char c;

};

 Possible representation of structs of type Str:

c (offset 6)
n (offset 4)

f (offset 0)

Assume sizes:
FLOAT 4 bytes
INT 2 bytes
CHAR 1 byte

14-10

Representation of objects (1)

 Recall: Objects are tagged tuples.

 Represent an object by juxtaposing its
components (instance variables) with a class
tag.

14-11

Representation of objects (2)

 Consider class C with components (instance
variables) of types T1, , Tn.

 Representing objects of class C:

 The compiler knows the offset of each
component (relative to the object’s base
address).

component of type Tn

component of type T1

…

base

class tag C

components of
different types,
with different sizes

14-12

Representation of objects (3)

 Now consider class C' (a subclass of C) with
additional instance variables of types T'1, , T'm.

 Representation of objects of classes C and C':

component of type Tn

component of type T1

…

class tag C C'

component of type T'm

component of type T'1

 Each component has a known offset in objects of
a given class C and all subclasses of C.

14-13

Example: representation of Java objects

(1)

 Java class declarations:

 class Shape {

 int x, y;

 …

}

 class Circle extends Shape {

 int r;

 …

}

 class Box extends Shape {

 int w, h;

 boolean rd; // true if corners are rounded

 …

}

14-14

Example: representation of Java objects

(2)

 Representing objects of above classes
(simplified):

x

y

Shape

x

y

r

Circle

x

y

w

h

rd

Box class tag

14-15

Storage organization

 Each variable occupies storage space

throughout its lifetime. That storage space must

be:

– allocated at the start of the variable’s lifetime

– deallocated at the end of the variable’s lifetime.

 Assumptions:

– The PL is statically typed, so every variable’s type is

known to the compiler.

– All variables of the same type occupy the same amount

of storage space.

14-16

Storage for global and local variables (1)

 Recall: A global variable’s lifetime is the

program’s entire run-time.

 For global variables, the compiler allocates fixed

storage space.

 Recall: A local variable’s lifetime is an activation

of the block in which the variable is declared. The

lifetimes of local variables are nested.

 For local variables, the compiler allocates

storage space on a stack.

14-17

Storage for global and local variables (2)

 At any given time, the stack contains one
or more activation frames:

– The frame at the base of the stack contains
the global variables.

– For each active procedure P, there is a frame
containing P’s local variables.

 A frame for procedure P is:

– pushed on to the stack when P is called

– popped off the stack when P returns.

An active
procedure is
one that has
been called
but not yet
returned.

14-18

Storage for global and local variables (3)

 The compiler fixes the size and layout of
each frame.

 The offset of each global/local variable
(relative to the base of the frame) is
known to the compiler.

14-19

Example: storage for global and local

variables in SVM (1)

 SVM data store
when the main
program has called
P, and P has called
Q:

frame

for Q

frame

for P

global

frame

P’s locals

return address

dynamic link

Q’s locals

return address

dynamic link fp

sp

globals

free

 sp (stack pointer)
points to the first
free cell above the
top of the stack.

 fp (frame pointer)
points to the first
cell of the topmost
frame.

14-20

Example: storage for global and local

variables in SVM (2)

 Effect of calls and returns:

call P call Q return

sp

globals
fp

free

fp

sp

P’s locals

globals

free

P’s locals

Q’s locals

fp

sp

globals

free

P’s locals

fp

sp

globals

free

14-21

Storage for heap variables (1)

 Recall: A heap variable’s lifetime starts when the

heap variable is created and ends when it is

destroyed or becomes unreachable. The

lifetimes of heap variables follow no pattern.

 Heap variables occupy a storage region called

the heap. At any given time, the heap contains

all currently-live heap variables, interspersed with

free space.

– When a new heap variable is to be created, some free

space is allocated to it.

– When a heap variable is to be destroyed, its allocated

space reverts to being free.

14-22

Storage for heap variables (2)

 The heap manager (part of the PL’s run-time

system) keeps track of free space within the

heap

– usually by means of a free-list: a linked list of free

areas of various sizes.

 The heap manager provides:

– a routine to create a heap variable

(called by the PL’s allocator)

– a routine to destroy a heap variable

(called by the PL’s deallocator, if any).

14-23

Example: storage for heap variables

 Effect of allocations and deallocations:

d

c

b

a

e

free

d

c

b

a

e

free

d

c

b

a

e

free free

d

c

a

e

free

free

stack

heap

d

c

b

a

allocate e d.succ=a deallocate b c.right=e

14-24

Garbage collection

 If the PL has no deallocator, the heap manager
must be able to find and destroy any unreachable
heap variables automatically. This is done by a
garbage collector.

 A garbage collector must visit all reachable heap
variables. This is inevitably time-consuming.

 A mark-sweep garbage collector is the simplest.
It first marks all reachable heap variables, then
deallocates all unmarked heap variables.

14-25

Mark-sweep garbage collection

algorithm

 Mark-sweep algorithm:

 To mark all heap variables reachable from pointer p:

 1 Let heap variable v be the referent of p.

2 If v is unmarked:

 2.1 Mark v.

 2.2 For each pointer q in v:

 2.2.1 Mark all heap variables reachable from q.

 To collect garbage:

 1 For each pointer p in a global/local variable:

 1.1 Mark all heap variables reachable from p.

2 For each heap variable v:

 2.1 If v is unmarked, destroy v.

 2.2 Else, if v is marked, unmark v.

depth-first
traversal

14-26

Example: mark-sweep garbage

collection

 Effect of mark and sweep:

mark sweep

stack

heap

d

c

b

a

e

free

d

c

b

a

e

free free

d

c

a

e

free

14-27

Issues

 Time complexity of mark-sweep garbage
collection is O(nr + nh)

– nr = number of reachable heap variables

– nh = total number of heap variables.

 The heap tends to become fragmented:

– There might be many small free areas, but none big
enough to allocate a new large heap variable.

– Partial solution: coalesce adjacent free areas in the
heap.

– Better solution: use a copying or generational garbage
collector.

14-28

Copying garbage collector

 A copying garbage collector maintains two
separate heap spaces:

– Initially, space 1 contains all heap variables; space 2 is
spare.

– Whenever the garbage collector reaches an unmarked
heap variable v, it copies v from space 1 to space 2.

– At the end of garbage collection, spaces 1 and 2 are
swapped.

 Pros and cons:

+ Heap variables can be consolidated when copied into
space 2.

– All pointers to a copied heap variable must be found
and redirected from space 1 to space 2.

14-29

Generational garbage collector

 A generational garbage collector maintains two
(or more) separate heap spaces:

– One space (the old generation) contains only long-lived
heap variables; the other space (the young generation)
contains shorter-lived heap variables.

– The old generation is garbage-collected infrequently
(since long-lived heap variables are rarely deallocated).

– The young generation is garbage-collected frequently
(since short-lived heap variables are often deallocated).

– Heap variables that live long enough may be promoted
from the young generation to the old generation.

 Pro:

+ Garbage collection is more focussed.

