Exercises 2 (Values and types) - Solutions

2A. (Primitive types)
Primitive type for amounts of money up to $£ 100,000.00$ (represented as a multiple of £0.01):
(a) In C the safest choice would be long. (The type int would not have a sufficient range if the C compiler were to choose a 16 -bit representation.)
(b) In Java the type int would be suitable. (A 32-bit representation is guaranteed.)

2B. (Composite types)
(a) Set of values and cardinality of each C type:
SUIT $=\{0,1,2,3\}$
$\mathrm{CARD}=$ SUIT $\times\{0,1, \ldots, 255\}$
\#SUIT $=4$
HAND $=\{0,1,2, \ldots\} \rightarrow$ CARD
OPTION $=\{0,1\}$
\#CARD $=4 \times 256$
TURN $=$ OPTION \times CARD
\#OPTION $=2$
\#TURN $=2 \times 1024$
(b) Set of objects in the Java program:

$$
\begin{aligned}
\text { OBJECT }= & \ldots \\
& +A(\text { (INT } \times \text { FLOAT) } \\
& +B \text { BOOL } \\
& +C(\text { BOOL } \times \text { CHAR }) \\
& +\ldots \quad(\text { objects of other declared classes) })
\end{aligned}
$$

(c) Modified set of objects in the Java program:

```
OBJECT = .. (objects of predefined classes)
    + A (INT }\times\mathrm{ FLOAT)
    +C(BOOL }\times\textrm{CHAR}
    + .. (objects of other declared classes)
```

2C. (Relationship between arrays and functions)
(a) To implement the mapping \{false \rightarrow true, true \rightarrow false $\}:$
(i) Initialize an array a such that $a[$ false $]=$ true and $a[$ true $]=$ false. (This is simplest in C, with false $=0$ and true $=1$.)
(ii) Define a function $f:$ BOOL \rightarrow BOOL, such that f yields true when its argument is false, and yields false when its argument is true.
(b) To implement the factorial function over the integers 0 through 10:
(i) Initialize an array a such that $a[0]=1, a[1]=1, a[2]=2, a[3]=6$, etc.
(ii) Define a function $f: \mathrm{INT} \rightarrow \mathrm{INT}$, using a loop or recursion, such that $f(0)=1$ and $f(n)=n \times f(n-1)$ for $n>0$.
(c) Arrays and functions are fundamentally different in that the mapping represented by an array is stored in its entirety (and therefore must be a finite mapping), whereas a function is applied to its arguments on demand (and therefore may be an infinite mapping).
2D. (Type systems)
For example, Python:
(a) Python's primitive types include INT, FLOAT, and STRING.
(b) Python's composite types are:

```
TUPLE \(=\{0,1,2, \ldots\} \rightarrow\) VALUE
    LIST \(=\) VOID \(+(\) VALUE \(\times\) LIST \()\)
    DICT \(=\) VALUE \(\rightarrow\) VALUE
plus objects, which are tagged DICTs.
```

(c) In Python a recursive type can be defined by declaring a class with one or more instance variables of the same class.
(d) Python is dynamically typed.

2E. (Static vs dynamic typing)
[Outline answer:]
(a) Programs most easily implemented in a dynamically-typed language include those that manipulate data whose type cannot be predicted in advance (e.g., data mined from a website or web form). In such programs, some variables will contain data of unknown type.
(b) Programs most easily implemented in a statically-typed language include all those in which every data item has a type that can be predicted in advance. In such programs, all variables will contain data of known type.

