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Characteristics of real machines 

 Code selection is difficult because: 

– CISC machines have very complicated instructions, 
with multiple addressing modes. 

– even RISC machines have some fairly complicated 
instructions. 

 Register allocation is an issue: 

– Registers should be used as much as possible. 

– RISC machines typically have only general-purpose 
registers. 

– CISC machines typically have a variety of special-
purpose registers (e.g., int registers, float registers, 
address registers). 
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Register allocation 

 Aim to use registers as much as possible for 
local variables and intermediate results of 
expressions. 

 Problem: The number of registers is limited 

– especially when some are dedicated (e.g., fp, sp). 

 Opportunity: Different variables can be allocated 
to the same register if they are live at different 
times. 

 Here, a variable is deemed to be live only if it 
might be inspected later. 
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Register allocation: basic-blocks 

 A basic-block (BB) is a straight-line sequence of 
instructions: 

– no jumps except at the end of a BB 

– no jumps to anywhere except the start of a BB. 

 Within a BB, break up complicated expressions 
using temporary variables, such that each 
assignment instruction contains at most one 
operator. E.g.: 

a = (b+c)*(d-e); 

t1 ← b + c 
t2 ← d – e 
a ← t1 × t2 

 Note: Basic-blocks are unrelated to block 
structure. 
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Example: basic-block (1) 

 Consider the C function: 

 int tri (int a, int b, int c) { 

 int s = (a+b+c)/2; 

 return s*(s-a)*(s-b)*(s-c); 

} 

 This function’s body is a single BB: t1 ← a + b 
t2 ← t1 + c 
s ← t2 / 2 
t3 ← s ‒ a 
t4 ← s × t3 
t5 ← s – b 
t6 ← t4 × t5 
t7 ← s – c 
t8 ← t6 × t7 
return t8 
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Example: basic-block (2) 

 Within the BB, determine where each variable is 
live, then allocate registers: 

t2 

t3 

t4 

t5 

t6 

t7 

t8 

t1 

a b c 

s 

t1 ← a + b 

t2 ← t1 + c 

s ← t2 / 2 

t3 ← s ‒ a 

t4 ← s × t3 

t5 ← s – b 

t6 ← t4 × t5 

t7 ← s – c 

t8 ← t6 × t7 

return t8 

r4 r4 r4 r1 r1 r2 r1 r2 r1 r1 r2 r3 Allocated: 
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Register allocation: control-flow graphs 

 A control-flow graph is a directed graph in 
which: 

– each vertex is a BB 

– each edge is a jump from the end of one BB to the start 
of another BB 

– one vertex is designated as the entry point 

– one vertex is designated as the exit point. 
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Example: control-flow graph (1) 

 Consider the C function: 

 int pow (int b, int n) { 

 int p = 1, q = b, m = n; 

 while (m > 0) { 

  if (m & 1) p = p*q; 

  m = m/2; 

  q = q*q; 

 } 

 return p; 

} 
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Example: control-flow graph (2) 

 This function’s body  
is a control-flow graph: 

p ← 1 
q ← b 
m ← n 

t1 ← m>0 
jump if t1 

t2 ← m&1 
jump if t2 

p ← p×q 

m ← m/2 
q ← q×q 

return p 

BB1 

BB2 

BB3 

BB4 

BB5 

BB6 

 Where is each variable 
live? 

‒ b and n are live only in 
BB1 

‒ p is live everywhere 

‒ m and q are live 
everywhere except in BB6 

‒ t1 is live only in BB2 

‒ t2 is live only in BB3. 
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Liveness analysis: data flow equations 

 Define the following sets for each BB b in a 
control-flow graph: 

– in[b] is the set of variables live at the start of b 

– out[b] is the set of variables live at the end of b 

– use[b] is the set of variables v such that b inspects v 
(before any update to v) 

– def[b] is the set of variables v such that b updates v 
(before any inspection of v) 

 Data flow equations for liveness analysis: 

in[b] = use[b] U (out[b] – def[b]) 

out[b] = in[b'] U in[b'' ] U … 
(where b', b'', … are the successors of b in the flow graph) 
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Liveness analysis: algorithm 

 The liveness analysis algorithm follows directly 
from the data flow equations: 

 To compute in[b] and out[b] for all BBs in a control-flow 
graph: 

 1. For each b: 
 1.1. Set in[b] = out[b] = { }. 
2. Repeat until the sets in[b] and out[b] stop changing: 
 2.1. For each b: 
  2.1.1. Set in[b] = use[b] U (out[b] – def[b]). 
  2.1.2. Set out[b] = in[b'] U in[b'' ] U … 
   (where b', b'', … are the successors of b). 
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Intermediate representation 

 Native code generation is simplified by using a 
low-level intermediate representation (IR) of 
the source program. 

 The IR should be capable of: 

– representing the semantics of the source code 

– representing the semantics of target-machine 
instructions. 

 The IR should ideally be independent of the 
target machine. 
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Example: IR tree (1) 

 Consider the C assignment “a[i] = v;”. 

 Assume that: 

– a has type int* and v has type int 

– each int occupies 4 bytes 

– variable a is located at offset a within the topmost 
activation frame (that location contains the base 
address of a) 

– variable i is located in register r9 

– variable v is located at offset v within the topmost 
activation frame. 

 Address of a[i] is: 

(base address of a) + 4×(content of i). 
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Example: IR tree (2) 

 Possible IR tree for “a[i] = v;”: 

+ 

const 
a 

reg 
fp 

mem 

move 

+ 

mem 

× 

const 
4 

reg 
9 

+ 

const 
v 

reg 
fp 

mem 
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Summary of IR trees 

 IR trees: 

subtree 

Key: 

+ 

const 
c 

reg 
r 

mem 

‒ × 

move 

mem 
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Modelling target instructions 

 Model the semantics of each target machine 
instruction using an IR tree pattern. 

 Note: We use the same IR to model both source 
code and target instructions. 
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Example: Jouette (1) 

 Jouette is a hypothetical RISC machine 

– invented by Andrew Appel for his Modern Compiler 
Implementation books. 

 Jouette architecture: 

– general-purpose registers r0, r1, r2, ..., r31 

– r0 always contains zero. 
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Example: Jouette (2) 

 Jouette instruction set: 

Mnemonic Behaviour 

ADD r,r',r'' r ← r' + r'' 

SUB r,r',r'' r ← r' – r'' 

MUL r,r',r'' r ← r' × r'' 

ADDI r,r',c r ← r' + c 

SUBI r,r',c r ← r' – c 

LOAD r,c(r') r ← mem[r' + c] 

STORE r,c(r') mem[r' + c] ← r 

COPY (r),(r') mem[r' ] ← mem[r] 

r, r', r'' are 
registers; 
c is a 
constant 
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Example: modelling Jouette instructions 

(1) 

 Jouette arithmetic instructions: 

+ 

‒ 

× 

+ 

const c 

+ 

const c 

‒ 

const c 

const c 

(r' = r0) 

ADD r,r',r'' 
  (r ← r' + r'') 

SUB r,r',r'' 
  (r ← r' – r'') 

MUL r,r',r'' 
  (r ← r' × r'') 

ADDI r,r',c 
  (r ← r' + c) 

SUBI r,r',c 
  (r ← r' – c) It’s possible for >1 

patterns to model 1 
instruction. 
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Example: modelling Jouette instructions 

(2) 

 Jouette load/store instructions: 

mem 

+ 

const c 

move 

mem 

+ 

const c 

move 

mem mem 

mem 

+ 

const c 

move 

mem 

+ 

const c 

LOAD r,c(r') 
  (r ← mem[r' + c]) 

STORE r,c(r') 
  (mem[r' + c] ← r) 

COPY (r),(r') 
  (mem[r' ] ← 
     mem[r]) 

mem 

const c 

(r' = r0) 

mem 

(c = 0) 

move 

mem 

const c 

(r' = r0) 
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Code selection: method 

 Translate the source code or AST into an IR tree. 

 “Cover” the tree with IR instruction patterns. 

 Emit code corresponding to these instruction 
patterns 

– performing register allocation as you go. 
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Example: code selection (1) 

 One way to cover the IR for “a[i] = v;”: 

const 
4 

+ 

const 
a 

reg 
fp 

mem 

move 

+ 

mem 

× 

reg 
r9 

+ 

const 
v 

reg 
fp 

mem 

 

 

 

 

 

 

LOAD  r1,a(fp) 

ADDI  r2,r0,4 

MUL   r2,r9,r2 

ADD   r1,r1,r2 

LOAD  r2,v(fp) 

STORE r2,0(r1) 
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Example: code selection (2) 

 Different way to cover the IR for “a[i] = v;”: 

+ 

const 
a 

reg 
fp 

mem 

move 

+ 

mem 

× 

const 
4 

reg 
r9 

+ 

const 
v 

reg 
fp 

mem 

 

 

 

 

 

 

LOAD  r1,a(fp) 

ADDI  r2,r0,4 

MUL   r2,r9,r2 

ADD   r1,r1,r2 

ADDI  r2,fp,v 

COPY (r2),(r1) 
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Code selection: maximal-munch 

algorithm 

 Maximal-munch code selection algorithm: 

 To cover the IR tree t using instruction patterns ps: 

 1. Find the largest pattern p in ps that covers the top of t. 
2. For each uncovered subtree s of t (from left to right): 
 2.1. Cover s using ps. 
 2.2. Emit the instruction corresponding to p. 

 The time complexity is O(size of t). 

 The emitted code is optimal in the sense that: 

– no two adjacent patterns could be replaced by a single 
pattern 

– the number of instructions is minimal. 


