
15-1

15 Native code generation

 Characteristics of real machines

 Register allocation

 Intermediate representation

 Code selection

Programming Languages 3 © 2012 David A Watt, University of Glasgow

15-2

Characteristics of real machines

 Code selection is difficult because:

– CISC machines have very complicated instructions,
with multiple addressing modes.

– even RISC machines have some fairly complicated
instructions.

 Register allocation is an issue:

– Registers should be used as much as possible.

– RISC machines typically have only general-purpose
registers.

– CISC machines typically have a variety of special-
purpose registers (e.g., int registers, float registers,
address registers).

15-3

Register allocation

 Aim to use registers as much as possible for
local variables and intermediate results of
expressions.

 Problem: The number of registers is limited

– especially when some are dedicated (e.g., fp, sp).

 Opportunity: Different variables can be allocated
to the same register if they are live at different
times.

 Here, a variable is deemed to be live only if it
might be inspected later.

15-4

Register allocation: basic-blocks

 A basic-block (BB) is a straight-line sequence of
instructions:

– no jumps except at the end of a BB

– no jumps to anywhere except the start of a BB.

 Within a BB, break up complicated expressions
using temporary variables, such that each
assignment instruction contains at most one
operator. E.g.:

a = (b+c)*(d-e);

t1 ← b + c
t2 ← d – e
a ← t1 × t2

 Note: Basic-blocks are unrelated to block
structure.

15-5

Example: basic-block (1)

 Consider the C function:

 int tri (int a, int b, int c) {

 int s = (a+b+c)/2;

 return s*(s-a)*(s-b)*(s-c);

}

 This function’s body is a single BB: t1 ← a + b
t2 ← t1 + c
s ← t2 / 2
t3 ← s ‒ a
t4 ← s × t3
t5 ← s – b
t6 ← t4 × t5
t7 ← s – c
t8 ← t6 × t7
return t8

15-6

Example: basic-block (2)

 Within the BB, determine where each variable is
live, then allocate registers:

t2

t3

t4

t5

t6

t7

t8

t1

a b c

s

t1 ← a + b

t2 ← t1 + c

s ← t2 / 2

t3 ← s ‒ a

t4 ← s × t3

t5 ← s – b

t6 ← t4 × t5

t7 ← s – c

t8 ← t6 × t7

return t8

r4 r4 r4 r1 r1 r2 r1 r2 r1 r1 r2 r3 Allocated:

15-7

Register allocation: control-flow graphs

 A control-flow graph is a directed graph in
which:

– each vertex is a BB

– each edge is a jump from the end of one BB to the start
of another BB

– one vertex is designated as the entry point

– one vertex is designated as the exit point.

15-8

Example: control-flow graph (1)

 Consider the C function:

 int pow (int b, int n) {

 int p = 1, q = b, m = n;

 while (m > 0) {

 if (m & 1) p = p*q;

 m = m/2;

 q = q*q;

 }

 return p;

}

15-9

Example: control-flow graph (2)

 This function’s body
is a control-flow graph:

p ← 1
q ← b
m ← n

t1 ← m>0
jump if t1

t2 ← m&1
jump if t2

p ← p×q

m ← m/2
q ← q×q

return p

BB1

BB2

BB3

BB4

BB5

BB6

 Where is each variable
live?

‒ b and n are live only in
BB1

‒ p is live everywhere

‒ m and q are live
everywhere except in BB6

‒ t1 is live only in BB2

‒ t2 is live only in BB3.

15-10

Liveness analysis: data flow equations

 Define the following sets for each BB b in a
control-flow graph:

– in[b] is the set of variables live at the start of b

– out[b] is the set of variables live at the end of b

– use[b] is the set of variables v such that b inspects v
(before any update to v)

– def[b] is the set of variables v such that b updates v
(before any inspection of v)

 Data flow equations for liveness analysis:

in[b] = use[b] U (out[b] – def[b])

out[b] = in[b'] U in[b''] U …
(where b', b'', … are the successors of b in the flow graph)

15-11

Liveness analysis: algorithm

 The liveness analysis algorithm follows directly
from the data flow equations:

 To compute in[b] and out[b] for all BBs in a control-flow
graph:

 1. For each b:
 1.1. Set in[b] = out[b] = { }.
2. Repeat until the sets in[b] and out[b] stop changing:
 2.1. For each b:
 2.1.1. Set in[b] = use[b] U (out[b] – def[b]).
 2.1.2. Set out[b] = in[b'] U in[b''] U …
 (where b', b'', … are the successors of b).

15-12

Intermediate representation

 Native code generation is simplified by using a
low-level intermediate representation (IR) of
the source program.

 The IR should be capable of:

– representing the semantics of the source code

– representing the semantics of target-machine
instructions.

 The IR should ideally be independent of the
target machine.

15-13

Example: IR tree (1)

 Consider the C assignment “a[i] = v;”.

 Assume that:

– a has type int* and v has type int

– each int occupies 4 bytes

– variable a is located at offset a within the topmost
activation frame (that location contains the base
address of a)

– variable i is located in register r9

– variable v is located at offset v within the topmost
activation frame.

 Address of a[i] is:

(base address of a) + 4×(content of i).

15-14

Example: IR tree (2)

 Possible IR tree for “a[i] = v;”:

+

const
a

reg
fp

mem

move

+

mem

×

const
4

reg
9

+

const
v

reg
fp

mem

15-15

Summary of IR trees

 IR trees:

subtree

Key:

+

const
c

reg
r

mem

‒ ×

move

mem

15-16

Modelling target instructions

 Model the semantics of each target machine
instruction using an IR tree pattern.

 Note: We use the same IR to model both source
code and target instructions.

15-17

Example: Jouette (1)

 Jouette is a hypothetical RISC machine

– invented by Andrew Appel for his Modern Compiler
Implementation books.

 Jouette architecture:

– general-purpose registers r0, r1, r2, ..., r31

– r0 always contains zero.

15-18

Example: Jouette (2)

 Jouette instruction set:

Mnemonic Behaviour

ADD r,r',r'' r ← r' + r''

SUB r,r',r'' r ← r' – r''

MUL r,r',r'' r ← r' × r''

ADDI r,r',c r ← r' + c

SUBI r,r',c r ← r' – c

LOAD r,c(r') r ← mem[r' + c]

STORE r,c(r') mem[r' + c] ← r

COPY (r),(r') mem[r'] ← mem[r]

r, r', r'' are
registers;
c is a
constant

15-19

Example: modelling Jouette instructions

(1)

 Jouette arithmetic instructions:

+

‒

×

+

const c

+

const c

‒

const c

const c

(r' = r0)

ADD r,r',r''
 (r ← r' + r'')

SUB r,r',r''
 (r ← r' – r'')

MUL r,r',r''
 (r ← r' × r'')

ADDI r,r',c
 (r ← r' + c)

SUBI r,r',c
 (r ← r' – c) It’s possible for >1

patterns to model 1
instruction.

15-20

Example: modelling Jouette instructions

(2)

 Jouette load/store instructions:

mem

+

const c

move

mem

+

const c

move

mem mem

mem

+

const c

move

mem

+

const c

LOAD r,c(r')
 (r ← mem[r' + c])

STORE r,c(r')
 (mem[r' + c] ← r)

COPY (r),(r')
 (mem[r'] ←
 mem[r])

mem

const c

(r' = r0)

mem

(c = 0)

move

mem

const c

(r' = r0)

15-21

Code selection: method

 Translate the source code or AST into an IR tree.

 “Cover” the tree with IR instruction patterns.

 Emit code corresponding to these instruction
patterns

– performing register allocation as you go.

15-22

Example: code selection (1)

 One way to cover the IR for “a[i] = v;”:

const
4

+

const
a

reg
fp

mem

move

+

mem

×

reg
r9

+

const
v

reg
fp

mem

LOAD r1,a(fp)

ADDI r2,r0,4

MUL r2,r9,r2

ADD r1,r1,r2

LOAD r2,v(fp)

STORE r2,0(r1)

15-23

Example: code selection (2)

 Different way to cover the IR for “a[i] = v;”:

+

const
a

reg
fp

mem

move

+

mem

×

const
4

reg
r9

+

const
v

reg
fp

mem

LOAD r1,a(fp)

ADDI r2,r0,4

MUL r2,r9,r2

ADD r1,r1,r2

ADDI r2,fp,v

COPY (r2),(r1)

15-24

Code selection: maximal-munch

algorithm

 Maximal-munch code selection algorithm:

 To cover the IR tree t using instruction patterns ps:

 1. Find the largest pattern p in ps that covers the top of t.
2. For each uncovered subtree s of t (from left to right):
 2.1. Cover s using ps.
 2.2. Emit the instruction corresponding to p.

 The time complexity is O(size of t).

 The emitted code is optimal in the sense that:

– no two adjacent patterns could be replaced by a single
pattern

– the number of instructions is minimal.

