
Programming Languages 3 Tutorial Solutions 18

Exercises 9 (Variables and storage) – Solutions

 9A. (Lifetimes of global and heap variables)

(a) Non-recursive version:

(b) Recursive version:

 9B. (Lifetimes of global and heap variables)

 9C. (Equivalent commands)

In Java:

C ;  C

; C  C

if (E) C  if (E) C else ;

if (true) C1 else C2  C1

if (false) C1 else C2  C2

while (E) C  if (E) {
 C
 while (E) C
 }

do C while (E);  C
 if (E) {
 do C while (E);
 }

  C
 while (E) C

add

(6)

main()
lifetime of ns

add

(2)
add

(9)
add

(5)
rem

(6)

lifetime of 6-node

lifetime of 2-node

lifetime of 9-node

lifetime of 5-node

rem

(9)

lifetime of n
fac(3)

main()

lifetime of r

lifetime of n
fac(2)

lifetime of n
fac(1)

fac(3)

main()
lifetime of r

lifetimes of n, f, i

Programming Languages 3 Tutorial Solutions 19

switch (E) C {  { int v = E;
 case l1 : C1 if (v == l1) { C1 C2 … Cn}
 case l2 : C2 else if (v == l2) { C2 … Cn}
 … …
 case ln : Cn else if (v == ln) { Cn}
} }

 9D. (Expressions with side effects)

(a) Advantages and disadvantages of side effects:

+ concise coding

– obscure coding.

(b) To prevent a C non-void function from having side effects, we must ensure that the
function does not assign to a non-local variable. In particular, the function should
contain (i) no assignment that updates a non-local variable, and (ii) no call to a
void function.

A C compiler could not enforce restriction (i), since in an assignment like “p->f =
…” it could not tell whether p is currently pointing to a local, global, or heap
variable.

These restrictions would reduce the language’s expressive power. Restriction (i)
would prevent harmless updates to heap variables that are destroyed before the
function returns. Restriction (ii) would prevent calls to harmless void functions.

Programming Languages 3 Tutorial Solutions 20

Exercises 10 (Bindings and scope) – Solutions

 10A. (Environments)

Environments at numbered points in the C program:

(1) { n → an INT global variable,
 zero → a (VOID → VOID) function }

(2) { d → an INT parameter,
 inc → an (INT → VOID) function,
 n → an Integer global variable,
 zero → a (VOID → VOID) function }

(3) { argc → an INT parameter,
 argv → a POINTER parameter,
 inc → an (INT → Void) function,
 main → an (INT  Pointer → Void) function,
 n → an INT global variable,
 zero → a (VOID → VOID) function }

 10B. (Block structure)

In the following diagram, each applied occurrence is superscripted to indicate the
corresponding binding occurrence, or marked “(–)” if there is no corresponding binding
occurrence.

 10C. (Static vs dynamic scoping)

(a) If the language is dynamically scoped, 21 will be printed at point (1), whilst 22 will
be printed at point (2).

(b) If the language is statically scoped, the program will fail to compile, since the
applied occurrence of d on line 2 has no corresponding declaration.

 10D. (Initializing variable declarations)

Advantages and disadvantages of compulsory initialization of variables:

+ Variables never have undefined values.

– Initialization in a variable declaration is a waste of time if the program never uses
the initial value.

declaration of a
declaration of b

… a(1) … b(2) … c(–)
…

… a(7) … b(2) … c(5) … d(6) …
e(8) …

… a(1) … b(3) … c(4)
…

… a(1) … b(2) … c(–)
…

declaration of b
declaration of c

… a(1) … b(2) … c(5) … d(6) … e(–
) …

… a(1) … b(2) … c(–) … d(–) … e(–
) …

declaration of c
declaration of d

declaration of a
declaration of e

(1)
(2)

(3)
(4)

(5)
(6)

(7)
(8)

Programming Languages 3 Tutorial Solutions 21

 10E. (C type declarations)

(a) C has typedef, enum, struct, and union type declarations.

(b) Possible redesigned syntax:

 decl = …
 | type id (‘=’ expr)

?
 ‘;’ (variable declaration)

 | ‘type’ id ‘=’ type ‘;’ (type definition)

 type = ‘char’
 | ‘int’
 | ‘float’
 | …
 | id
 | type ‘[’ ‘]’
 | ‘enum’ ‘{’ id (‘,’ id)* ‘}’
 | ‘struct’ ‘{’ type id (‘,’ type id)* ‘}’
 | ‘union’ ‘{’ type id (‘,’ type id)* ‘}’

