
Programming Languages 3 Tutorial Exercises 16

Exercises	11	(Procedural	abstraction)	
 11A. (C function declarations)

The syntax of C function definitions is (in outline):
 decl = …
 | type id ‘(’ formals? ‘)’ block-com

Modify the syntax so that a function’s body is an expression rather than a block
command. Show that this change, in isolation, would reduce the expressive power of
functions. What other changes to the language would be needed to compensate?

 11B. (C functions and proper procedures)
Modify the syntax of C function definitions and function calls to make a clear
distinction between proper procedures and function procedures.

 11C. (Copy vs reference parameters)
Consider the following Ada procedure:

type Vector is array [1 .. 3] of Float;
procedure add (v1, v2: in Vector; s: out Vector) is
begin
 for i in 1 .. 3 loop
 s[i] := v1[i] + v2[i];
 end loop;
end;

Here the keyword “in” signifies data flow into the procedure, whilst “out” signifies
data flow out of the procedure.
The Ada compiler is free to adopt either copy or reference mechanisms for array
parameters.
Consider the procedure call “add(a, b, c);”.
(a) Assuming that copy mechanisms are used, what happens to the three parameters,

(i) on entry to the procedure, and (ii) on exit from the procedure?
(b) Assuming that reference mechanisms are used, what happens to the three

parameters, (i) on entry to the procedure, and (ii) on exit from the procedure?
(c) Show that the procedure call has the same outcome, whichever parameter

mechanisms are used.

Programming Languages 3 Tutorial Exercises 17

Exercises	12	(Data	abstraction)	
 12A. (Programming without data abstraction)

C does not support packages, abstract data types, or classes.
(a) Consider the dictionary module of slide 12-3. How can we program this module in

C, in such a way as to hide the data structure?
(b) What are the disadvantages of programming in this way?

 12B. (Abstract data type for complex numbers)
Design a Complex abstract data type, whose values are complex numbers. Equip your
abstract type with operations such as magnitude, complex addition, complex
subtraction, and complex multiplication.
Implement the abstract data type in Java, using a suitable representation for Complex.

 12C. (Classes for geometric shapes)
Consider the Java class declarations Shape, Circle, and Box starting at slide 12-14.
(a) Define classes for straight lines and text boxes, placing them in an appropriate

class hierarchy. Each of these classes must define its own draw operation.
(b) Define a Picture class, such that each Picture object represents a collection

of shapes. Provide an operation that draws the whole picture, by drawing all of its
component shapes.

Programming Languages 3 Tutorial Exercises 18

Exercises	13	(Generic	abstraction)	
 13A. (Generic class for lists)

Consider the Java generic class List<T> from the course notes (starting at slide 13-4).
Assuming that you are given a suitable class Airport, show how to instantiate
List<T> to declare a variable itinerary that will contain a list of airports.

 13B. (Generic class for priority queues)
Consider the Java generic class PQueue<T> from the course notes (starting at slide
13-11). Assume that you are given the class Fault outlined below:

class Fault {
// A Fault object is a date-stamped fault report.
 public Date date;
 public String description;
 …
}

(a) Show how the Fault class declaration must be modified if you want to instantiate
PQueue<T> with type Fault.

(b) Show how to instantiate the generic class to declare a variable log, which will
contain a priority queue of fault reports ordered by date.

 13C. (Generic class for binary relations)
A binary relation is a unordered collection of pairs (x, y) in which no pair is duplicated.
Assume that the relation is homogeneous, i.e., all the x values have the same type, and
all the y values have the same type, but the two types may be different.
Typical operations are to construct an empty relation, to add a given pair of values to a
relation, to test whether a relation contains a given pair of values, and to retrieve the set
of all y values paired with a given x value.
 (a) Design a Java generic class that implements homogeneous binary relations. The

class must be parameterized with respect to the type of the x values and the type of
the y values. Provide all the above operations. Assume as little as possible about
the types of the x and y values. What assumption(s) are you absolutely forced to
make about these types?

 (b) Suppose now that an operation is to be added to display the contents of the relation,
sorted by x. What assumption(s) are you now forced to make about these the type
of the x values?

