
Programming Languages 3 Tutorial Solutions 1

Programming	Languages	3	

Tutorial	Solutions	(2013‐14)	

Here are sample solutions to most of the tutorial exercises. For some of the exercises
alternative correct solutions are possible. If in doubt, consult the lecturer.
Attempt each exercise before consulting the sample solution.

Programming Languages 3 Tutorial Solutions 2

Exercises	1	(Syntax)	–	Solutions	
 1A. (Regular expressions)

(a) Syntax of Cobol identifiers using a single RE:
(‘a’ | ‘b’ | ‘c’ | … | ‘z’) (‘a’ | ‘b’ | ‘c’ | … | ‘z’ | ‘0’ | ‘1’ | ‘2’ | … | ‘9’)*
 (‘-’ (‘a’ | ‘b’ | ‘c’ | … | ‘z’ | ‘0’ | ‘1’ | ‘2’ | … | ‘9’)+)*

(b) Syntax of Cobol identifiers using EBNF:
 id = letter (letter | digit)* (‘-’ (letter | digit)+)*
 letter = ‘a’ | ‘b’ | ‘c’ | … | ‘z’
 digit = ‘0’ | ‘1’ | ‘2’ | … | ‘9’

 1B. (Regular expressions)
(a) Expressing the given grep patterns in standard RE notation:

‘b’ (‘a’|‘e’|‘i’) ‘t’ ‘b’ (…|…|…) ‘t’
‘b’ ‘e’* ‘t’ ‘b’ (‘a’|‘e’|‘i’|‘o’|‘u’)*‘t’ ‘b’ (‘a’|‘e’|‘i’)+ ‘t’

 where (…|…|…) is a choice between all available graphic characters!
(b) To find the required patterns in file f:

(i) egrep "<H[123456789]>" f or
 egrep "<H[1-9]>" f
(ii) egrep "{[a-z]+}" f
(iii) egrep "{.*}" f
(iv) egrep "M(r|s|rs|iss)" f
(v) egrep "b(an)*a" f

 1C. (BNF)

 Mini-English grammar modified to enforce subject–verb agreement, including 1st, 2nd,
and 3rd persons:

 sentence = subject-1 verb-1 object ‘.’
 | subject-2 verb-2 object ‘.’
 | subject-3 verb-3 object ‘.’
 subject-1 = ‘I’
 subject-2 = ‘you’
 subject-3 = ‘a’ noun | ‘the’ noun
 verb-1 = ‘see’ | ‘smell’
 verb-2 = ‘see’ | ‘smell’
 verb-3 = ‘sees’ | ‘smells’

The production rules for object and noun are unaffected.

 1D. (Phrase structure)
(a) Syntax trees of the expressions “x+y*z” and “x*y+z”:

Programming Languages 3 Tutorial Solutions 3

 (b) Grammar modified so that ‘*’ and ‘/’ have greater priority:

 expr = term
 | expr ‘+’ term
 | expr ‘-’ term
 term = prim
 | term ‘*’ prim
 prim = num
 | id
 | ‘(’ expr ‘)’

 1E. (Ambiguity)
(a) The phrase “while (b) x = 1; y = 2;” is ambiguous:

(b) The Fun grammar avoids this ambiguity by allowing the body of a while-command

to be a sequential command, but insisting that it is terminated by ‘.’.
(c) The Java grammar avoids this ambiguity by insisting that the body of a while-

command is a single command, not a sequence of commands. However, a sequence
of commands can be made into a single command by enclosing it in curly brackets
“{…}”.

 1F. (EBNF)

id expr

com

x 1 ;

id expr

com

y = 2 ;while (b)

expr

com

com

id

x = 1 ; y = 2 ;while (b

id expr

com

id expr

com

id

expr

com

com

id id id

prim

expr

prim

expr

expr

prim

x + y * z

idid id

prim

expr

prim

expr

expr

prim

x * y + z

Programming Languages 3 Tutorial Solutions 4

Modified grammar:
 com = …
 | ‘for’ ‘(’ id ‘=’ expr ‘..’ expr ‘)’
 com
 | ‘case’ ‘(’ expr ‘)’ ‘{’
 (‘when’ num ‘:’ com)+
 (‘otherwise’ ‘:’ com)? ‘}’
 | id ‘(’ actuals ? ‘)’ ‘;’
 decl = …
 | ‘procedure’ id ‘(’ formals ? ‘)’ ‘{’
 com ‘}’
 formals = type id (‘,’ type id)*
 actuals = expr (‘,’ expr)*

