
Programming Languages 3 Tutorial Solutions 11

Exercises	4	(Interpretation)	–	Solutions	
 4A. (SVM interpreter)

(a)
case DIV: {
 int w2 = data[--sp];
 int w1 = data[--sp];
 if (w2 == 0)
 status = FAILED;
 else
 data[sp++] = w1 / w2;
 break; }

(b)
case LOADG: {
 int d = code[pc++]<<8 | code[pc++];
 if (d < 0 || d >= data.length)
 status = FAILED;
 else
 data[sp++] = data[d];
 break; }

 And similarly for LOADL, STOREL, STOREG.
 (c)

case JUMP: {
 int c = code[pc++]<<8 | code[pc++];
 if (c < 0 || c >= cl)
 status = FAILED;
 else
 pc = c;
 break; }

 And similarly for JUMPF, JUMPT.

 4B. (Mini-Basic VM)
(a) A mini-Basic virtual machine would include a code store that contains one

command per cell, together with a program counter that indicates the next
command to be executed. It would also include a data store with 26 cells, one cell
per variable. Finally, it would include a status register. On each iteration of the
interpreter, the next command would be fetched, analysed, and executed.

(b) Option 1: represent each command by a string. There would be no delay before
program execution starts. Each command must be analysed by a lexer and a parser
just before execution. This would be slow – a significant performance issue since a
command might be analyzed and executed frequently.

 Option 2: represent each command by a list of tokens. There would be a short delay
(lexing all commands) before program execution starts. Each command must be
analysed by a parser only. Analysis of commands when executed would be
somewhat faster than in option 1.

 Option 3: represent each command by an AST. There would be a longer delay
(lexing and parsing all commands) before program execution starts. Analysis of
commands when executed would be faster than in option 1 or 2.

 In option 2, commands could be lexed as they are edited. Similarly, in option 3,
commands could be lexed and parsed as they are edited. Such integration of the
editor and interpreter would eliminate any delay immediately before execution
starts.

Programming Languages 3 Tutorial Solutions 12

Exercises	5	(Compilation)	–	Solutions	
 5A. (Fun compiler)

(a) AST after parsing:

(b) AST after contextual analysis:

LT FUNCCALL ASSN

INT ID
‘m’

NUM
‘10’

ID
‘main’

INT ID
‘n’

NO-

ACTUAL

ID
‘read’

ID
‘n’

ID
‘m’

ID
‘m’

ID
‘n’

ID
‘write’

ID
‘m’

VAR

IF

VAR

PROCCALL

PROG

SEQ

PROC

NO-
FORMAL

:VOID→INT

:INT

:BOOL:INT:INT

:INT :INT :INT :INT

:INT→VOID

:INT

LT FUNCCALL ASSN

INT ID
‘m’

NUM
‘10’

ID
‘main’

INT ID
‘n’

NO-

ACTUAL

ID
‘read’

ID
‘n’

ID
‘m’

ID
‘m’

ID
‘n’

ID
‘write’

ID
‘m’

VAR

IF

VAR

PROCCALL

PROG

SEQ

PROC

NO-
FORMAL

Programming Languages 3 Tutorial Solutions 13

 5B. (Fun compiler – error detection)
(a) AST after syntactic analysis:

(b) AST after contextual analysis:

LT

ASSN

INT ID
‘n’

NUM
‘0’

ID
‘main’

ID
‘n’

NUM
‘1’

ID
‘n’

ID
‘n’

ID
‘x’

ID
‘n’

VAR

WHILE ASSN

PROG

SEQ

PROC

NO-
FORMAL

scope error (‘x’ not declared)

:BOOL

:INT:INT :INT :INT :INT :INT

type error
(INT incomp-
atible with BOOL)

type error
(expression
not BOOL)

LT

ASSN

INT ID
‘n’

NUM
‘0’

ID
‘main’

ID
‘n’

NUM
‘1’

ID
‘n’

ID
‘n’

ID
‘x

ID
‘n’

VAR

WHILE ASSN

PROG

SEQ

PROC

NO-
FORMAL

